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Abstract.  This article describes the technology for constructing of a multiply-connected three-dimensional area’s 
finite element representation. Representation of finite-element configuration of an area is described by a discrete set 
that consist of the number of nodes and elements of the finite-element grid, that are orderly set of nodes’ coordinates 
and numbers of finite elements. Corresponding theorems are given, to prove the correctness of the solution method. 
The adequacy of multiply-connected area topology’s finite element model is shown. The merging of subareas is 
based on the criterion of boundary nodes’ coincidence by establishing a simple hierarchy of volumes, surfaces, lines 
and points. Renumbering nodes is carried out by the frontal method, where nodes located on the outer edges of the 
structure are used as the initial front. 
 

Keywords:  modeling; finite element; grid; numbering; ordering; node; vertex; face; front; algorithm; 

connect; area 

 
 
1. Introduction 
 

Carrying out computational experiments based on the finite element method requires 

automating of the finite element mesh constructing process of a real object. If at the same time the 

object has a complex configuration, then the construction of a finite element mesh becomes a time 

consuming process. 

A common approach for generating an anisotropic mesh is the M-uniform mesh approach 

where an adaptive mesh is generated as a uniform one in the metric specified by a given tensor M. 

A key component is the determination of an appropriate metric which is often based on some type 

of Hessian recovery. Kamenski (Kamenski 2011) discusses the usage of this method for a selection 

of different applications. Numerical results show that the method performs well and is comparable 

with existing metric tensors based on Hessian recovery. Also, it can provide even better adaptation 

to the solution if applied to problems with gradient jumps and steep boundary layers. For the 

Poisson problem in a domain with a corner singularity, the new method provides meshes that are 

fully comparable to the theoretically optimal meshes. In paper (Diamond-Kite 2012) family of 

quadrilateral meshes, that can be adapted to a local size function by local subdivision operations 
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are described. Meshes use a number of elements that is within a constant factor of the minimum 

possible for any mesh of bounded aspect ratio elements, graded by the same local size function, 

and is invariant under Laplacian smoothing. The vertices of meshes form the centers of the circles 

in a pair of dual circle packing’s. The same vertex placement algorithm but a different mesh 

topology gives a pair of dual well-centered meshes adapted to the given size function. The book 

(Daniel Lo 2015) provides a concise and comprehensive guide to the application of finite element 

mesh generation over 2D domains, curved surfaces, and 3D space. Organized according to the 

geometry and dimension of the problem domains, it develops from the basic meshing algorithms 

to the most advanced schemes to deal with problems with specific requirements such as boundary 

conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. In finite 

element analysis, mesh density is a critical issue which closely relates to the accuracy of the finite 

element models while directly determines their complexity level. In paper (Liu and Glass 2013) a 

systematic study on finding the effects of mesh density on the accuracy of numerical analysis 

results, based on which brief guidelines of choosing the best mesh strategy in finite element 

modeling are provided. Static, modal, and impact analysis are involved in this study to discuss the 

effects of element size in finite element analysis. In paper (Pavarino et al. 2013), alternatives to 

solid modeling and automatic generation of highly refined tetrahedral meshes, with quality 

compatible with other studies focused on mesh generation are demonstrated. Aiming at the 

bottleneck problem of time and memory in large-scale serial mesh generation, in paper (Wang and 

Jin 2014) a method for large-scale parallel unstructured tetrahedral mesh generation is presented. 

The proposed boundary judgments method based on the shared element was used to solve the 

matching problem of the partition boundary nodes. Examples illustrating the efficiency and 

applicability of this method were presented and the examples showed that mesh generation method 

can get a good efficiency and a high quality tetrahedral mesh. In paper (Zhang et al. 2017), the 3D 

numerical modeling investigation of dam-break flow hydrodynamics in an open L-shape channel 

has been presented. A newly developed 3D unstructured mesh finite element model is used here. 

This study shows that the 3D unstructured mesh model is capable of capturing the 3D hydraulic 

aspects and complicated local flows around structures in simulation of dam-break flows. In this 

paper (Pochet et al. 2017) a new method for adaptive all-quadrilateral mesh generation for two-

dimensional domains, including domains modeled by constraints with complex geometry or with 

varying scales is presented. The method subdivides the domain’s bounding box using a new 

extended quadtree scheme. In this subdivision process, the quadtree node corners are moved onto 

the geometrical constraints using local deformation criteria during the tree refinement steps. 

During the process, grid alignment with constraint accuracy and element quality at every scale is 

ensuring. Results showed that method generates elements of reasonable quality even for complex 

geometries and varying scales. The small number of parameters controlling the process is intuitive 

and makes method efficient and user friendly. The presence of a few inverted or poor-quality mesh 

elements can negatively affect the stability, convergence and efficiency of a finite element solver 

and the accuracy of the associated partial differential equation solution. In paper (Sastry et al. 

2014) a mesh quality improvement and untangling method that untangles a mesh with inverted 

elements and improves its quality is proposed. The method uses a logarithmic barrier function and 

performs global mesh quality improvement. Also developed a smooth quality metric that takes 

both signed area and the shape of an element into account. This quality metric assigns a negative 

value to an inverted element. It is used to untangle a mesh by improving the quality of an inverted 

element to a positive value. Method yields better quality meshes than existing methods for 

improvement of the worst quality elements, such as the active set, pattern search, and 
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multidirectional search mesh quality improvement methods. Adaptive meshing of 2D planar 

regions, curved surfaces as well as 3D volumes has been extensively studied in finite element 

analyses of heterogeneous objects. The approach proposed in the paper of (You et al. 2015) takes 

full advantages of the material heterogeneity information and the mesh density is formulated with 

a specific function of the material variations. Dual triangulation of centroid Voronoi tessellation is 

then constructed and necessary mesh subdivision is applied with respect to a predefined material 

threshold. Results analysis show that the proposed method can significantly decrease the mesh 

complexities as well as computational resources in FEA of heterogeneous objects. 

In many engineering Computational Fluid Dynamics (CFD) applications, the computational 

domain changes with time due to the movement of boundaries. In paper (Zheng et al. 2020) 

dynamic numerical method was developed to predict the growth of ash deposit on the deposition 

probe. Based on the CFD dynamic mesh technique, both shape variations and surface temperature 

variations of ash deposit with time were predicted. Adaptive remeshing technique that works with 

any element shape and geometry where the mesh adapts to each scan vector was developed in 

(Olleak and Xi 2018). In paper (Olleak and Xi 2019), mesh adaptively proposed in authors’ 

previous paper (Olleak and Xi 2018) was extended to part-level simulation with FE modeling to 

reduce the computational time without sacrificing the accuracy. The objective is to handle large 

domain simulations along with high computational efficiency. The influence of crack tip angle on 

fracture mechanics parameters is investigated in paper (Branco et al. 2015) by extending the crack 

using defined increments is such a way that intergranular deviations are modeled. The level of 

accuracy and scatter in the data from experimental testing and numerical modeling helps to 

determine the confidence of the life assessments calculations. For this purpose a novel method of 

meshing which replicates a polycrystalline grain structure is developed. In paper (Yang et al. 2015) 

introduces a mesh generation strategy devised and implemented for the volume element model, 

and elaborates key contributions of the strategy in enhancing the volume element model as a 

prominent tool in ship thermal modeling and simulation. The volume element model mesh 

generation strategy employs ray crossings and ray–triangle intersection algorithms and constructs 

sufficiently accurate geometric representations of the whole ship within permissible time frame 

using hexahedral meshes. 

The book (Piegl and Tiller 1996) covers all aspects of non-uniform rational B-splines necessary 

to design geometry in a computer aided environment. Basic B-spline features, curve and surface 

algorithms, and state-of-the-art geometry tools are all discussed. Detailed code for design 

algorithms and computational tricks are covered too, in a lucid, easy-to-understand style. 

This paper describes the technology for constructing a finite element representation of a 

multiplyconnected three-dimensional area. The finite-element representation of the configuration 

of an area is described by a discrete set consisting of the number of nodes and finite elements of 

the finite-element grid, ordered sets of coordinates of nodes and node numbers by finite elements. 

To prove the correctness of the solution method, the corresponding theorems are given, where the 

adequacy of a finite element model of the topology of a multiply connected area is proved. The 

algorithm of method includes the following steps: 

• formation of a finite element mesh of elementary subareas; 

• stitching (combining) subareas; 

• the formation of a set of initial fronts; 

• ordering the node numbers of the finite element model; 

• minimization of the tape width of the system of equations. 

The merging of subareas is based on the criterion of coincidence of boundary nodes by 
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establishing a simple hierarchy of volumes, surfaces, lines and points. The formation of elements 

of the set of initial fronts is carried out by determining the numbers of vertices and boundary nodes 

of the finite element representation of multiplyconnected areas. Renumbering nodes and finite 

elements is carried out on the basis of the front method. As nodes of the initial front, a set of nodes 

are used, this is located on edge of the construction. 

 

 

2. Description of the method for solving the problem 
 

The finite element mesh of a complex object is formed by stitching elementary subareas. By 

elementary is meant the area for which there is an algorithm for constructing a finite element 

mesh. A quadrilateral (in the case of a two-dimensional body) or a quadrangular prism (for a three-

dimensional body) is used as the shape of the finite elements, since filling the real area with these 

elements is very effective. 

The following introduce definitions and the criterion for the coincidence of the boundary nodes 

of the representation sets. 

 

Definition 1. The topology of a complex area model is called: 

1) a one-dimensional area represented by a system of interconnected linear elements 

intersecting at the nodal points; however, each of them may have several intermediate nodes; 

2) a two-dimensional area represented by a system of interconnected surfaces, adjoining along 

boundary lines intersecting at nodal points; however, the boundary lines may also include a 

number of intermediate nodes; surfaces may be limited by several lines; two lines must be 

connected so that one of them intersects the other at the end point; 

3) a three-dimensional area represented by a system of interconnected volume elements 

bounded by surfaces intersecting at nodal points; boundary surfaces and lines, as well as each 

volume element, can have some number of internal nodes; surfaces can intersect only along 

boundary lines. 

Thus, a simple hierarchy of volumes, surfaces, lines and points is established. 

 

Definition 2. In the decomposition, a multiply-connected area is divided into a number of 

elementary subareas, and the corresponding boundary surfaces of adjacent subareas have the same 

configuration. 

For each of the configurations of the elementary subareas’ surface, its own method of splitting 

into finite elements is used. 

When merging subareas, the partitioning parameters of the boundary stitching surfaces are set 

identical, this ensures the coincidence of the coordinates of the nodes on the surface of the union 

of adjacent subareas. 

 

Definition 3. A finite-element representation of an area configuration is a discrete set: 

 MKmn ,,,= , (1) 

where  

n - is the number of nodes of the finite element mesh; 

m- is the number of finite elements; 

K - is the ordered set of coordinates of nodes; 
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M - is an ordered set of node numbers by finite elements. 

 

Criterion. The condition for the coincidence of the boundary nodes of the two sets Ω1 and Ω2 is 

the relation 

1 1 2 2 3 3& & ,i j i j i jх x x x x x−   −   −  
 

(2) 

where  

(𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3) ∈ 𝐾1 - is the set of coordinates of nodes Ω1 (i = 1, 2, ... , n1); 

(𝑥𝑗
1, 𝑥𝑗

2, 𝑥𝑗
3) ∈ 𝐾2 - is the set of coordinates of nodes Ω2 (j = 1, 2, ... , n2); 

ε > 0 - is a sufficiently small number. 

Based on the above definitions and criteria, the following theorems are proved. 

 

Theorem 1. Suppose that when combining the sets Ω1 = {n1, m1, K1, M1} and Ω2 = {n2, m2, K2, 

M2}, the conditions of the topology of a doubly connected area model (definition 1 and 2) are 

satisfied, then 

,, 2121 qnnnmmm −+=+=
 (3) 

where  

m, n - is the total number of finite elements and nodes, respectively; 

q=|K1∩K2| - the number of identifiable (ε-nearby) nodes located on the boundary of the 

compound of subareas; 

K1, K2 – are ordered sets of nodes coordinates. 

 

Evidence. Since the two subareas are combined by boundary nodal points, the total number of 

finite elements is equal to their sum, i.e. m=m1+m2. According to definition 2, when combining 

two subareas intersecting at boundary nodes, the nodes coincide. In this case, the total number of 

nodes: 

,21 qnnn −+=
 

(4) 

where q- is the number of coincident boundary nodes, which is determined by the criterion. The 

fulfillment of the criterion means that the boundary nodes coincide up to a sufficiently small value 

of ε > 0. ■ 

 

Theorem 2. Suppose that unification of the sets Ω1 = {n1, m1, K1, M1} and Ω2 = {n2, m2, K2, 

M2} satisfies the conditions of the topology of the model of a doubly connected area (definition 1 

and 2), then 

,, 2121 KKKMMM ==  (5) 

where, 

𝐾2
′- is an ordered set of coordinates of the nodes of the set Ω2 without considering the boundary 

nodes that coincide with the boundary nodes of the set K1  Ω1; 

𝑀2
′ - an ordered set of the numbered nodes of the set M2  Ω2. 

Evidence. According to Theorem 1, m=m1+m2, n=n1+n2−q.  
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For the numbering of local node numbers of the sets Ω1 and Ω2, respectively, the sets are 

introduced: 

 1 1 ,     N i i n i N=       and      2 2 ,     .N j j n j N=     (6) 

Next, sets are introduced: A and B (|A|=|B|=q). The elements of these sets are the local numbers 

of the coinciding boundary nodes, respectively, from the sets of nodes N1 and N2, which satisfy the 

relation of the Cartesian product of sets: 

1 2
1

A B ( , ) | , : ,
l

k k
i j

k

i j i N j N x x l
=

 
 =   −   

 


 

(7) 

where, 0  − is a sufficiently small number; l = 3 

The formation of elements of a set of node numbers by finite elements M includes the 

following steps: 

1) the initial k=1,2,…,m1 elements of the set M are assigned the elements of the set M1, i.e. 

M1M;  

2) the next k=m1+1, m1+2,…,m1+ m2 elements of the set M are formed by replacing the local 

numbers of the nodes of the set M2 with global numbers, i.e. ,21 MMM =  where is a set 

consisting of global node numbers. The process of global node numbers’ calculation is carried out 

according to the following rule. If the local node number i of the set N2(i=1,2,…,n2) belongs to the 

set-B, i.e. 𝑖 ∈ 𝐵, then it is assigned the corresponding local node number from the set-A. In the 

opposite case, its value is calculated based on the ratio i′→ i+n1–z, where the value of the variable 

z is defined as the number of elements of the set B whose values are less than the current number i, 

those  

,);( BiQz =  (8) 

where  

 .:);( ijBjBiQ =  (9) 

The formation of elements of the set of coordinates of nodes K consists of the following steps: 

1) the initial k=1,2,…,n1 elements of the set K are assigned the elements of the set K1 , i.e. 

K1K; 

2) the subsequent qnnnnk −+++= 2111 ,...,2,1  elements of the set K are formed from the 

elements of the subset K2 without considering the numbers of nodes in the set B, i.e. 

21 KKK =  , where 22 KK    and .22 qnK −=  (10) 

Thus, all components of the set Ω- of a finite element representation of the original doubly 

connected area are defined. ■ 

Theorems 1 and 2 can be generalized by the following theorem. 

 

Theorem 3. Suppose that for the sets Ωi (i=1,2,…,p) the conditions of the topology of the model 

of a complex area (Definition 1 and 2) are fulfilled. Then for the multiply connected area Ω, the 

following relation holds: 
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1

p

i
i=

 = 

 

(11) 

where p− is the number of subareas to be combined. 

 

Evidence. When p=2, according to Theorems 1 and 2, relation (11) holds. Next, using the 

principle of mathematical induction, we assume that relation (11) is true for p−1, i.e. 

1
1

1

p
p

i
i

−
−

=

 = 

. 

(12) 

Then for the multiply-connected domain Ω, the following relation holds: 

1p
p

− = 
. 

(13) 

According to Theorems 1 and 2, relation (13) is also satisfied. ■ 

Thus, the mathematical correctness of the algorithm for constructing a finite-element topology 

of a multiplyconnected area is proved. 

 

 

3. The technology of constructing a finite element meshes of a multiplyconnected 
area 

 

Based on the above theorems, the technology for constructing a finite element mesh of a 

multiplyconnected area has been developed, the algorithm of which includes the following steps: 

1) partition of the original body into elementary subareas; 

2) the union of subareas; 

3) the definition of the initial fronts; 

4) ordering the node numbers of the finite element model; 

5) minimization of tape width of the system of equations. 

Consider each of these stages separately. 

 

3.1 The technology of dividing the construction into elementary subareas 
 

It is known that when the construction is deformed near the structural features (cavity, recess, 

etc.) of the simulated structure, elevated stresses are observed. In this connection, the discretization 

of the hub neighborhood is performed with a compacted finite element mesh, and the rest of the 

body part - is a uniformly distributed mesh. 

When splitting the original body into elementary subareas, first of all, areas located near 

structural features are distinguished, and the remaining part − is filled with elementary subareas 

with a uniform grid (see calculation examples 1 and 2 in Section 4 and Section 5, respectively). 

 

3.2 The method of combining elementary subareas 
 

The procedure for combining elementary areas includes the following steps: 
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1) on the basis of a comparison of the coordinates of nodes located in arrays K1 and K2, they 

form: 

− the number of nodes located on the border of the union of the areas; 

− arrays A and B, which consist of numbers of coincident nodes, respectively, of the sets Ω1 and 

Ω2; 

2) the values of the elements of the array M1 are the initial elements of the array M; 

3) the subsequent values of the elements of the array M are formed by replacing the local node 

numbers of the set Ω2 located in the array M2 with global numbers. If the value of the current i-th 

node number located in array N2 is present in array B, then the i-th node is assigned the 

corresponding local node number from array A. Otherwise, its current value is calculated based on 

the ratio: i′→ i+n1–z, where the value of the variable z is defined as a number, which is defined as 

the number of nodes in the N2 array, whose numbers are less than the value of i. In a corresponding 

way (Theorem 2), the elements of an array of coordinates of nodes - K are formed. 

It should be noted that the elements K and M of the set Ω have dimensions: 

K  [1 ÷ n, 1 ÷ nv] and M  [1 ÷ m, 1 ÷ nu], 

where  

nv - is the dimension of the space;  

nu - is the number of nodes in the final element. 

 

3.3 Algorithm for determining the initial front 
 

The method of determining the initial fronts consider the example of a multiplyconnected two-

dimensional area. The best results are obtained when choosing as the initial fronts of an ordered set 

of nodes located on the edges and vertices of the finite element mesh of a multiplyconnected area. 

In this connection, we introduce the corresponding definitions (Polatov and Fedorov 2007). 

The vertex in the finite element representation of a multiplyconnected domain is a node that 

occurs in only one finite element. 

Boundary nodes are nodes located on the border of an area or on the boundary between two 

vertices. 

The process of finding boundary nodes is as follows: 

1) randomly select a node that meet in two finite elements, and is added to the front; 

2) the process of searching for nodes that occur only once in two finite elements, which are 

described in clause 1, is carried out. If there are none, then in the initial front, a search is repeated 

for nodes that occur twice. Otherwise, the formation of the initial front ends. Then the front is 

cleared and the transition to point 1 is carried out, otherwise the number of this node is added to 

the front; 

3) if in the process of repeated execution of the described actions in the second step a vertex is 

found twice, then the search for the edge is completed and the front ordering is performed; 

4) all nodes occurring once or twice are added to the front and the actions described in clauses  

2-3 are performed; 

5) steps 1-4 are repeated until all edges between two vertices are found. 

To prevent this process from looping, all nodes found in two finite elements should be “tagged” 

and not used in the future. The remaining vertices or edges can be found by replacing the condition 

in the third paragraph, i.e. exit from the loop occurs if a “tagged” node is found. 
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3.4 Modified frontal node renumbering method 
 

For the ordering procedure for node numbers, three fronts are used: in the first one, the node 

numbers of the initial or current front are located, in the second, the numbers of the nodes of the 

previous one, and in the third, the number of nodes of the appearance new front.  

The algorithm of the modified frontal method consists of the following steps: 

1) vertices or boundary nodes are selected as the source front; 

2) finite elements that contain node numbers that coincide with the numbers of front nodes will 

be determined; 

3) the node numbers selected in step 2 that are involved in the current, previous and in the 

forming fronts will be excluded; 

4) according to the following rule, the grid nodes that have a number that are identical with the 

numbers of nodes in the current front are renumbered. Each next numbered node gets a number 

one greater than the previous one. The most initial renumbered node is number one; 

5) the contents of the current front are saved (now it becomes the previous one). The contents 

of the newly formed front are copied into the current one with its subsequent purification. Those, 

the front “moves” on a finite element mesh; 

6) all the actions described in clauses 2-5 are repeated until the formed front is empty. 

 

3.5 The method of minimizing the width of the tape system of equations 
 

The final stage of the method is the ordering of the numbers of nodes and finite elements of the 

finite element of representation, which allows minimizing the width of the tape of resolving 

equations (Sakovich and Kholmyansky 1981, George and Liu 1984). For this purpose, the frontal 

procedure is performed for each initial front (Kamel and Eisenstein 1974). For each finite element 

i ),,...,2,1( mi =  the difference between the maximum and minimum node numbers is calculated: 

minmax nnhi −=
. (14) 

Then, by the ratio 

Vhl
mi
ik 








+=

1

1max , (15) 

the half width of the tape of the resolving system of equations corresponding to the given initial 

front is calculated, here V - is the dimension of the space, k- is the current index of the initial 

fronts. 

The minimum value of L is calculated as  

1
min k

k q
L l

 
=

, 
(16) 

where,  

q- is the number of initial fronts.  

Since for any construction the number of vertices, edges and side surfaces is limited, the number 

of searches q is also limited. 
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Fig.1 Source area Figs. 2 Forms of elementary subareas 

 
 
4. Example of calculation 1 
 

For clarity, the process of forming a finite element mesh of a two-dimensional area of complex 

configuration (Fig. 1) is considered. 

The following subareas are used as elementary areas (Figs. 2):  

(a) − an arbitrary quadrilateral;  

(b) − a rectangle with an elliptic notch at the top;  

(c) − 1∕4 part of the torus;  

(d) − 1∕4 part of the ellipse. 

The initial data for the finite element mesh of these subareas are: 

(a) - the coordinates of the vertices, the number of partitions along the axes of the OX and OY; 

(b) - the coordinates of the center and the radii of the ellipse, the dimensions of the sides of the 

rectangle, the number of radial partitions and the number of divisions along the OX axis;  

(c) - coordinates of the center and radii of the ellipse, the number of radial partitions and the 

number of divisions along the OX axis;  

(d) - the coordinates of the center and the radii of the ellipse, the number of parts along the axes 

OX and OY. 

Taking into account the configuration, the studied area is divided into elementary similar areas 

(Fig. 3(a)). The area in the upper left corner is replaced by an elementary area in the shape of 1/4 

parts of the ellipse. To do this, first remove the rectangular area. Then, instead of it, the necessary 

area is inserted with the configuration corresponding to the source area. The rectangular area 

located in the upper right corner is replaced by a rectangle-shaped area with a cavity in the center. 

The area is formed by the union of four elementary areas in the form of a rectangle with an 

elliptical notch at the top. 

The lower left rectangle is replaced with an elementary area in the shape of 1∕4 parts of the 

ellipse. The remaining area, located in the lower right corner, remains unchanged, since its 

configuration corresponds to the configuration of the source area (Fig. 3(b)). 

Forming an area of complex configuration through the usage of a set of elementary subareas 

allows us to simplify the process of building a finite element mesh by reducing the amount of 

input source data. The construction algorithm is reduced to the determination of the initial 

elementary area and the sequence of actions associated with the union of all elementary subareas. 

The described method for constructing a finite element mesh of a complex configuration area 

allows, without increasing the number of finite elements and the number of nodes, to take into 

account all the geometric features of the area configuration. 

 

286



 

 

 

 

 

 

Finite element modeling of multiplyconnected three-dimensional areas 

 

 
(a) 

 
(b) 

Figs.4 An example of discretization of a three-dimensional area (only boundary (visible) nodes are shown) 

 

 

5. Example of calculation 2 
 

To illustrate the process of splitting and discretization of the original body, we consider the 

process of constructing a finite element representation of a three-dimensional structure in the form 

of 1/4 of a prism with a spherical cavity and a cylindrical hole. The area is divided into finite 

elements in the form of quadrilateral prisms. The source area is divided into 6 subareas of the form 

(Fig. 4(a)):  

1 - rectangular prism; 

2 - rectangular prism with a spherical notch at the apex; 

3 - rectangular prism with a lateral cylindrical recess.  

Discretization of the area is shown in Fig. 4(b). 

When combining subdomains, the total number of finite elements is summed. The total value of 

the nodes decreases due to the crosslinking nodes, which are located in the area of crosslinking of 

the subareas. Table 1 provides information on the process of combining subareas. Parameters are 

indicated: the type of subdomains, the number of finite elements and nodes in the subdomains, the 

number of nodes on the stitching surface, the current number of nodes, and their total number. 

 
(a) 

 
(b) 

Figs. 3 The process of composition of a discrete model of complex configuration 
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Table 1 Information on the process of combining subareas 

№ number of subareas number of elements number of nodes 
number of knots 

stitching 

current number of 

nodes 

1 2 144 244 – 244 

2 1 80 150 25 125 

3 2 144 244 36 208 

4 1 80 150 50 100 

5 3 192 340 25 315 

6 3 240 408 93 315 

total 880 1536 229 1307 

 

 

6. Conclusion 
 

The technology of the finite element representation of a multiply-connected three-dimensional 

area has been developed. It allows the structures to be divided into smaller finite elements of the 

neighborhood of various kinds of inclusions. This fully reflects the physical essence of the process 

of deformation of structures. 
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