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Abstract.  If the governing differential equation arising from engineering problems is treated as an analytic, 
continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to 
be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a 
recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to 
obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an 
inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and 
Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is 
established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, 
the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the 
natural boundary conditions are applied and the governing equations are solved using a proposed new method. The 
maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of 
the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical 
examples are performed and the plots of the numerical results are presented. The validation of the numerical results is 
observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in 
Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the 
material. 
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1. Introduction 

 
Compared to conventional composite laminates, they offer several advantages, such as 

resistance to very high temperature gradients, lower stress concentrations, higher corrosion 

resistance, higher toughness and higher fracture strength. Therefore, many researchers have 

focused their attention on studying the mechanical behavior of structures made of functionally 

graded materials (FGMs). Elasto-plastic analysis of thick-walled functionally graded tanks 

subjected to internal pressure has been elaborated (Heydari 2009). The residual stress distribution 

in autofrettage homogeneous spherical pressure vessels subjected to different autofrettage 

pressures is evaluated (Maleki et al. 2010). The Armstrong-Frederick kinematic hardening model 
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is adopted and Voce's hardening law is included for isotropic hardening behavior (Leu et al. 2014). 

An analytical solution of thick-walled piezoelectric functionally graded (FG) cylinder for non-

axisymmetric thermo-mechanical loads and uniform electric field is carried out (Atrian et al. 

2015). The two-dimensional analytical solution of a piezothermoelastic FG hollow sphere with 

integrated piezoelectric layers as a sensor and actuator for non-axisymmetric loads is calculated by 

using the system of Euler differential equations and Legendre polynomials (Barati and Jabbari 

2015). Spreading of plastic zones in functionally graded spherical tanks subjected to internal 

pressure and temperature gradient combinations is investigated (Heydari 2015). The active control 

of FG hollow sphere’s displacement and stress is performed by applying a feedback gain control 

algorithm. An analytical size-dependent model is proposed based on electro-elastic surface/ 

interface model to investigate the dynamic electromechanical response of a multilayer piezo-

electric nano-cylinder subjected to electro-elastic waves by considering interface energy effect on 

the stress and electric field (Fang et al. 2015). The power law function is used to analyze snap-

through buckling behavior of shallow clamped FG spherical shell with surface-bonded 

piezoelectric actuators subjected to the thermo-electro-mechanical loading (Sabzikar and Eslami 

2014). The Variational Asymptotic Method (VAM) splits a 3-D elasticity problem into a 2-D linear 

cross-sectional problem and a one-dimensional beam problem. A complete agreement between 

results of commercially available 3-D FEM solver Abaqus and asymptotically exact analytical 

solutions for FG cylinder based on VAM is observed (Sachdeva and Padhee 2018). Many 

elastoplastic analyses are performed (Ushio et al. 2019, Masoodi 2019, Polatov et al. 2020). 

Elastoplastic analysis of thick-walled vessels with isotropic strain hardening behavior using 

nonlinear compatibility relation is done (Heydari 2018). An exact solution of 3-D elasticity for 

sound transmission loss through FG cylinder in the presence of subsonic external flow by 

modeling through-thickness gradation of materials based on power law function is obtained 

(Daneshjou et al. 2017). The nonlinear analysis of functionally graded spherical pressure vessels 

composed of metal/ceramic mixture for both high strength and high thermal resistance is discussed 

(Yildirim et al. 2022). The use of recursive algorithm to formulate the analytical solution of 

thermo-mechanical stresses of multi-layered hollow spherical pressure vessel is demonstated (Sim 

et al. 2021). The plastic limit pressure of spherical vessels of nonlinear combined isotropic/ 

kinematic hardening materials is investigated.  

The numerical and semi-analytical methods are employed to solve homogeneous or 

heterogeneous hollow cylinder problems. Elastoplastic analysis of cylindrical vessel with arbitrary 

material gradation subjected to thermo-mechanical loading via DTM is conducted (Heydari 2019). 

The mechanical stress reduction in a pressurized 2D-FGM thick hollow cylinder with finite length 

is studied (Najibi 2017). The meshless local Petrov-Galerkin method is employed to investigate 

dynamic response of FG viscoelastic hollow cylinder subjected to thermo-mechanical loads 

(Akbari et al. 2018). The meshless local Petrov–Galerkin method based on total Lagrangian 

approach is applied for geometrically nonlinear analysis of a FG thick-walled hollow cylinder with 

Rayleigh damping subjected to axisymmetric mechanical shock loading (Ghadiri Rad et al. 2015). 

The perturbation method is applied to describe dispersion curves in the neighborhood of radial 

resonances for an isotropic hollow cylinder in the presence of an inhomogeneous prestress field 

(Vatul’yan and Yurov 2016). The differential quadrature method (DQM) is applied to study the 

Electro-elasto-dynamic analysis of FG cylindrical shell with piezoelectric rings (Saviz, 2017).  

Most of engineering problems must be solved numerically (Oh et al. 2023, Babaei et al. 2022, 

Zaid and Sadique 2020, Fenjan et al. 2020, Heydari 2017). Nowadays, the new numerical methods 

are proposed and their progress is still increasing with day to day. In this study, a new numerical 
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method is introduced for solving structural problems and outcomes are verified by FEM results. 

The governing differential equations of various engineering problems such as elastoplastic analysis 

of thick heteregenous reservoir can be solved by the proposed method. Fast convergence and 

compatibility with various conditions are advantages of proposed method however, the method 

may have convergence problem in nonlinear ODEs. The stress and strain fields of a spherical 

reservoir with through-the-thickness variation of mechanical properties subjected to internal 

pressure is obtained using proposed method to present the efficiency and accuracy of the new 

method. The elastoplastic analysis of the inhomogeneous thick sphere of metallic materials with 

linear variation of elastic modulus, yield stress and Poisson's ratio in terms of radius subjected to 

internal pressure is presented. The Beltrami-Michell equation is established by combining 

equilibrium, compatibility and constitutive equations. By assuming axisymmetric conditions, the 

spherical coordinate parameters can be used as principal stress axes. The natural boundary 

conditions are applied and the governing equations are solved using the proposed method, since 

there is no analytical solution. 
 

 

2. Governing equations 
 

The basic equations are simplified because of the axisymmetric conditions. The equilibrium 

and compatibility equations are simplified as follows: 

𝑑

𝑑𝑟
𝜎𝑟(𝑟) +

2(𝜎𝑟(𝑟) − 𝜎𝜃(𝑟))

𝑟
= 0 (1) 

𝑑

𝑑𝑟
𝜖𝜃(𝑟) +

𝜖𝜃(𝑟) − 𝜖𝑟(𝑟)

𝑟
= 0 (2) 

Hooke's constitutive relation is used because of the linear material behavior in the elastic zone. 

𝜖𝑟(𝑟) =
𝜎𝑟(𝑟) − 2𝜈𝜎𝜃(𝑟)

𝐸(𝑟)
 (3) 

𝜖𝜃(𝑟) =
(1 − 𝜈)𝜎𝜃(𝑟) − 𝜈𝜎𝑟(𝑟)

𝐸(𝑟)
 (4) 

The governing equation in terms of radial stress is calculated by considering Eq. (1) to Eq. (4). 

𝜙1(𝑟)
𝑑2

𝑑𝑟2
𝜎𝑟(𝑟) + 𝜙2(𝑟)

𝑑

𝑑𝑟
𝜎𝑟(𝑟) + 𝜙3(𝑟)𝜎𝑟(𝑟) = 0 (5) 

The coefficients 𝜙1 to 𝜙3 are 

𝜙1(𝑟) = −𝑟𝐸(𝑟)(𝜈(𝑟) − 1) (6) 

𝜙2(𝑟) = 𝑟(𝜈(𝑟) − 1)
𝑑

𝑑𝑟
𝐸(𝑟) − 𝐸(𝑟) (𝑟

𝑑

𝑑𝑟
𝜈(𝑟) + 4𝜈(𝑟) − 4) (7) 

𝜙3(𝑟) = −4 ((
1

2
− 𝜈(𝑟))

𝑑

𝑑𝑟
𝐸(𝑟) + 𝐸(𝑟)

𝑑

𝑑𝑟
𝜈(𝑟)) (8) 
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(a) (b) 

Fig. 1 Yield criterions (a): von Mises and (b): Tresca in the dimensionless coordinate system 

 

 

The functions of the mechanical properties, i.e. Young's modulus, yield stress and Poisson's 

ratio are linear functions in terms of the radius in the spherical coordinate system. 

𝐸(𝑟) = 𝐸𝑜 + 𝐸𝑠𝑟 (9) 

𝜎𝑦(𝑟) = 𝜎𝑦𝑜 + 𝜎𝑦𝑠𝑟 (10) 

𝜈(𝑟) = 𝜈𝑜 + 𝜈𝑠𝑟 (11) 

where the parameters 𝐸𝑜 and 𝜈𝑜 with index zero denote the value of the mechanical property at 

the center. The parameters 𝐸𝑠 and 𝜈𝑠 refer to the linear material gradation. The modulus of 

elasticity and Poisson's ratio are inserted into the coefficients of the second-order differential 

equation. These coefficients are rewritten as follows: 

𝜙1(𝑟) = −(𝐸𝑜𝑟 + 𝐸𝑠𝑟2)(𝜈𝑜 + 𝜈𝑠𝑟 − 1) (12) 

𝜙2(𝑟) = (𝜈𝑜𝑟 + 𝜈𝑠𝑟2 − 𝑟)𝐸𝑠 − (𝐸𝑜 + 𝐸𝑠𝑟)(5𝜈𝑠𝑟 − 4(1 − 𝜈𝑜)) (13) 

𝜙3(𝑟) = (4𝜈𝑜 − 2)𝐸𝑠 − 4𝐸𝑜𝜈𝑠 (14) 

The von Mises yield criterion is an ellipse with no singularity in the principal axis coordinate. 

The axisymmetric condition means that the first and second principal axes are radial and tangential 

axes, respectively, in the spherical coordinate system (𝜎I = 𝜎𝑟, 𝜎II = 𝜎III = 𝜎𝜃 = 𝜎𝜙).  

The von Mises and Tresca yield criteria can be expressed by the principal axes. 

1

6
(𝜎I − 𝜎II)

2 +
1

6
(𝜎I − 𝜎III)

2 +
1

6
(𝜎II − 𝜎III)

2 =
1

3
𝜎𝑦

2 (15) 

1

2
𝑚𝑎𝑥(|𝜎I − 𝜎II|, |𝜎I − 𝜎III|, |𝜎II − 𝜎III|) =

1

2
𝜎𝑦 (16) 
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After considering axisymmetric conditions, final results of the both yield criteria are similar. 

|𝜎𝑟 − 𝜎𝜃| = 𝜎𝑦 (17) 

Combining Eq. (1) and Eq. (17), we obtain 

𝑑

𝑑𝑟
𝜎𝑟(𝑟) −

2

𝑟
(𝜎𝑦𝑜 + 𝜎𝑦𝑠𝑟) = 0 (18) 

  

 

3. Novel numerical method 
 
The relevant differential equation must be solved using a numerical method. In mathematics, a 

collocation method is a method for numerically solving ordinary differential equations, partial 

differential equations and integral equations. The idea is to choose a finite-dimensional space of 

possible solutions (usually polynomials up to a certain degree) and a number of points in this space 

(called collocation points) and choose the solution that satisfies the given equation at the 

collocation points. The same idea is used, but the values of the derivatives of the function with 

acceptable accuracy are considered without calculating the coefficients of a candidate polynomial. 

The equation (5) is rewritten as follows: 

𝑓(𝑟) = 𝜙1(𝑟)
𝑑2

𝑑𝑟2
𝜎𝑟(𝑟) + 𝜙2(𝑟)

𝑑

𝑑𝑟
𝜎𝑟(𝑟) + 𝜙3(𝑟)𝜎𝑟(𝑟) = 0 (19) 

Maclaurin series expansion of the function 𝑓 in Eq. (19) is 

𝑓(𝑟) = ∑ 𝐹𝑛𝑟𝑛

𝑚

𝑛=0

= ∑
𝑟𝑛

𝑛!
[

𝑑𝑛

𝑑𝑟𝑛
𝑓(𝑟)]

𝑟=0

𝑚

𝑛=0

              𝑚 ∈ ℕ (20) 

The function 𝑓 for any value of its domain (𝑎 ≤ 𝑟 ≤ 𝑏) must vanish, where 𝑎 and 𝑏 are 

inner and outer radius of sphere. 

𝑓(𝑟) = (∑
𝑛!

𝑘! (𝑛 − 𝑘)!

𝑛

𝑘=0

(�̃�1 + �̃�2 + �̃�3)|
𝑟=0

) 𝑟𝑛 = 0 (21) 

Since all terms of the approximation of the function 𝑓 in Eq. (19) with similar powers of 𝑟 

must vanish, one can write 

∑
𝑛!

𝑘! (𝑛 − 𝑘)!

𝑛

𝑘=0

(�̃�1 + �̃�2 + �̃�3)|
𝑟=0

 (22) 

in which, 

𝜑𝑖(𝑛, 𝑘, 𝑟) = ∑
𝑛!

𝑘! (𝑛 − 𝑘)!
�̃�𝑖

𝑛

𝑘=0

      𝑖 ∈ {1,2,3} (23) 

The parameters 𝜑1 to 𝜑3 are 

𝜑1(𝑛, 𝑘, 𝑟) = ∑
𝑛!

𝑘! (𝑛 − 𝑘)!

𝑑𝑘

𝑑𝑟𝑘
𝜙1(𝑟)

𝑑𝑛−𝑘+2

𝑑𝑟𝑛−𝑘+2
𝜎𝑟(𝑟)

𝑛

𝑘=0

 (24) 
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𝜑2(𝑛, 𝑘, 𝑟) = ∑
𝑛!

𝑘! (𝑛 − 𝑘)!

𝑑𝑘

𝑑𝑟𝑘
𝜙2(𝑟)

𝑑𝑛−𝑘+1

𝑑𝑟𝑛−𝑘+1
𝜎𝑟(𝑟)

𝑛

𝑘=0

 (25) 

𝜑3(𝑛, 𝑘, 𝑟) = ∑
𝑛!

𝑘! (𝑛 − 𝑘)!

𝑑𝑘

𝑑𝑟𝑘
𝜙3(𝑟)

𝑑𝑛−𝑘

𝑑𝑟𝑛−𝑘
𝜎𝑟(𝑟)

𝑛

𝑘=0

 (26) 

After substituting Eqs. (12) to (14) in Eqs. (24) to (26), the parametrs 𝜑1  to 𝜑3  are 

simplified.  

𝜑1|𝑟=0 = (𝑛𝐸𝑜(1 − 𝜈𝑜)ςn+1 + 𝑛(𝑛 − 1)(𝐸𝑠(1 − 𝜈𝑜) − 𝐸𝑜𝜈𝑠)ςn) (27) 

𝜑2|𝑟=0 = (4𝐸𝑜(1 − 𝜈𝑜)ςn+1 + 𝑛(3𝐸𝑠(1 − 𝜈𝑜) − 5𝐸𝑜𝜈𝑠)ςn − 4𝑛(𝑛 − 1)𝜈𝑠𝐸𝑠ςn−1) (28) 

𝜑3|𝑟=0 = ((4𝜈𝑜 − 2)𝐸𝑠 − 4𝐸𝑜𝜈𝑠)ςn (29) 

where the ςn is the differential transform of the 𝑛𝑡ℎ derivative of function 𝜎𝑟(𝑟) is defined as 

follows: 

ςn =
1

𝑛!
[

𝑑𝑛

𝑑𝑟𝑛
𝜎𝑟(𝑟)]

𝑟=0
 (30) 

Substituting Eqs. (27) to (29) in Eq. (22), the recursive equation is extracted. 

ςn+1 =
𝜂3

𝜂1

ςn−1 −
𝜂2

𝜂1

 ςn            𝑛 ∈ ℕ (31) 

Where 

𝜂1 = (1 − 𝜈𝑜)𝐸𝑜(𝑛 + 4) (32) 

𝜂2 = ((1 − 𝜈𝑜)(𝑛2 + 2𝑛) − 2(1 − 2𝜈𝑜))𝐸𝑠 − 𝐸𝑜𝜈𝑠(𝑛 + 2)2 (33) 

𝜂3 = 4𝜈𝑠𝐸𝑠𝑛(𝑛 − 1) (34) 

The boundary conditions are 𝜎𝑟(𝑎) = −𝑃 and 𝜎𝑟(𝑏) = 0, where 𝑃 is internal pressure. It 

holds 

𝜍0 = (
𝑎

𝑏 − 𝑎
) (∑ 𝜍𝑘(𝑏𝑘 − 𝑎𝑘)

𝑛

𝑘=2

) − ∑ 𝜍𝑘𝑎𝑘

𝑛

𝑘=2

−
𝑃𝑏

𝑏 − 𝑎
 (35) 

𝜍1 = − (
𝑏

𝑏 − 𝑎
) ∑ 𝜍𝑘𝑏𝑘−1

𝑛

𝑘=2

+
1

𝑏 − 𝑎
(∑ 𝜍𝑘𝑎𝑘

𝑛

𝑘=2

+ 𝑃) (36) 

The circumferential stress in elastic zone can be obtained as follows: 

𝜎𝜃(𝑟) = ∑ 𝜍𝑘𝑟𝑘

𝑛

𝑘=0

+
1

2
∑ 𝜍𝑘𝑘𝑟𝑘

𝑛

𝑘=1

 (37) 

The elastic strain field is calculated as follows: 
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Table 1 Numerical values of geometry, loading and mechanical properties 

𝜎𝑦𝑠 

(𝑘𝑔 𝑐𝑚3⁄ ) 

𝜎𝑦𝑜 

(𝑘𝑔 𝑐𝑚2⁄ ) 

𝜈𝑠 

(𝑐𝑚−1) 
𝜈𝑜 

𝐸𝑠 

(𝑘𝑔 𝑐𝑚3⁄ ) 

𝐸𝑜 

(𝑘𝑔 𝑐𝑚2⁄ ) 

𝑃𝑦 

(𝐾𝑔 𝑐𝑚2⁄ ) 

𝑏 

(𝑐𝑚) 
𝑎 

 (𝑐𝑚) 

30 1400 0.003 0.2 2 × 104 1.5 × 106 890 50 40 

 

 

𝜖𝑟(𝑟) =
(1 − 2𝜈) ∑ 𝜍𝑘𝑟𝑘𝑛

𝑘=0 − 𝜈 ∑ 𝜍𝑘𝑘𝑟𝑘𝑛
𝑘=1

𝐸𝑜 + 𝐸𝑠𝑟
 (38) 

𝜖𝜃(𝑟) =
(1 − 2𝜈) ∑ 𝜍𝑘𝑟𝑘𝑛

𝑘=0 + (1 − 𝜈) ∑ 𝜍𝑘𝑘𝑟𝑘 2⁄𝑛
𝑘=1

𝐸𝑜 + 𝐸𝑠𝑟
 (39) 

In contrast to the circumferential displacement, the radial displacement is nonzero. 

𝑢𝑟(𝑟) =
(1 − 2𝜈) ∑ 𝜍𝑘𝑟𝑘+1𝑛

𝑘=0 + (1 − 𝜈) ∑ 𝜍𝑘𝑘𝑟𝑘+1 2⁄𝑛
𝑘=1

𝐸𝑜 + 𝐸𝑠𝑟
 (40) 

 The von Mises yield criterion (also known as the maximum deformation energy criterion) 

states that yielding of a ductile material begins when the second deviatoric stress invariant reaches 

a critical value. It is part of the plasticity theory that is most applicable to ductile materials, such as 

some metals. The effective stress is calculated as follows: 

𝜎eff =
1

2
𝜎𝜃 −

1

2
𝜎𝑟 (41) 

The onset of plastic yielding condition at inner radius is written as follows: 

∑ 𝜍𝑘𝑘𝑎𝑘

𝑛

𝑘=1

= 2𝜎𝑦 (42) 

The radial stress in the plastic zone is calculated by solving the governing differential equation 

of the plastic zone. The circumferential stress can be calculated by considering the equilibrium 

equation. 

𝜎𝑟
𝑝(𝑟) = 2𝜎𝑦0 ln (

𝑟

𝑎
) + 2𝑟𝜎𝑦𝑠 − (2𝑎𝜎𝑦𝑠 + 𝑃) (43) 

𝜎𝜃
𝑝(𝑟) = 2𝜎𝑦0 ln (

𝑟

𝑎
) + (3𝑟 − 2𝑎)𝜎𝑦𝑠 + 𝜎𝑦0 − 𝑃 (44) 

The capacity of the reservoir with elastic, perfectly plastic behavior is calculated by 

approaching the radius of elastic and plastic zones’ boundary (i.e. 𝑐) to the outer radius, 𝑏. 

𝑃𝑚𝑎𝑥 = 2𝜎𝑦0 ln (
𝑏

𝑎
) + 2𝜎𝑦𝑠(𝑏 − 𝑎) (45) 

  

 

4. Results and discussion 

 

The numerical values of the parameters are listed in Table (1) to perform a numerical example. 

Fig. (2) shows the convergence of numerical results for the case where 30 percent of the  
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Fig. 2 The convergence of proposed method (R = 30%) 

 

 
Fig. 3 The equivalent Abaqus model 

 

 
Fig. 4 Model mesh 
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Fig. 5 The boundary conditions compatible with axisymmetric conditions 

 

 
Fig. 6 The defined path in radial direction 

 

  
(a) stress field (b) strain field 

Fig. 7 Comparison between results of proposed method and Abaqus outcomes for onset of yielding 

 

 

thickness becomes plastic (𝑅 = ((𝑐 − 𝑎) (𝑏 − 𝑎)⁄ ), 𝑃 = 1061.2 𝑘𝑔). The equivalent laminated 

sphere is modeled in Abaqus software. The mechanical and geometrical properties of each layer in 

Fig. (3) are calculated and presented in Table (2). Since the production of a FG sphere is very 

expensive, the FEM is used. A good agreement was found between the FEM results and the results  
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Table 1 Numerical values of geometry, loading and mechanical properties 

𝜎𝑦𝑛(𝑘𝑔 𝑐𝑚2⁄ ) 𝜈𝑛 𝐸𝑛(𝑘𝑔 𝑐𝑚2⁄ ) 𝑟𝑛(𝑐𝑚) 𝑟𝑜(𝑐𝑚) 𝑟𝑖(𝑐𝑚) Layer number (n) 

2615 0.322 2.310E+06 40.50 41 40 1 
2645 0.325 2.330E+06 41.50 42 41 2 
2675 0.328 2.350E+06 42.50 43 42 3 
2705 0.331 2.370E+06 43.50 44 43 4 
2735 0.334 2.390E+06 44.50 45 44 5 
2765 0.337 2.410E+06 45.50 46 45 6 
2795 0.340 2.430E+06 46.50 47 46 7 
2825 0.343 2.450E+06 47.50 48 47 8 
2855 0.346 2.470E+06 48.50 49 48 9 
2885 0.349 2.490E+06 49.50 50 49 10 

 

 

 
Fig. 8 The stress field in the elastic container 

 

 
Fig. 9 The strain field in the elastic container 

 

 

of current research. One-eighth of the original container is modeled based on axisymmetric 

conditions. According to Fig. (4), elements of type C3D8 with the size of 7.5 mm are used and 

according to Fig. (5) for preventing of rotation in prependicular directions the appropriate 

boundary conditions in spherical coordinate system are applied. To analysis behavior of the graded 

material, the subroutine USDFLD is additionally written to model the continuous gradation of the  
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Fig. 10 The radial displacement in the elastic container 

 

 
Fig. 11 The effect of gradation of Poisson’s ratio on plastic zone propagation 

 

 
Fig. 12 The effect of gradation of elasticity modulus on plastic zone propagation 

 

 

material. The proper way to extract the analysis results is shown in Fig. (6). The good agreement 

between the results of proposed method and the results of FEM can be observed in Fig. (7-a) and 

(7-b). The other results can be obtained from the stress field. Hooke’s law provides the strain field 

from the stress field and the relative displacement can be calculated directly from the radial strain. 

Therefore, only the stress field is verified in Fig. (7). 
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Fig. 13 The effect of yield stress gradation on plastic zone propagation 

 

 

The elastic stress field is shown in Fig. (8) for 𝑃 = 667 𝐾𝑔 𝑐𝑚2⁄ . Unlike the circumferential 

stress, the radial stress has a negative sign. In addition, the radial stress on the outer surface 

hasdisappeared. The elastic strain field is shown in Fig. (9). Similar to the stress field, the strain in 

the radial direction has a negative sign and the tangential strain has a positive sign. In contrast to 

the radial stress, the radial strain at the outer surface is non-zero. The maximum amounts of 

circum- ferential stress and strain occur at the inner surface. The maximum absolute amounts of 

radial stress and strain occur at the inner surface. The radial displacement in the elastic spherical 

reservoir with linear material variation is shown in Fig. (10). The radial displacement decreases 

with increasing distance from the inner surface. 

The effects of material gradation on the required internal pressure for the propagation of the 

plastic region are shown in Figs. (11)-(13). 
 

 

5. Conclusions 
 

A novel and efficient numerical method is proposed to solve the governing differential equation 

arising from engineering problems. Fast convergence and compatibility with various conditions 

are the advantages of the proposed method. An elastoplastic, heterogeneous, isotropic, thick-

walled sphere is analyzed in the light of the efficiency of the proposed method. The composite 

sphere model with a limited number of layers is suitable for modeling a heterogeneous thick 

sphere with a continuous change in mechanical properties subjected to internal pressure. In 

contrast to the internal pressure, which is necessary for the propagation of the plastic zone, the 

capacity of the thick-walled sphere with elastic-perfect plastic material behavior is independent of 

the Poisson's ratio and the variation of the elastic modulus. In addition, the positive change in yield 

stress increases the internal pressure required to propagate the plastic zone. 
 
 

References  
 

Akbari, A., Bagri, A. and Natarajan, S. (2018), “Dynamic response of viscoelastic functionally graded 

hollow cylinder subjected to thermo-mechanical loads”, Compos. Struct., 201, 414-422.  

https://doi.org/10.1016/j.compstruct.2018.06.044 

Atrian, A., Jafari Fesharaki, J. and Nourbakhsh, S.H. (2015), “Thermo-electromechanical behavior of 

50



 

 

 

 

 

 

A novel method for solving structural problems: elastoplastic analysis … 

functionally graded piezoelectric hollow cylinder under non-axisymmetric loads”, Appl. Math. Mech., 

36(7), 939-954. https://doi.org/10.1007/s10483-015-1959-9 

Babaei M.i, Atasoy A., Hajirasouliha I., Mollaei S. and Jalilkhani M. (2022), “Numerical solution of beam 

equation using neural networks and evolutionary optimization tools”, Adv. Comp. Des., 7(1), 1-17,  

https://doi.org/10.12989/acd.2022.7.1.001 

Barati, A.R. and Jabbari, M. (2015), “Two-dimensional piezothermoelastic analysis of a smart FGM hollow 

sphere”, Acta Mech., 226(7), 2195-2224. https://doi.org/10.1007/s00707-015-1304-8 

Daneshjou, K., Talebitooti, R. and Tarkashvand, A. (2017), “An exact solution of three-dimensional 

elasticity for sound transmission loss through FG cylinder in presence of subsonic external flow”, Int. J. 

Mech. Sci., 120, 105-119. https://doi.org/10.1016/j.ijmecsci.2016.10.008 

Fang, X.Q., Liu, H.W., Feng, W.J. and Liu, J.X. (2015), “Size-dependent effects on electromechanical 

response of multilayer piezoelectric nano-cylinder under electro-elastic waves”, Compos. Struct., 125, 23-

28. https://doi.org/10.1016/j.compstruct.2015.01.046 

Fenjan R.M., Ahmed R.A., Hamad L.B. and Faleh N.M. (2020), “A review of numerical approach for 

dynamic response of strain gradient metal foam shells under constant velocity moving loads”, Adv. Comp. 

Des., 5(4), https://doi.org/10.12989/acd.2020.5.4.349 

Ghadiri Rad, M.H., Shahabian, F. and Hosseini, S.M. (2015), “A meshless local Petrov–Galerkin method for 

nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping”, Acta 

Mech., 226(5), 1497-1513. https://doi.org/10.1007/s00707-014-1266-2 

Heydari, A. (2015), “Spreading of Plastic Zones in Functionally Graded Spherical Tanks Subjected to 

Internal Pressure and Temperature Gradient Combinations”, Iran. J. Mech. Eng. Technol., 16(2), 5-25.  

Heydari, A. (2018), “Elastoplastic analysis of thick-walled vessels with isotropic strain hardening behavior 

using nonlinear compatibility relation”, Proceedings of the 7th International Conference of Civil 

Engineering, Architecture and Urban Economy Development, Shiraz, Iran. 

Heydari, A. (2019), “Elasto-plastic analysis of cylindrical vessel with arbitrary material gradation subjected 

to thermo-mechanical loading via DTM”, Arab. J. Sci. Eng., 44(10), 8875-8891.  

https://doi.org/10.1007/s13369-019-03910-x 

Heydari, A. and Jalali A.R. (2017), “A new scheme for buckling analysis of bidirectional functionally 

graded Euler beam having arbitrary thickness variation rested on Hetenyi elastic foundation”, Modar. 

Mech. Eng., 17(1), 47-55. http://dorl.net/dor/20.1001.1.10275940.1396.17.1.17.7 

Heydari, A. and Kazemi M.T. (2009), “Elasto-plastic analysis of thick walled tanks subjected to internal 

pressure”, Int. J. Adv. Des. Manuf. Technol., 3(1), 11-18. https://sanad.iau.ir/Journal/admt/Article/873201 

Kossakowski P.G. and Uzarska I. (2019), “Numerical modeling of an orthotropic RC slab band system using 

the Barcelona model”, Adv. Comp. Des., 4(3), 211-21, https://doi.org/10.12989/acd.2019.4.3.211 

Leu S.Y., Liau K.C. and Lin Y.C. (2014), “Plastic limit pressure of spherical vessels with combined 

hardening involving large deformation”, Int. J. Pres. Ves. Pip., 114, 16-22.  

https://doi.org/10.1016/j.ijpvp.2013.11.007 

Maleki M., Farrahi, G.H., Haghpanah Jahromi, B. and Hosseinian E. (2010), “Residual stress analysis of 

autofrettaged thick-walled spherical pressure vessel”, Int. J. Pres. Ves. Pip., 87(7), 396-401.  

https://doi.org/10.1016/j.ijpvp.2010.04.002 

Moghaddam, S. and R. Masoodi, A. (2019), “Elastoplastic nonlinear behavior of planar steel gabled frame”, 

Adv. Comp. Des., 4(4), 397-413. https://doi.org/10.12989/acd.2019.4.4.397 

Najibi, A. (2017), “Mechanical stress reduction in a pressurized 2D-FGM thick hollow cylinder with finite 

length”, Int. J. Press. Vessels Pip. 153, 32-44. https://doi.org/10.1016/j.ijpvp.2017.05.007 

Oh S.T., Lee D.J., Yi S.T. and Jeong B.J. (2023), “Numerical analysis for dynamic characteristics of bridge 

considering next-generation high-speed train”, Adv. Comp. Des., 8(1), 1-12,  

https://doi.org/10.12989/acd.2023.8.1.001 

Polatov, A.M., Khaldjigitov, A.A. and Ikramov, A.M. (2020), “Algorithm of solving the problem of small 

elastoplastic deformation of fiber composites by FEM”, Adv. Comp. Des., 5(3), 305-321.  

https://doi.org/10.12989/acd.2020.5.3.305 

Sabzikar Boroujerdy, M. and Eslami, M.R. (2014), “Axisymmetric snap-through behavior of Piezo-FGM 

51



 

 

 

 

 

 

Abbas Heydari 

shallow clamped spherical shells under thermo-electro-mechanical loading”, Int. J. Press. Vessels Pip. 

120-121, 19-26. https://doi.org/10.1016/j.ijpvp.2014.03.008 

Sachdeva, C. and Padhee, S.S. (2018), “Asymptotically exact analytical formulations”, Appl. Math. Model. 

54, 782-802. https://doi.org/10.1016/j.apm.2017.10.019 

Saviz, M.R. (2017), “Electro-elasto-dynamic analysis of functionally graded cylindrical shell with 

piezoelectric rings using differential quadrature method”, Acta Mech. 228(5), 1645-1670.  

https://doi.org/10.1007/s00707-016-1746-7 

Sim L.C., Yeo W.H., Purbolaksono J., Saw L.H. and Tey J.Y. (2021), “Analytical solution of thermo-

mechanical stresses of multi-layered hollow spherical pressure vessel”, Int. J. Pres. Ves. Pip., 191, 

104355. https://doi.org/10.1016/j.ijpvp.2021.104355 

Ushio, Y., Saruwatari, T. and Nagano, Y. (2019), “Elastoplastic FEM analysis of earthquake response for 

the field-bolt joints of a tower-crane mast”, Adv. Comp. Des., 4(1), 53-72.  

https://doi.org/10.12989/acd.2019.4.1.053 

Vatul’yan, A.O. and Yurov, V.O. (2016), “Wave processes in a hollow cylinder in an inhomogeneous 

prestress field”, J. Appl. Mech. Tech. Phys., 57(4), 731-739. https://doi.org/10.1134/S0021894416040180 

Yıldırım A., Yarımpabuç D., Arikan V., Eker M. and Celebi K. (2022), “Nonlinear thermal stress analysis of 

functionally graded spherical pressure vessels”, Int. J. Pres. Ves. Pip., 200, 104830.  

https://doi.org/10.1016/j.ijpvp.2022.104830 

Zaid M. and Sadique Md. R., (2020), “Numerical modelling of internal blast loading on a rock tunnel”, Adv. 

Comp. Des., 5(4), 417-443, https://doi.org/10.12989/acd.2020.5.4.417 

 

 

TK 

 

 

Appendix 
 

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT, 

     1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER, 

     2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME,ORNAME 

      CHARACTER*3  FLGRAY(15) 

      DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3), 

     1 T(3,3),TIME(2) 

      DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*) 

       

      FIELD(1)=SQRT(COORD(1)**2+COORD(2)**2+COORD(3)**2) 

               

      RETURN 

      END 
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