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Abstract.  We applied multilayer perceptron (MLP) and radial basis function (RBF) neural network in 
upstream and downstream water quality stations of the Karaj Reservoir in Iran. For both neural networks, 
inputs were pH, turbidity, temperature, chlorophyll-a, biochemical oxygen demand (BOD) and nitrate, and 
the output was dissolved oxygen (DO). We used an MLP neural network with two hidden layers, for 
upstream station 15 and 33 neurons in the first and second layers respectively, and for the downstream 
station, 16 and 21 neurons in the first and second hidden layer were used which had minimum amount of 
errors. For learning process 6-fold cross validation were applied to avoid over fitting. The best results 
acquired from RBF model, in which the mean bias error (MBE) and root mean squared error (RMSE) were 
0.063 and 0.10 for the upstream station. The MBE and RSME were 0.0126 and 0.099 for the downstream 
station. The coefficient of determination (R

2
) between the observed data and the predicted data for upstream 

and downstream stations in the MLP was 0.801 and 0.904, respectively, and in the RBF network were 0.962 
and 0.97, respectively. The MLP neural network had acceptable results; however, the results of RBF network 
were more accurate. A sensitivity analysis for the MLP neural network indicated that temperature was the 
first parameter, pH the second and nitrate was the last factor affecting the prediction of DO concentrations. 
The results proved the workability and accuracy of the RBF model in the prediction of the DO. 
 

Keywords:  water quality prediction; the MLP neural network; the RBF neural network; dissolved 

oxygen; Amir Kabir Reservoir 

 

 

1. Introduction 
 

Dissolved Oxygen (DO) is a significant water quality parameter for aquatic life and other uses 

of water. The DO level is a measure of the health of aquatic systems and a certain level of it is 

essential for the survival of aquatic life. The amount of dissolved oxygen is an important indicator 

of water quality especially in reservoirs. Generally, in water quality management, analyzing 

different physical, chemical and biological parameters of rivers and reservoirs need numerous 

computational approaches. 

Oxygen demand can be a result of respiration of algae in a sample and possible oxidation of 

ammonia. Presence of toxic substances in samples may also affect microbial activity and cause 
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changes in DO concentrations (Chen et al. 2014). Water quality factors such as DO, generally 
need to be specified simultaneously. Therefore, there is a need to devise some appropriate indirect 
methods for predicting this factor in a large number of samples in water quality assessment. 
Forecasting DO in water can be carried out using either deterministic or statistical models. 
Dynamic (deterministic) models with hydrodynamic transport modeling components involve the 
solution of differential equations, which formulate the relevant physical, chemical, and biological 
mechanisms and interactions as ecological formulations (Karakaya et al. 2011, Chen et al. 2014, 
Rucinski et al. 2010). The process-based modeling approaches need approximations of several 
processes in most cases, and these estimations may overlook some considerable factors affecting 
the processes in reservoirs. 

Assuming a linear relationship between the response and prediction variables in statistical 
models and their normal distribution can cause unreliability in nonlinear parameters. Because the 
DO dynamics are highly nonlinear, many useful statistical theories cannot be accurate enough for 
predicting this parameter. Therefore, traditional methods are no longer applicable for simulating 
dynamic and complicated variables. In the last two decades, several researches have been applied 
water quality simulation using artificial neural networks (ANN) (Keiner and Yan 1998, Zealand et 
al. 1999, Huang and Foo 2002, Misaghi et al. 2003, Kuo et al. 2004, Dogan et al. 2007, Musavi-
Jahromi and Golabi 2008, Han et al. 2011, Asadollahfardi et al. 2011, 2013, Chen et al. 2014). An 
ANN approach has several advantages over traditional phenomenological or semi-empirical 
models, since they require knowing input data sets without any assumptions (Gardner and Dorling 
1998, Singht et al. 2009). A multi-layer neural network can estimate any smooth, measurable 
function between input and output vectors by selecting a suitable set of connecting weights and 
transfer functions (Singht et al. 2009). An ANN consists of a system of simple interconnected 
processing elements. They have an ability to model any nonlinear process through a set of 
unidirectional weighted connections (Rene and Saidutta 2008). 
 
 
2. Materials and methods 
 

2.1 Study area 
 
Karj Dam, also known as Amir Kabir reservoir, is located 63 kilometers northwest of Tehran 

and 23 kilometers north of Karaj City, Iran. The Karaj reservoir was constructed on the Karaj 
River, and was the first multi-purpose dam in Iran. The average annual water inflow to its 
reservoir is 472 million cubic meters. The bottom elevation and the normal water surface elevation 
of the reservoir are 1,545 meters and 1,610 meters, respectively. The Amir Kabir reservoir was 
built to provide potable water for Tehran and to use in agricultural development in the countryside 
around Karaj City. It supplies irrigation demands for over 130 million cubic meters of farmlands 
near Karaj. The power plant has been connected to the national electrical grid for over 52 years. 
The annual rainfall in the area is between 400 and 880 mm, and the mean annual temperature is 
between 5 and 13 degree centigrade (Ilanloo 2011). Two monitoring stations were considered for 
this paper, including upstream and downstream (Beylaghan) of the reservoir which are indicated in 
Fig. 1.  

The main aim of the present work was to construct an artificial neural network (ANN) model to 
forecast data of dissolved oxygen (DO) water quality parameter in the Amir Kabir reservoir and  
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2.4 Determination of network architecture 
 
Selecting proper number of hidden layers in an ANN and its relationship with an optimal 

performance of the network is always a point of discussion. If the selected number of hidden layers 
is low; it is likely that mapping has not been properly estimated. On the other hand, too many 
hidden layers will increase network complexity. In addition, increasing the number of layers does 
not necessarily lead to an increase in the network accuracy. Hornik et al. (1989) confirmed the 
“universal approximator theory” which explains that a feed forward neural network with a hidden 
layer of a sigmoid tangent transfer function and a linear output layer would be able to estimate 
each complicated function (Cybenko 1989, Hornik 1991, 1993, Leshno et al. 1993). The rate of 
network efficiency depends on applying the appropriate number of neurons in the hidden layers. In 
this study we used an ANN with two hidden layers. The function of the hidden layers was a 
sigmoid tangent transfer function and the function of the output layers was considered a linear 
function. The number of neurons in the hidden layer is determined by trial and error method.  

In learning process, a model would just repeat the labels of the samples, especially where the 
number of samples is small. To avoid over fitting, it is common to apply k-fold cross validation. In 
this method the original sample is randomly split into k almost equal sized subsamples. A model is 
trained using k-1 of the folds as training data; the resulting model is validated on the remaining 
part of the data as testing data for calculating the accuracy of the model. The cross-validation 
process is then repeated k times, with each of the k subsamples used exactly once as the validation 
data. The k results from the folds can then be averaged to make a single estimation.  
 

2.5 Data preparation 
 

Data collected during 2001 to 2012 was monitored by the Karaj Water Authority (Iran), and 
was applied for analysis. Considering the application of a sigmoid tangent transfer function in the 
hidden layers of the networks and the special formula of this function, the scale of input data 
should be changed. All used data, output and input, were transformed to -1 and +1 intervals to 
prevent network saturation. After finishing the process, the predicted data would be transformed 
back to real data. Eq. (4) is used to change the scale of the data (Razavi 2006) 

௦ܣ ൌ
ܱ௧ െ ܣ
ܤ െ ܣ

ൈ 2 െ 1 (4)

Where As and Ot are the scaled and the actual (observed) value of the DO in time t, 
respectively. A and B are the lowest and the highest values of a series of the DO data. 
 

2.6 Model efficiency 
 

To determine the amount of error in predicting the DO and the performance evaluation of the 
models, we used Root Mean Squared Error (RMSE) and mean bias error (MBE). The MBE 
provides information if the model overestimates (MBE>0) or underestimates (MBE<0) the 
forecasted parameter concentrations. The best score is MBE=0. They are defined as follows in 
Eqs. (5) and (6) (Willmott and Matsuura 2005) 

ܧܵܯܴ ൌ ඩ
1
݊
෍ሺܱ௧ െ ௧ሻଶܨ
௡

௧ୀଵ

 (5)
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ܧܤܯ ൌ ݊ିଵ෍ܨ௜ െ ௜ܱ

௡

௜ୀଵ

 (6)

Where Ft and Ot are forecasted and observed values of DO concentration in time t respectively; 
and n is the number of data. Also, we used a coefficient of determination (R2) between the 
observed and the predicted data to indicate the validity of the model (Eq. (7)) 

(7)ܴଶ ൌ ቊ
∑ሺ ௜ܱ െ തܱሻሺܨ௜ െ തሻܨ

ඥ∑ሺ ௜ܱ െ തܱሻଶ െ ሺܨ௜ െ തሻଶܨ
ቋ
ଶ

 

Where, O and F are observed and forecasted data, respectively. ܱ	ഥAnd ܨത are the average of O 
and F. Apart from the previous criteria, index of agreement (IA) was calculated to investigate how 
close the predicted parameters were with the observed data, Eq. (8). (Krause et al. 2005) 

ܣܫ ൌ 1 െ
ሺܨప െ ܱሻଶതതതതതതതതതതതത

పܨ|ڿ െ തܱ| ൅ | పܱ െ തܱ|ۀଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത  (8)

The index of agreement (IA) varies from 0.0 (theoretical minimum) to +1.0 (perfect agreement 
between the observed and predicted values).  
 

2.7 The radial basis function (RBF) neural network 
 

Although, the structure of the RBF is similar to the MLP, the RBF simulates an unknown water 
quality parameters, applying a network of Gaussian basis functions in the hidden layer (Eq. (9)) 
and linear activation functions in the output layer 

݂ሺݔሻ ൌ ݁
ି௫మ

ଶఙమൗ  (9)

Where x is the weighted sum of inputs to the neurons; ϭ is the sphere of influence or the width 
of the basis function, and f(x) is the corresponding output of the neurons (Dawson and Wibly, 
2001). 

The RBF neural networks have a very simple architecture. Their structure contains an input 
layer, a single hidden layer, and an output layer. Training an RBF includes two steps. First, the 
basic functions are established using an algorithm to cluster data in the training set. Kohohen 
SOMs (Kohohen 1984) are a form of ‘self-organizing’ neural network that learn to differentiate 
patterns within input data. A SOM will, consequently, cluster input data according to perceived 
patterns without having to provide a corresponding output response. K means clustering, which 
involves the organization all objects into a predefined number of groups by minimizing the total 
squared Euclidean distance for each object with respect to its nearest cluster center. Other 
methods, such as orthogonal least squares and Maxi Min algorithms, have also been applied (Song 
1996). Next, the weights linking the hidden and the output layers are calculated directly using 
simple matrix inversion and multiplication. The direct calculation of weights in an RBF makes it 
far quicker to train than an equivalent MLP (Dawson and Wibly 2001). 
 
 
3. Results and discussion 
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Tables 1 and 2 present the statistical summary of data on the upstream and the downstream 
stations of Amir Kabir reservoir. 
 

3.1 Sensitivity analysis 
 

For selecting input parameters, we selected temperature, pH, turbidity, NO3, Chl-a and BOD, 
and applied sensitivity analysis. A sensitivity analysis was performed to determine the effects of 
input parameters in predicting DO. We increased or decreased one of the input parameters by 20%, 
while the others were kept unchanged. Therefore, variations in each parameter in the prediction of 
DO become clear. As indicated in Fig. 5, we observed that pH and temperature effect more than 
18% on prediction of the DO. It illustrates that the role of pH and temperature in DO prediction is 
vital. After them, BOD and Chl-a have more than 16% considerable effects on the prediction of 
the DO. The influence of NO3 was less than other input parameters. The summary of the 
sensitivity analysis for each input parameter is summarized in the Table 3. 

 
 

 
Fig. 5 the results of  the sensitivity analysis 

 
Table 1 summary of the upstream station statistical data 
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Gholamreza Asadollahfardi, Shiva Homayoun Aria and Mehrdad Abaei 

in the two water quality monitoring stations at the Amir Kabir Reservoir: 
• To choose the optimum variables as inputs between all the water quality parameters, a 

sensitivity analysis applied to demonstrate the effect of each input parameter. The results indicated 
that the temperature had the greatest impact, and the pH was in the second position.  Biochemical 
Oxygen Demand (BOD) and Chlorophyll-a (Chl-a) parameters had the third and fourth roles in 
dissolved oxygen (DO) prediction. 

• For the upstream station, the MLP with two hidden layers, which included 15 neurons in the 
first layer and 33 neurons in the second layer provided minimum errors. The MLP network by 16-
21 neurons in first and second layer, respectively, in the downstream station had the best results. 

• True RMSE in 6-fold cross validation were 0.33 and 0.100 for MLP and RBF networks, 
respectively in the upstream station and 0.202 and 0.098, for MLP and RBF networks, respectively 
in the downstream station. The MBE, using the MLP network determined that the predicted value 
in the upstream is overestimated, and for downstream station it is underestimated. The results of 
errors determined while both networks are accurate, the RBF network is more reliable. 

• The coefficient of determinations in the MLP neural network were 0.801 and 0.904 for the 
upstream and the downstream stations, respectively. In the RBF neural network they were 0.962 
and 0.97 for the upstream and the downstream stations, respectively. These results prove the better 
efficiency of the RBF neural network in this study. 

• The amount of the Index of Agreement (IA) in both networks indicated that the RBF with an 
IA equal to 0.991 and 0.994 in the upstream and the downstream stations, respectively, had a 
better agreement compared with the MLP network, which had an IA equal to 0.955 and 0.972 for 
the upstream and the downstream stations, respectively. 
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