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Abstract.  In the framework of nonlocal strain gradient theory, the dynamic responses of a porous functionally 
graded (FG) nano-size beam under half-sine impulse load and thermal environment. The half-sine impulse load has 
been modeled as a point load located on the top surface of the nano-size beam. The exerted impulse load leads to the 
transient vibrations of the nano-size beam at a prescribed time. The porous beam has been described with two pore 
distributions named even-type and uneven-type pores. The formulation has been developed based upon the refined 
beam model while the equations will be solved numerically using differential quadrature (DQ) method. Finally, the 
dynamic deflections in transient region will be derived with the usage of Laplace transform technique. It will be 
indicated that temperature variation, pore distribution and nano-scale factors have remarkable influences on dynamic 
resonse of the nano-size beam subjected to sine-type impulse loads.  
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1. Introduction 

 

Evaluation of mechanical characteristics of nano-scale structures including nano-size beams 

and nano-size plates according to non-classic elasticity theories has been a serious case of study in 

recent decade. The main reason is broad application of nano-scale structures in nano-sensors or 

nano-electro-mechanical systems (NEMs). The most familiar theories for modeling of nano-scale 

structures are nonlocal elasticity (Eringen 1983) and strain gradient (Lam et al. 2003) theories. In 

the theories, some scale factors have been introduced in order to interpolate the influences of small 

size (Kunbar et al. 2020, Akgöz and Civalek 2015, Mirjavadi et al. 2020a, 2020b, Ahmed et al. 

2020, Fenjan et al. 2021). Pursuant to nonlocal elasticity the stress field is necessary to be nonlocal 

since the relation between the stress and the strain at a point depends on the strains of that point 

and also surrounding points (Nami and Janghorban 2014). This nonlocality of stress field has been 

considered with the use of nonlocal parameter. Any value of nonlocal parameter may be 

determined using experiment or numerical simulation. However, the derivation of the values of 

nonlocal parameter based on the mentioned approaches is very difficult and time-consuming. 
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Therefore, many studies on static and dynamic properties of nano-scale structural elements have 

been performed as parametric studies based on some assumed values for nonlocal parameter (Li et 

al. 2015, Zhang et al. 2015, Lou et al. 2016). 

In recent years, several theoretical studies and experiments report that small size effects must 

be characterized via stiffness increasing mechanism or strain gradient fields (Martı́nez-Criado 

2016). This assertion is not the same as that of nonlocal elasticity in which stiffness reduction 

behavior has been stated. However, the influences of reduction and increment on structural 

stiffness at nano scales can be considered in the context of nonlocal strain gradient theory (NSGT). 

According to NSGT, two scale factors named nonlocal and strain gradient factors have been utilized to 

provide an excellent description of small size effects. The static and dynamic properties of nanobeams and 

other nanostructures have been broadly studied with the use of NSGT (Barati 2018, She et al. 2018).  

The effects of different loadings on vibration behavior of nanobeams has become an important 

case of study in recent years. Some of these loadings are harmonic forces, impulsive loads and 

moving loads at top surface of the nanobeam. Forced vibrations of the nanobeam due to harmonic 

and impulsive loads have been investigated by several authors in the context of nonlocal elasticity 

theory (NET) and nonlocal strain gradient theory (NSGT). However, forced vibrations of the 

nanobeams due to pulse loads has become very important because of the nano-sensing and nano-

probing applications (Simsek 2010, Zhang and Liu 2020, Liu et al. 2021). It has been realized that 

the dynamic deflections of a nanobeam due to pule loads increase by the inclusion of nonlocal 

parameter (Khaniki and Hosseini-Hashemi 2017). 

In a FG material, all properties must be described according to the continuous gradation 

between the two constituents (ceramic and metal). Actually, the mechanical characteristics of a FG 

material depends on the portion or percentage of each constituent. Therefore, the effective 

properties of a FG material can be controlled by increasing or reducing the portion of 

ceramic/metal constituents. Due to excellent properties of FG materials, they have many 

applications in structures used in aerospace, automobile and civil engineering sections. The 

distribution of FG material in structures can be mathematically modeled using power-law or Mori-

Tanaka models. Using power-law functions, it is possible to easily describe the continuous 

gradation of material properties with good accuracy, however, Mori-Tanaka scheme has provided 

more accurate results as reported in some studies. Both models in their traditional forms have 

ignored the effects of porosities inside FG materials (Atmane et al. 2015). The porosities may be 

created due to some faults during the FG material production and it is shown that they have 

notable impact in mechanical characteristics of FG structures (She et al. 2018, Ahmed et al. 2019, 

El-Hassar et al. 2016). In recent years, a modified power-law model has been developed and used 

by several authors to investigate the mechanical characteristics of FG structures including porosity 

effects (Mirjavadi et al. 2017).  

The present research deals with forced vibration behavior of a nanobeam made from porous FG 

material which is subjected to half-sine pulse load. In this research, the half-sine pulse load is the 

representative of a point load on the top surface of the nanobeam. A modified power-law model 

has been used to investigate the dynamic characteristics of FG nanobeams including porosity 

effects. The nanobeam formulation is based upon higher-order refined beam theory, whereas the 

size effects have been captured according to NSGT. The governing equations acquired from 

Hamilton’s principle have been solved through DQM and the time domain part of solution has 

been done using inverse Laplace transform approach. It is exhibited that the moving load speed, 

nonlocal/strain gradient factors, pore amount, porosity distribution, elastic substrate and graded 

nonlocality have enormous affection on dynamic response of the nano-sized beams. 
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2. Theoretical formulation 
 
2.1 Beam modeling via NSGT 
 

As discussed, the influences of reduction and increment on structural stiffness at nano scales 

can be considered in the context of NSGT. According to NSGT, two scale factors named nonlocal 

and strain gradient factors have been utilized to provide an excellent description of small size effects. At first 

step, it is essential to define the stress field components in the below form (Barati 2018): 

(0) (1)
ij ij ij     (1) 

Note that the symbols 
(0)
ij and 

(1)
ij are used for stress components which are respectively 

associated with strains kl and strain gradients kl  as: 

(0)
0 0( , , ) ( )ijkl klij

V
x x e a x dxC        (2a) 

(1) 2
1 1( , , ) ( )ijkl klij

V
l x x e a x dxC        (2b) 

Here, the symbol ijklC is used for elastic coefficients; e0a and e1a have been used to define the 

nonlocal effects and l introduces the influences of the strain gradients. If the nonlocal functions 

0 0( , , )x x e a   and 1 1( , , )x x e a  can satisfy the introduced conditions by Eringen (1983), the 

relationship between the stresses and strains in the context of NSGT becomes: 

2 2 2 2

1 0

2 2

1

2 2 2 2

0

[1 ( ) ][1 ( ) ]

[1 ( ) ]

[1 ( ) ]

ijkl kl

ijkl kl

ije a e a

e a

l e a

C

C





   

  

   

 (3a) 

where 2  is called Laplacian operator. The above relation can be more simplified by assuming 

1 0e a e a ea   as: 

2 2

2 2

[1 ( ) ]

[1 ]ijkl kl

ijea

lC 

  

 
 (3b) 

 

2.2. FG materials 
 

The distribution of FG material in structures can be mathematically modeled using power-law 

or Mori-Tanaka models. Using power-law function, it is possible to easily describe the continuous 

gradation of material properties with good accuracy, however, Mori-Tanaka scheme has provided 

more accurate results as reported in some studies. At the first step, assume a FG nano beam with  
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Table 1 Employed properties of the two phases 

Property Steel Alumina 

E 210 (GPa) 390 (GPa) 

ρ 7800 (
3/kg m ) 3960 (

3/kg m ) 

α 13e-6 10.5e-6 (1/K) 

ν 0.3 0.24 

 

 
Fig. 1 A pore-dependent graded nanosized beam subjected to an impulse load 

 

 

length L and thickness h, as indicated in Fig. 1.  

Based on power-law functions, it is possible to define Young’s modulus (E), Poisson ratio (v), 

and thermal expansion coefficient (α). Using refined power-law functions, one is potent to model 

each material property (H) containing porosity volume ( ) as: 

 

 

1
( )

2

2

p

c m m

c m

H H

H

z

h

H

H Hz



   





 
 

  for even distribution 
(4a) 

 

 

1
( )

2

2
(1 )

2

p

c m m

c m

z
H H

H H

h
H z H

h

z

   














  for uneven distribution 

(4b) 

Note that p is the material gradient index, It must be stated that the material properties of the 

metal and ceramic constituents have been presented in Table 1. 

 

2.3. Governing equations  
 

Higher-order beam theories are useful for establishing the governing equations of beams 

considering shear deformation effect. One of the well-known theories is refined beam theory 

which has the below form of displacement field (dx, 0, dz) as (Issad et al. 2018): 
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   

*

*

*

)

[ ( ) ]

, (

s

x
bd

x
b

x z u x
x

w
B

b

z

z
w



 











 (5a) 

( , ) ( ) ( )z b sd x z w x w x   (5b) 

The above displacement field contains axial displacement (u); bending displacement (wb) and 

shear displacement (ws). Moreover, in order to determine the neutral axis location in a FG beam, it 

is necessary to calculate: 

0.5

* 0.5

0.5

0.5

( )

( )

h

h

h

h

E z zdz
b

E z dz










0.5

** 0.5

0.5

0.5

( ) ( )

( )

h

h

h

h

E z B z dz
b

E z dz









 (6) 

A trigonometric shear strain function f(z) has been selected as: 

( ) sin( ) /B z z z    (7) 

with / h  . The derived strains based on the presented displacement field may be 

introduced as: 

2
*

2

2
**

2

xx ( )

[ ( ) ]

b

s

wu
z b

x x

w
B z b

x

  






 






 (8a) 

( ) s
xz

w
g z

x






 (8b) 

Next, the principle of Hamilton based on strain energy (U) and kinetic energy (K) implies that: 

0
( ) 0

t

U V K dt     
(9) 

Also, V introduces the energy of applied forces. The strain energy variation might be 

introduced by: 

(1)

(1)

(

)

ij ij
v

xx xx xx xx
v

xz xz xz xz

U dV

dV

   

     

     

 

 

  



  (10) 

Insertion of Eqs. (8a) - (8b) in Eq.(10) leads to: 
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2

2

2

2

0

)

( b
b

s s
s

L wu

x x

w w
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x x

U N M
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 (11) 

In such a way that: 
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/2

/2
0 (1) (0) (1)
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(12) 

where 
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i i

xz
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
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
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










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 (13) 

Note that i is 0 or 1. The energy due to the exerted loads might be introduced as follows: 

0
( ( ))

L

b sV q w w dx    (14) 

In such a way that: 

2

2

( )
( )T b sw w

q N f t
x

 
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
 (15) 

In above relation, f(t) is the applied force due to the pulse load. Also, 
0.5

0.5
( ) ( )

h
T

h
N z E z Tdz




  is the thermal load. A variation on kinetic energy leads to: 
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(16) 
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where 

0 1 1 2 2 2

* * 2 **
/2

* ** ** 2/2

( , , , , , )

{1, , ( ) , ,

( )( ), ( ) }

h

h

Y Y J Y J S

z b z b B b
dz

z b B b B b





  

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

 
(17) 

The governing equations have been determined via insertion of Eqs. (11)-(16) in Eq. (9) with 

setting the coefficients of , bu w  and sw  to zero: 

3 32
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(20) 

Using Eq. (3), it is possible to establish the stress-strain relations of a higher-order refined FG 

nano beam in the context of NSGT as: 
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Integration from Eqs. (21) and (22) about the nanosized beam thickness leads to the below 

relations of the forces and moments as: 
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The established equations with respect to the field components might be represented as follows 

via the insertion of Eqs. (23)-(26) into Eqs.(18)-(20) as: 
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(31) 

The impulse load has been defined as a point load 0 0) ( )( ) (f t f x x t   in which f0 is 
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loading amplitude and x0 is loading location and 
 0

0

( ) sin ( ) ( )
t

t H t H t t
t

 
    

 

. 

 

 

3. Solution by differential quadrature method (DQM) 
 

In the presented chapter, DQ method has been applied for solving the governing equations for 

NSGT porous FG nanobeam. According to DQM, at an assumed grid point (𝑥𝑖, 𝑦𝑗)  the 

derivatives for function F are supposed as weighted linear summation of all functional values 

within the computation domains as: 

𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖

= ∑ 𝑐𝑖𝑗
(𝑛)

𝐹(𝑥𝑗)

𝑁

𝑗=1

 (32) 

where 

𝐶𝑖𝑗
(1)

=
𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 = 1,2, … , 𝑁,        𝑖 ≠ 𝑗 (33) 

in which 𝜋(𝑥𝑖) is defined by 

𝜋(𝑥𝑖) = ∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (34) 

And when 𝑖 = 𝑗 

𝐶𝑖𝑗
(1)

= 𝑐𝑖𝑖
(1)

= − ∑ 𝐶𝑖𝑘
(1)

𝑁

𝑘=1

,     𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗 (35) 

Then, weighting coefficients for high orders derivatives may be expressed by: 

𝐶𝑖𝑗
(2)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘𝑗
(1)𝑁
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(3)
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(1)
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𝑁

𝑘=1

          𝑖, 𝑗 = 1, 2, … , 𝑁. 
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(36) 

According to presented approach, the dispersions of grid points based upon Gauss-Chebyshev-

Lobatto assumption are expressed as: 

𝑥𝑖 =
𝐿

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, (37) 

Next, the displacement components may be determined by 

( , ) ( ) i t

b bw x t W x e   (38) 
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( , ) ( ) i t

s sw x t W x e   (39) 

where Wb and Wn denote vibration amplitudes and 𝜔 defines the vibrational frequency. Then, it is 

possible to express obtained boundary conditions as: 

2 2 4 4

2 2 4 4

0,

0 , 0 

b s

b s b s

w w

w w w w

x x x x

 

   
   

   

 (40) 

Now, one can express the modified weighting coefficients for all edges simply-supported as: 

𝐶1̅,𝑗
(2)

= 𝐶𝑁̅,𝑗
(2)

= 0,       𝑖 = 1, 2, … , 𝑀, 

𝐶𝑖̅,1
(2)

= 𝐶1̅,𝑀
(2)

= 0,       𝑖 = 1, 2, … , 𝑁. 

(41) 

and  

𝐶𝑖̅𝑗
(3)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘̅𝑗
(2)𝑁

𝑘=1 , 𝐶𝑖̅𝑗
(4)

= ∑ 𝐶𝑖𝑘
(1)

𝐶𝑘̅𝑗
(3)𝑁

𝑘=1  
(42) 

Inserting Eqs. (38) - (39) in Eqs. (30)-(31) gives the below relationship: 
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(43) 

In above equation, [K] and [M] respectively display the stiffness and mass matrices. At the end, 

with the selection of zero initial conditions and Laplace transform method, Eq. (43) has been re-

formulated as: 

 
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  
(44) 

By solving Eq.(44) through the inverse Laplace transform approach, one is potent to derive the 

values of bending (Wbn) and shear (Wsn) displacements. However, the total deflection of the 

nanobeam is the summation of the two displacements as W= Wbn+ Wsn. For representing the 

calculated results, the below non-dimension factors have been introduced: 

*

3

0 0

100
, , ,cE It l ea

t W W
t f L L L

      (45) 

 

 

4. Calculated results and discussion 
 

The present section has been devoted to examine the dynamic responses of porous FG  
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Fig. 2 Time responses of the nanobeam for diverse nonlocality factors (p=1, L=10h, ΔT=20, λ=0, 

ξ=0.1) 

 

nano beams due to half-sine pulse loads capturing both nonlocal and strain gradient influences. 

The effects of load location, material gradation, porosity distribution, nonlocality and scale factors 

on dynamic deflection of the nanobeam have been studied in detail. Within this research, it has 

been selected that the nonlocality and strain gradient factors are constant for FG nanobeam. 

Accordingly, μ and λ respectively denote the normalized nonlocal and strain gradient factors. More 

discussion on this issue can be found in the following paragraphs. 

At the first step, a comparison has been provided in Table 2 with the work of Simsek (2019) to 

validate the vibration frequency of a FG nanobeam based on NSGT. In this regard, the validation 

of first dimensionless vibration frequency 2 / /c cL E h   , at different values of nonlocal and 

strain gradient parameters have been carried out and an excellent agreement has been obtained 

between the obtained results and those of Simsek (2019). 

Table 2 Comparing the non-dimension frequency of a nanaobeam based on NSGT (L/h=20) 

  λ=0   λ=0.5  

  Simsek (2019) Present  Simsek (2019) Present 

p=0 µ =0 2.8491 8490.2   5.3053 3051.5  

 µ =0.25 2.2406 2406.2   4.1723 1722.4  

 µ =0.5 1.5300 1.5300  2.8491 849.2 0 

 µ =0.75 1.1130 1.1130  2.0726 2.0724 

       

p=1 µ =0 2.1129 2.1129  3.9345 3.9344 

 µ =0.25 1.6617 1.6617  3.0942 3.0942 

 µ =0.5 1.1347 1.1346  2.1129 2.1129 

 µ =0.75 0.8254 0.8253  1.5371 1.5370 
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Fig. 3 Time responses of the nanobeam for diverse strain gradient factors (p=1, L=10h, ΔT=20, 

µ=0.2, ξ=0.1) 

 

 

Fig. 2 plots the time histories for normalize dynamic deflection at different values of time 

factor (t*) and nonlocal parameter (μ=0, 0.2, 0.3) at the FG index p=1. It is assumed in this plot 

that λ=0 and ΔT=20. In the transient region, an increment in nonlocal factor leads to higher values 

of normalized dynamic deflection. This is due to reduced stiffness of FGM nanosized beam when 

the nonlocality factor becomes higher. Such behavior indicates that a FG nanobeam displays 

stiffness-reducing effects when the nonlocality factor increases. 

Dynamic deflection of the nano-size beam against normalized time factor based on different 

strain gradient factors has been plotted in Fig.3 at p=1 and ΔT=20. For the case of classic elasticity 

theory (CET), it is assumed that μ= λ=0. Also, it is considered for the case of nonlocality elasticity 

theory (NET) that μ=0.2 and λ=0. It can be seen that the dynamic deflection is greatly affected by 

the normalized time. Actually, the dynamic deflection is augmented with the normalized time until 

reaching peak values, and then it drops abruptly after the points. However, the dynamic deflection 

and the peak point are dependent on the values of strain gradient factor. Indeed, higher values of 

strain gradient factor give the lower value of dynamic deflection due to the inclusion of non-

unifrom strain field effects. However, by incorporating the strain gradient effect, NSGT gives 

smaller deflections than NET. 

In Fig. 4, the time history of FG nanobeam has been plotted based on various porosity volume 

fraction (ζ=0, 0.1, 0.2) and FG gradient index (p=1, 3). The even porosity dispersion has been 

considered for this figure. It can be understood that the FG nanobeam becomes more flexible at a 

higher value of gradient index because of the higher percentage of metal constituent compared to 

ceramic constituent. Accordingly, the dynamic deflections of nanobeam increase by increasing the 

value of gradient index. However, another important factor in dynamic response of a FG 

nanobeam is the presence of porosities. As the porosity volume (ζ) becomes higher, the value of 

dynamic deflection becomes higher due to the reason that porosities inside FG material will reduce 

the structural stiffness. 
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(a) p=1 (b) p=3 

Fig. 4 Time responses of the nanobeam for diverse pore factors and material gradient index 

(L=10h, ΔT=20, µ=0.2, λ=0.1) 

 

 
Fig. 5 Time responses of the nanobeam for diverse temperatures (p=1, L=10h, µ=0.2, ξ=0.1) 

 

 

Dynamic deflection of the nano-size beam against normalized time based on different 

temperatures (ΔT) has been plotted in Fig. 5 at p=1. In this figure, the nonlocal factor is assumed 

to be μ= 0.2. It can be seen that the dynamic deflection is greatly affected by the temperature 

variation. Actually, the dynamic deflection is augmented with the increase of temperature. It means 

that at higher temperatures, the nanobeam has lower stiffness leading to greater deflections. 

A comparison between the dynamic deflection of porous FG nanobeam obtained by even-type 

and uneven-type porosities has been presented in Fig.6. It is found from this figure that uneven-

type porosities give smaller values of dynamic deflection compared with even-type porosities. 

Actually, the FG nanobeams with even-type porosities are more flexible than uneven-type  
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Fig. 6 Time responses of the nanobeam for diverse pore dispersions (p=3, L=10h, µ=0.2, λ=0.1, 

ξ=0.1, ΔT=20) 

 

 
Fig. 7 Time responses of the nanobeam for diverse load location (p=3, L=10h, µ=0.2, λ=0.1, 

ξ=0.1, ΔT=20) 

 

 

porosities. The reason is uniform distribution of porosities in cross section area of the FG 

nanobeam in the case of even model. However, the porosities will not occur at corner of the cross 

section in the case of uneven model. 

Fig.7 displays the effects of loading position (x0=0.5L, 0.7L, 0.9L) on dynamic responses of a 

FG nano-sized beam exposed to impulse loads when t0=0.1. It may be concluded from this plot 

that as the load becomes far from the beam center, the value of normalized deflection in transient 

region would be lower. Therefore, the maximum value of normalized deflection would be obtained 
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as the point load is located at the beam center. Another important finding is that the load position 

has no influecnes on quantity of oscillation in the transient zone. 

 

 

5. Conclusions 
 

This article dealt with dynamical response invrstigation of a pore-dependent FG nanobeam 

subjected to a half-sine pulse load considering the effects of nonlocality and strain gradients. A 

modified power-law model was used to investigate the dynamic characteristics of FG nanobeams 

including porosity effects. The nanobeam formulation was based upon higher-order refined beam 

theory, whereas the size effects have been captured according to NSGT. The governing equations 

were solved using DQM and inverse Laplace transform method. The main findings are summarized as 

follows: 

• An increment in nonlocal factor leads to higher values of normalized dynamic deflection.  

• It was reported that NSGT gives smaller deflections than NET.  

• The porosity volume becomes higher; the value of dynamic deflection becomes higher due to 

the reason that porosities inside FG material will reduce the structural stiffness. 

• Temperature rise led to higher deflections at transient region.  
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