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Abstract.  In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated 
annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of 
laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-
objective optimization procedure is developed using the weighted summation method. Classical lamination theory 
and first order shear deformation theory are employed for critical buckling load and natural frequency computations 
respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are 
validated through the results obtained from literature. The comparative study takes into consideration solution and 
computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that 
particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem 
considered in the study. 
 

Keywords:  Benchmarking; Heuristic optimization algorithms; structural optimization; laminated 

composites; buckling load; fundamental frequencies 

 
 
1. Introduction 
 

In many engineering fields, fiber reinforced plastic composite plates are employed, and the 

demand for their use especially in aerospace industry is continuously rising. In aircraft industry 

where high specific strength and low cost are desired, the structural parts such as wings, ailerons, 

and tails are made of high-tech fiber-reinforced plastic composites and all these structures are 

subject to heavy operational conditions including buckling and vibration. In special cases both 

design parameters should be considered in the same problem, which may be formulated as a multi-

objective optimization procedure in order to find out the fittest design configurations. 

For the solution of multi-objective optimization problems dealing with high number of 
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optimization variables, heuristic optimization algorithms shine as the most suitable options. At this 

stage, the decision is to be made which method is the appropriate for the problem considered. In 

this study, the three most widely utilized heuristic optimization algorithms namely, simulated 

annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) are put under the 

scope to determine the suitable optimization method especially for multi-objective structural 

composite design involved with buckling load and natural frequency. Some of these optimization 

procedures have also been applied to the design of laminated composite plates subject to buckling 

and vibration loading conditions. The objective function of all these problems deal with intricate 

expressions of non-linear nature making the use of linear programming and other gradient based 

analytic methods very limited, therefore in many of these optimization studies, heuristic 

algorithms have been used such as Genetic Algorithms (Riche and Haftka 1993, Soremekun et al. 

2001, Apalak et al. 2008, Kang et al. 2008, Wu et al. 2012, Fabro et al. 2020), Simulated 

Annealing (Erdal and Sonmez 2005, Kayikci and Sonmez 2012), Particle Swarm Optimization 

(PSO) (Ghashochi and Sadr 2102a, b) or artificial bee colony algorithm (Topal and Ozturk 2014). 

In a limited number of research studies, analytical optimization methods such as Powell’s 

optimization method (Sun 1989), Kuhn-Tucker Optimality conditions for maximum fundamental 

frequency (Narita and Zhao 1998), Golden section optimization method for buckling optimization 

(Walker and Reiss 1998), application of steepest ascent method in response surface of maximum 

buckling load and minimum weight search (Goldfeld et al. 2005), Newton’s optimization 

(Chronopoulos 2015), The modified feasible direction method (MFD) for buckling load 

maximization (Topal and Uzman 2007) and a simplified formulation of buckling load 

maximization through integer programming (Haftka and Walsh 1992) have also been employed. 

In an optimization problem, any objective function has its own special characteristics in terms 

of easiness to be minimized or maximized, local extremum properties, and the extent of solution 

domain etc. In structural engineering problems, in many cases, ideal configuration of parameters 

dealing with stress, displacement, buckling or natural frequencies are sought. In this respect, two 

cases having qualitatively and quantitatively dissimilar were chosen, i.e. buckling load and natural 

frequency, thus forming a generic objective function that can be applied to many challenging 

problems. Although there are a large number of studies attempting to optimize composite plates 

subject to buckling and vibration loading conditions, as given above, there exist very limited 

number of researches (Badallo et al. 2013, Razvan 2016, Bloomfield et al. 2010, Karakaya and 

Soykasap 2009) trying to compare the performance of heuristic algorithms for multi-objective 

structural optimization of composite plates, especially for the ones involving specifically buckling 

and vibration loading conditions. Badallo et al. (2013) conducted a comparative study of three 

common Genetic Algorithms on a composite stiffened panel considering three different strategies 

for the initial population and concluded that NSGA-II and AMGA seem the most suitable 

algorithms in terms of solution, computational time and number of generations to minimize the 

mass and to maximize the critical buckling load. Razvan (2016) compared between the 

performance of GA and PSO in a typical truss bar structural optimization problem and found out 

that Genetic Algorithms are superior to the particle swarm optimization for structural optimization 

problems, at least in what concerns truss structures. That shows the clear performance difference 

between two heuristic optimization methods. Bloomfield et al. (2010) applied Genetic Algorithm, 

Ant Colony and Particle Swarm Optimization for the optimization of a simply supported 

composite laminate subject to strength and buckling constraints and demonstrated that ant colony 

outperforms the other algorithms for inherently discrete sets of ply orientations and particle swarm 

optimization algorithm is the most convenient for continuous problems. As given in these 
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references, for continues and discrete type of problems, different algorithms exhibit divers 

behaviors. Karakaya and Soykasap (2009) evaluated the performance of genetic algorithm (GA) 

and generalized pattern search algorithm (GPSA) for buckling load maximization of a composite 

structure and concluded that GA is more efficient for that type of specific problem. As to a 

benchmark study concerning the performance of GA, SA and PSO algorithms on the multi-

objective optimization problem of a composite plate subject to buckling and vibration, as much as 

the authors know, there is not any specific research study. That fact constitutes the basic 

motivation for this research study. Since each optimization problem has its own objective 

functions having a peculiar form of intricacy depending on the problem definition, it is worthy of 

consideration to measure the performance of various heuristic algorithms based on that specific 

problem i.e. multi-objective optimization of composite plate subject to buckling and vibration in 

our case. 

Fiber-reinforced composite structures have been widely investigated for the buckling and 

vibration analyses. In some of these studies only buckling load maximization (Riche and Haftka 

1993, Soremekun et al. 2001, Erdal and Sonmez 2005, Topal and Ozturk 2014) are carried out, 

while others deal with just free vibration frequency maximization (Apalak et al. 2008, Ghashochi 

and Sadr 2102b, Zhao 1998) or both of them (Kang et al. 2008, Kam and Chang 1993, Sahoo and 

Singh 2014, Fazzolari and Carrera 2011, Oveys and Fazilati 2012, Dawe and Wang 1995, Ferreira 

et al. 2011, Shojaee et al. 2012). Buckling analysis of certain studies are based on classical 

lamination theory (Sun 1989, Walker and Reiss 1998, Goldfeld et al. 2005, Smerdov 2000, Walker 

and Hamilton 2005a, Adali and Duffy 1990) or numerical studies such as finite element (Walker 

and Hamilton 2005b, Lindgaard and Lund 2011, Lund 2009), semi-analytical finite difference 

approach (Khani et al. 2012), non-lineer finite element method (Lindgaard and Lund 2011) or 

other analytical solutions such as Rayleigh–Ritz (Wu et al. 2012) or Galerkin (Fazzolari and 

Carrera 2011). In all these studies various kinds of geometries are considered such as plane 

composite plates (Walker and Hamilton 2005a, Adali and Duffy 1990, Walker and Hamilton 

2005b), composite plates consisting of hybrid laminates (Adali and Duffy 1990), cylindrical shells 

(Sun 1989, Smerdov 2000), buckling of variable angle tow (VAT) placed composite laminates (Wu 

et al. 2012), cylindrical laminated composite structures using steered fiber tows (Khani et al. 

2012) or buckling of laminated conical Shells (Goldfeld et al. 2005). Mainly in-plane compressive 

loads (Erdal and Sonmez 2005, Topal and Ozturk 2014, Dawe and Wang 1995, Walker and 

Hamilton 2005a, Adali and Duffy 1990, Lund 2009), and rarely axial-torsional (Walker and Reiss 

1998, Goldfeld et al. 2005, Diaconu et al. 2002) and hydro static pressure (Goldfeld et al. 2005) 

type loadings are employed for problem definitions. In order to handle the buckling and natural 

frequency calculations, numerous alternative solution approaches are taken into account by many 

researchers (Sahoo and Singh 2014, Fazzolari and Carrera 2011, Oveys and Fazilati 2012, Dawe 

and Wang 1995, Ferreira et al. 2011, Shojaee et al. 2012). Sahoo and Singh (2014) developed a 

new novel zigzag theory in combination with an efficient finite element model for the free 

vibration response and stability analysis of the laminated composite and sandwich plates. Fazzolari 

and Carrera (2011) addressed an accurate free-vibrations and linearized buckling analysis of 

anisotropic laminated plates with different lamination schemes employing methods such as 

Rayleigh-Ritz, Galerkin and Generalized Galerkin. Oveys and Fazilati (2012) applied the third 

order shear deformation theory of plates for the development of two versions of finite strip method 

(FSM) in order to investigate the buckling strength and also free vibration behavior of isotropic 

and layered composite plates containing cutouts. Dawe and Wang (1995) has developed the spline 

finite strip method for the prediction of buckling stresses and natural frequencies of vibration of 
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rectangular composite laminated plates of arbitrary lamination and with general boundary 

conditions. Ferreira et al. (2011) used the radial basis function collocation method to analyze 

buckling loads and free vibrations of isotropic and laminated plates. Shojaee et al. (2012) 

benefitted from the NURBS-based isogeometric finite element method for analysis of natural 

frequencies and buckling phenomena for the thin laminated composite plates and examined several 

laminated composite plates with different geometrical configurations and boundary conditions 

considering various aspect ratios. 

In the last several decades, optimal design of fiber reinforced composite plates has become a 

subject of many research studies. At this point, the researchers need to know about the 

performance of the search algorithms from which they benefit, in terms of solution accuracy, 

reliability, time consumption etc. for the specific problems they deal with. For that purpose, in this 

work, a comparative study is carried out to be able to comment on the performance of three most 

widely utilized heuristic search algorithms i.e. simulated annealing (SA), genetic algorithm (GA) 

and particle swarm optimization (PSO). The composite plate considered in this study is modeled as 

a symmetric composite structure. The governing equation for buckling is derived based on the 

classical lamination theory and vibration analysis is found with the help of first-order shear 

deformation plate theory. An analytical solution of buckling analysis is used, while finite element 

method is selected for numerical results of fundamental frequencies. Although there are various 

studies dealing with both buckling load and natural frequency maximization, the present study 

applies it with the help of Multi –Objective Design Index approach to conduct a comparative study. 

In addition, the effect of various in-plane loading ratios, a relatively large number of distinct fiber 

angles and different intervals between available orientation angles are investigated on the basis of 

the most appropriate heuristic algorithm determined. 

 

 

2. Formulation 
 

2.1 Buckling analysis 
 

The composite structure considered is a panel simply supported on four sides with a length of a 

and width of b as illustrated in Fig. 1. The panel is subject to in-plane compressive loads Nx and Ny 

in the x and y directions respectively. The laminate is symmetric, balanced about the mid-plane and 

made of 64 layers with the thickness t. 
 

 

 
Fig. 1 A symmetric laminate under compressive biaxial loads 
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The laminate buckles into m and n half-waves in the x and y directions, respectively, when the 

loads reach the critical values of Nx and Ny. Ncr is the critical load before buckling. In order to 

make MODI non dimensional and unit-less, N0 is the maximum critical load for the given fiber 

direction interval, plate aspect ratio and load conditions for λ = 0, that means for given fiber 

direction interval, For instance if it excepted an interval as 0○-90○, and if it is tried to find the 

maximum critical load that can be reached, without taking into consideration fundamental 

frequency that’s why λ = 0, we do the same for fundamental frequency, thus when we reach the 

highest critical load N* will be 1. The ratio will make it dimensionless. The governing equation 

regarding the transverse deflection of the plate (Gibson 1994) under classical lamination theory is 

given in Eq. 1. 

2

2

4

4

2222

4

66124

4

11 )2(2
x

w
N

y

w
D

yx

w
DD

x

w
D




−=




+




++




 (1) 

where Dij are bending stiffness, w is transverse deflection in terms of x and y. N is the in-plane 

compressive loads. The following form is assumed to be a solution of the Eq. 1; 
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Substituting Eq. 2 into Eq. 1, after some mathematical operations, the solution for the critical 

buckling load is obtained as follows; (which each m and n integer combinations correspond to a 

new solution); 
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where λb is the maximum critical load before buckling, r is the plate aspect ratio and defined as a/b. 

The critical buckling load is the smallest value of λb under any combination of pair (m, n), which 

should be greater than one to avoid immediate failure. 

),(min nmbb  =  (4) 

Taking {m, n}=2 was shown to result in a good estimate of buckling load capacity. Accordingly, 

the smallest of ( )1,1b , ( )2,1b , ( )1,2b  and ( )2,2b  was taken as the critical buckling load 

(Gibson 1994). 
 

2.2 Free vibration analysis 
 

The composite structure is modeled as a symmetric balanced plate which is described by the 

first-order shear deformation theory for free vibration analysis. 

Constitutive equations for the plate are given as follows; 
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where, u0, v0 and w0 are the mid-plane displacements in x, y and z directions, respectively. ϕx and ϕy 

represent the rotations of transverse normal about y and x axes, respectively. The constitutive 

equations for the composite structure are expressed as; 

213



 

 

 

 

 

 

Mustafa Akbulut, Abdulhamit Sarac and Ahmet H. Ertas 
















=













DB

BA

M

N
 (6) 

   
















=
5545

4544

SS

SS

Q

Q
Q

xz

yz
 (7) 

where the laminate stiffness is defined as 
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ε , γ are strains and κ bending curvatures. 
 

2.2.1 Derivation of the governing equation for the free vibration of the plate 
 
The principle of virtual work is employed to derive the governing equations, i.e. 

0int =−= extWWW   (8) 

where δWint represents the internal virtual work and δWext is the external virtual work. 
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where {d}= [uvϕxϕyw]T is the displacement vector and [K] is the linear stiffness matrix, 

On the other hand, the external virtual work is given by 
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where I0, I1, I2 are the moment of inertias, and [M] is the mass matrix. By substituting Eq. 10 and 

Eq. 12 into Eq. 8, we obtain the equation of motion as; 

       0=+ dKdM   (13) 

Eigenvalue problem for the vibration analysis is given as; 

       02 =− MK   (14) 

where w and {Θ} are the natural frequency and the vibration mode shape, respectively. 
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3. Optimization procedure and algorithms considered 
 

3.1 Optimization scheme 
 

The multi-objective optimization problem is formulated by means of a weighted summation 

method. The objective function is constructed as a summation of weighted ratios of critical 

buckling load and non-dimensional fundamental frequencies, which is called as Multi-objective 

design index MODI. The optimization parameters are the orientation angles and the thicknesses of 

each lamina. 

( )  += WNtttMODI nn  ...,,,,,...,, 2121
 (15) 

where N* = Ncr/N0 and W* = ω/ω0, N0 is the maximum critical load for the given fiber direction 

interval, plate aspect ratio and load conditions for λ=0, and ω0 is the maximum non-dimensional 

fundamental frequencies under the same conditions for ξ = 0, therefore λ, ξ ≥ 0 and, ξ +λ =1. 

 

3.2 Genetic Algorithm (GA) 
 

The GA is based on the principles of natural selection. It mimics the process of survival of the 

fittest principle in nature by trying to maximize the fitness function. The population, which 

represents the optimization variable sets, is updated after each learning cycle through three 

evolutionary processes, i.e. selection, crossover and mutation. These create the new generation of 

solution variables. Because of its capability to handle high number of variables and complicated 

objective functions, GA has been used in the structural design of fiber reinforced composite plates 

very frequently. The fundamental theorem of the GA was introduced by Holland (1992). Callahan 

and Weeks (1992) was the pioneer to show that GA can be a viable alternative to traditional search 

algorithms in the design of composite laminates. Kogiso et al. (1994), used GA with local 

improvement to optimized laminated composite plate for buckling load maximization. As given in 

earlier sections, many researchers (Riche and Haftka 1993, Soremekun et al. 2001, Apalak et al. 

2008, Kang et al. 2008, Wu et al. 2012) benefitted from GA in buckling and vibration optimization 

of composite panels. 

Since each heuristic algorithm has its own properties peculiar to its own structure, which differs 

from those of others, it is extremely hard to use standard values to keep coherence among all. It 

should be pointed out that even in GA itself there are various selection, crossover and mutation 

strategies along with different probability coefficients which slightly affect the performance of the 

algorithm. Therefore, in this study an attempt is made to utilize certain standard values regarding 

the algorithm parameters given as follows; population size: 50; selection rate: 50%; crossover 

probability: 80%; Gaussian Mutation with probability of 50%. 

 

3.3 Particle Swarm Optimization (PSO) 
 

The particle swarm optimization (PSO) algorithm is a kind of swarm intelligence techniques, 

which are inspired by the social behavior of flocking animals such as swarms of birds or fish 

school. This population based stochastic optimization algorithm was first developed by Eberhart 

and Kennedy (1995). The approach can be considered as a distributed behavioral algorithm that 

operates as a multi-dimensional search. Due to its natural ability to converge faster, PSO algorithm 
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is very suitable for solving multi-objective optimization problems (Parsopoulos and Vrahatis 

2002). PSO is a population based algorithm having many similarities with evolutionary 

computation techniques such as Genetic Algorithms (GA). The Algorithm starts with a population 

of random solutions and searches for optimal configuration by updating generations. However, 

unlike Genetic Algorithms, PSO has no evolution tools such as crossover or mutation. PSO trades 

on a population of individuals to explore promising regions of the search space. The individual 

behavior is affected either by the best-local or best-global individual. The population is referred as 

a swarm and individuals are called particles. The particles move in a multi-dimensional search 

space with adaptable velocity. In PSO, the particles have a memory of the best position in the past 

and the best position ever attained by the particles. This property makes it possible to search the 

multi-dimensional space faster. 

Let us consider an optimization problem with nn dimensional design space. Assume that there 

are MM particles in a swarm and ith particle in a swarm is represented as a vector Xi, which Xi∈Rn. 

( ) MMixxxX
T

inniii ,...,2,1,,...,, 21 ==  (16) 

The velocity of the particle moving in the nn-dimensional search space is 

( ) MMivvvV
T

inniii ,...,2,1,,...,, 21 ==  (17) 

and the best position encountered by the particle is 

( ) MMibbbB
T

inniii ,...,2,1,,...,, 21 ==  (18) 

Let us assume that the particle j attains the best position in the current iteration (l) then the position 

and the velocity of the particles are adapted using the following equations. 

( ) ( ) ( ))()()()()(1 2211 lXlBrclXlBrclwVlV iiiiii −+−+=+  (19) 

( ) )1()(1 ++=+ lVlXlX iii  (20) 

where w is the inertia weight, c1, c2 represent positive acceleration constants and r1, r2 are 

uniformly distributed random numbers r1, r2 ∈ [0,1]. The first term in the above equation, relates 

to the current velocity of the swarm, the second term represents the local search while the third 

term represents the global search pointing towards the optimal solution. 

The inertia weight (w) is employed to control the impact of the previous history of velocities on 

the current velocity of each particle. Thus, the parameter w regulates the tradeoff between global 

and local exploration ability of the swarm. It is an acceptable approach to initially set the inertia to 

a large value, in order to make better global exploration of the search space and gradually decrease 

the weight to get more refined solutions.  
 

3.4 Simulated Annealing (SA) 
 

Simulated Annealing is a heuristic search algorithm to locate global extremums to large 

optimization problems. It was first proposed as an optimization technique by Kirkpatrick et al. 

(1983). SA is based on an analogy of thermal annealing of critically heated solids and is an 

iterative search method inspired by the annealing of metals. According to the principles of this 
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search N number of initial configurations is randomly created within the design domain by 

randomly selecting values for the design variables. The objective function of the problem is 

calculated for each randomly created configuration. The probability of accepting a newly created 

configuration depends on a probability function whose value is a function of temperature (T). 

( )( ) 







−


=

htjth

ht

t ffifTff

ffif
A

/exp

1
 (21) 

Here fh is the highest cost in the current set. This means every new design having a cost lower 

than the cost of the current design is accepted. But, if the cost is higher, the trial configuration may 

be accepted depending on the value of At. If it is greater than a randomly generated number, Pr, the 

trial configuration is accepted, otherwise it is rejected. Uphill moves are occasionally accepted 

with above mentioned probability, which enables the algorithm to escape local minima. Iterations 

during which the value of the temperature (or control) parameter, Tj, is kept constant are called jth 

Markov chain (or inner loop). After a certain number of iterations, the temperature parameter, T, is 

reduced, a new inner loop begins. As Eq. (21) implies, when TjS, decreased, the probability that a 

worse configuration is accepted becomes lower. At low values of temperature parameter, 

acceptability becomes low; thus, acceptance of worse configurations is unlikely, just as the atoms 

become stable, and do not tend to change their arrangements at low temperatures in an annealing 

process.  

SA was utilized in numerous structural optimization problems (Erdal and Sonmez 2005, 

Kayikci and Sonmez 2012, Hasancebi et al. 2010, Akbulut and Sonmez 2008, Ertas and Sonmez 

2010, Ertas 2013a, Ertas 2013b). In structural design, Hasancebi et al. (2010) used SA to find the 

optimum design of fiber composite structure problems with multiple global optima. Erdal and 

Sonmez (2005) maximized buckling load capacity using simulated annealing method. Akbulut and 

Sonmez (2008) benefitted from direct simulated annealing (DSA) to minimize thickness of 

laminated composite plates, subject to in-plane loading. Ertas and Sonmez (2010, 2014) and Ertas 

and Sonmez (2011) used the SA to design fiber composite structure for maximum fatigue life and 

strength, respectively. Ertas (2013a) and Ertas (2013b) also used the PSO to design fiber 

composite structure for maximum fatigue life. 
 
 

4. Model validation 
 

4.1 Fundamental frequency 
 

A simply supported cross-ply square laminated composite plate is studied with different 

modulus ratios (E11/E22). The four-layer plate symmetrically laminated with [0°/90°/90°/0°] is used 

and each layer has the same thickness. The following parameters are used in the computation: 

L=10 m, t= 1–2 m, E22= 1.0 GPa, G12=G13=0.6 E22, G23= 0.5, E22, v12=v23=v13=0.25 and ρ = 1kg/m3. 

Table 1 shows the non-dimensionalized fundamental frequencies of laminates �̅� =

𝜔11𝑏2√𝜌/(𝐸22𝑡2)  as a function of modulus ratios (E11/E22). Two different kinds of length/thickness 

ratios are considered. It can be seen that the primary frequency increases with the ratios E11/E22 and 

L/t. Since it is square plate, L corresponds to the dimension of one side in this study, t was used to 

denote the thickness. The present results are quite close to those obtained by other researchers. 

Slight differences result from the numerical settings of finite element computations.  
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Table 1 The non-dimensional fundamental frequencies �̅� = 𝜔11𝑏2√𝜌/(𝐸22𝑡2) of a simply supported 

cross-ply square laminated composite plate with [0°/90°/90°/0°] and different modulus ratios (E11/E22) 

 

Table 2 The optimal designs for Nx/Ny=1, a/b=2, 64 plies with possible angles of 02, ±45, 902 

 

 

4.2 Buckling analysis 
 

In order to check the validity of the optimization procedure and buckling load factor 

formulation, the problem studied by Riche and Haftka (1993) and Soremekun et al. (2001) were 

considered. A graphite epoxy plate was chosen with the elastic properties of E11=127.59 GPa, 

E22=13.03 GPa, G12=6.41 GPa and v12= 0.28. The dimensions of the composite panel were a=50.8 

cm, b= 25.4cm, and t= 0.127cm. Table 2 presents various design configurations with possible 

angles of 02, ±45, 902. The optimization procedure using PSO in this case is shown to be able find 

the same global designs as given in the literature. 

Table 3 lists the optimum fiber orientations and corresponding buckling load factors found for 

various loading ratios and possible angle configurations. The present study offers almost the same 

results as determined by Erdal and Sonmez (2005), who had to use SA to locate the optimum 

solutions. It is clearly demonstrated that the PSO method can precisely locate the outputs of 

Simulated Annealing Optimization Method. 
 

 

5. Results and discussions 
 

Having verified the results of both fundamental frequency and the buckling load calculations 

along with the PSO optimization scheme separately, the comparative study among SA, GA and 

PSO in a general case example is carried out. Since there are various objective function scenarios 

with different Multi Objective Design Index, a MODI with λ =0.5 and ξ =0.5 was chosen for a 

simply supported panel which is symmetric, balanced about the mid-plane and made of 64 layers 

with a thickness t. The optimum results obtained for the above stated configuration are presented 

for each Algorithm in Tables 4, 5, 6. 

(E11/E22) tL /  Present Lei et al. Cui et al. Bletzinger et al. Reddy Dai et al. 

3 5 6.362 6.578 6.526 6.574 6.570 6.360 

 10 8.079 7.254 7.192 7.249 7.242 7.157 

10 5 7.354 8.349 8.283 8.338 8.271 8.080 

 10 10.803 9.893 9.810 9.882 9.842 9.670 

20 5 7.775 9.645 9.573 9.633 9.526 9.440 

 10 12.495 12.309 12.211 12.297 12.218 12.115 

30 5 7.955 10.416 10.341 10.404 10.326 10.238 

 10 13.393 13.988 13.879 13.974 13.864 13.799 

40 5 8.055 10.951 10.873 10.937 10.854 10.789 

 10 13.965 15.259 15.142 15.244 15.107 15.068 

Design Buckling Load Factor 

 
s46410 45/90/45/90   3973.01 

 
s208 90/45/90/45   3973.01 

 
s224628 45/90/45/90/45/90   3973.01 

 
s4516 90/45/90/45   3973.01 
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Table 3 The Comparison of PSO and SA Outputs for various loading ratios and angle configurations 

 

 

Optimum Possible Fiber Orientations Buckling Load Factor 

 Present Study Erdal and Sonmez (2005) 

 Nx/Ny=1, a/b=2, 64 plies with possible angles of 0, 30, 60, 90 

 
s357953 60/90/60/90/60/90  4079.89 4080.08 

 Nx/Ny=2, a/b=2, 64 plies with possible angles of 0, 30, 60, 90 

 
s395312 60/90/60/90/60  6379.31 6379.35 

 Nx/Ny=4, a/b=2, 64 plies with possible angles of 0, 30, 60, 90 

 
s734936 30/60/30/60/30/60  8026.91 8026.83 

 Nx/Ny=4, a/b=2, 64 plies with possible angles of 0, 15, 30, 45, 60, 75, 90 

 
s515444 60/45/60/45/60  8439.86 8440.27 

Table 4 Simulated Algorithm (SA) results for 15 different iteration runs 

Iteration MODI Time (min) Maximum Buckling Load Non-dimensional fundamental frequency 

1 0.980039 607 4100.84 5.37 

2 0.978853 823 4056.42 5.42 

3 0.978439 574 4056.82 5.41 

4 0.973734 805 4004.71 5.43 

5 0.975098 625 4050.48 5.39 

6 0.971126 558 3955.01 5.47 

7 0.974436 709 4025.20 5.41 

8 0.978659 430 4068.61 5.40 

9 0.97498 977 4016.41 5.43 

10 0.975432 406 4075.15 5.36 

11 0.975976 671 4040.10 5.41 

12 0.975133 752 4018.72 5.43 

13 0.975677 444 4001.92 5.46 

14 0.979249 351 4035.78 5.45 

15 0.97583 441 4010.40 5.45 

Table 5 Genetic Algorithm (GA) results for 15 different iteration runs 

Iteration MODI Time (min) Maximum Buckling Load Non-dimensional fundamental frequency 

1 0.984087 364 4080.18 5.45 

2 0.983856 414 4077.75 5.45 

3 0.982229 417 4071.73 5.44 

4 0.982116 421 4089.70 5.41 

5 0.981587 434 4095.07 5.40 

6 0.984107 436 4079.56 5.45 

7 0.983347 392 4084.87 5.43 

8 0.983527 414 4085.69 5.43 

9 0.980705 406 4083.21 5.40 

10 0.983206 437 4079.37 5.44 

11 0.975745 401 4052.65 5.39 

12 0.982371 411 4070.53 5.44 

13 0.984099 474 4080.81 5.45 

14 0.983238 446 4079.10 5.44 

15 0.983655 485 4078.20 5.44 
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Table 7 presents the statistical outputs of the above defined optimization problem. The 

comparison among the three algorithms is based on the objective functions and computer run-

times. In order to get rid of numerical fluctuations, each algorithm was run fifteen times for each 

optimization method and mean, median and standard deviation values were calculated for each 

Table 6 Particle Swarm Optimization (PSO) Algorithm results for 15 different iteration runs 

Iteration MODI Time (min) 
Maximum  

Buckling Load 

Non-dimensional  

fundamental frequency 

1 
0.983455 222 4079.45 5.44 

2 
0.984031 319 4080.24 5.45 

3 
0.983707 199 4080.47 5.44 

4 
0.983583 246 4080.63 5.44 

5 
0.983486 175 4081.15 5.44 

6 
0.983963 189 4082.18 5.44 

7 
0.983737 164 4077.30 5.45 

8 
0.983513 211 4084.26 5.43 

9 
0.98351 207 4085.42 5.43 

10 
0.984015 252 4079.46 5.45 

11 
0.984152 200 4079.93 5.45 

12 
0.983478 157 4080.29 5.44 

13 
0.983422 231 4087.06 5.43 

14 
0.98408 229 4079.60 5.45 

15 
0.984048 188 4078.42 5.45 

Table 7 Statistical results of Multi-Objective Problem 

Parameter 
Optimization  

Method 
Mean Median 

Standard  

Deviation 

Objective  

Function 

GA 0.982525 0.983238 0.0021 

PSO 0.983745 0.983707 0,0003 

SA 0.976177 0.975677 0.0024 

Maximum  

Buckling  

Load 

GA 4079.23 4079.56 9.29 

PSO 4081.06 4080.29 2.56 

SA 4034.44 4035.78 34.64 

Non-dimensional  

Fundamental  

frequency 

GA 5.43 5.44 0.0185 

PSO 5.44 5.44 0.006 

SA 5.42 5.42 0.03085 

Time  

(min.) 

GA 423 417 30.48 

PSO 213 207 40.62 

SA 612 607 173.90 
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series of samples. It is clearly observed that Particle Swarm Optimization Algorithm (PSO) 

provided the highest objective function value which is ~0.984 among all the three, along with 

average run-time of 213 minute. Standard deviation values indicate that there is a considerable 

margin between PSO and the remaining two algorithms. With an average value of 0.982, GA gave 

the second acceptable objective value along with relatively higher duration 423 min., even though 

it resulted in a reduced standard deviation of 30.48, which can be considered to be more reliable 

compared to the remaining two. All the data obtained suggests that PSO yielded the highest 

objective value and the shortest run-time. 

 

5.1 Statistical analysis 
 

To explore the difference between the groups of data pertaining to MODI and time, the 

statistical analysis was performed and the statistical metrics were calculated accordingly. The 

direct method to determine whether the data are normally distributed is the normality analysis that 

is composed of several tests such as Shapiro-Wilk test (Shapiro and Wilk 1965, Massey 1951), 

Kolmogorov-Smirnov test (Massey 1951, Razali et al. 2011), skewness and kurtosis analysis 

(Doane and Seward 2011), and descriptive graphics. 

 

5.1.1 Normality analysis 
Normal distribution of the data gives direct information about the type of statistical analysis 

that needs to be carried out. Provided that the data are normally distributed, the parametric analysis 

is utilized. Non-parametric analysis (e.g. Mann-Whitney U Test) is employed if the data are not 

approximately normally distributed. We performed normality analysis for MODI and time data 

associated with each optimization algorithm (i.e. SA, GA, and PSO) by employing software 

packages, Microsoft Excel and IBM SPSS Statistics. Means and standard deviations of each data 

set were calculated, and the histograms were obtained in order to determine graphically whether 

the data are normally distributed. As a descriptive statistical analysis, skewness and kurtosis of the 

data sets were also calculated to exhibit the deviation from the normal distribution. The skewness 

is an indicator of symmetry or asymmetry in the histograms, and the kurtosis is essentially the 

sharpness of the peak of a frequency distribution that is in principle normal distribution herein. 

The MODI data of SA were approximately normally distributed with a skewness of -0.122 

(SE=0.580), and a kurtosis of -0.153 (SE=1.121) as shown in Fig. 2(a). The histogram associated 

with the MODI of GA exhibits that the data were not normally distributed as illustrated in Fig. 

2(b). The skewness and kurtosis of the data were calculated as -2.564 (SE=0.580) and 7.693 (SE= 

1.121), respectively. However, the skewness and kurtosis pertaining to the MODI of PSO were 

calculated as 0.250 (SE=0.580) and -1.824 (SE= 1.121), which are suitable for normal distribution, 

the histogram exhibits non-normal distributed behavior as shown in Fig. 2(c). 

Statistics such as Q-Q (quantile-quantile) plots and box plots clearly show that the MODI data 

of GA are not normally distributed.  Whereas the box plot associated with MODI of SA is not 

symmetric, the box plot for MODI of PSO is nearly symmetric. The box plots need to be as 

symmetric as possible for normally distributed data. A Shapiro-Wilk’s test (p>0.05) shows that 

while MODI data of SA are normally distributed, MODI of GA and PSO are not normally 

distributed. Finally, in order to determine the normality of the data fully, Kolmogorov-Smirnov test 

was carried out. Whereas MODI of SA and PSO are normally distributed, MODI data of GA are 

not normally distributed according to Kolmogorov-Smirnov test. 
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Fig. 2(a) MODI Histogram of SA Optimization Algorithm 

 
Fig. 2(b) MODI Histogram of GA Optimization Algorithm 

 

Similar analysis was carried out for the time data of SA, GA, and PSO, respectively. The time 

data were approximately normally distributed for both SA and GA. The skewness and kurtosis for 

the time data of SA were calculated as 0.385 (SE=0.580) and -0.533 (SE=1.121). Similarly, the 

skewness and kurtosis for the time data of GA were calculated as 0.340 (SE=0.580), and 0.687 

(SE=1.121), respectively. The skewness and kurtosis values are well aligned with the symmetry 

features in the histograms as illustrated in Fig. 3(a) and Fig. 3(b). The histogram for the time data 

of PSO is not symmetric with a skewness of 1.159 (SE=0.580), and a kurtosis of 2.285 (SE=1.121) 

as shown in Fig. 3(c). Both Shapiro-Wilk and Kolmogorov-Smirnov tests show that all of the time 

data sets (i.e. SA, GA, and PSO) are approximately normally distributed. Similarly, the other 

descriptive statistical graphs such as Q-Q plots and box plots show that the time data sets for three 

distinct algorithms are almost normally distributed. 
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The normality analysis shows that MODI data of SA, time data of SA, GA, and PSO can be 

accepted as approximately normally distributed data, however, the MODI data of GA and PSO are 

not normally distributed. We can conclude that since the time data for the three algorithms are 

normally distributed, a parametric analysis should be applied to these data sets. A non-parametric 

analysis should be carried out to the MODI data of the three algorithms that can be classified as 

non-normal distributions. We can now conduct parametric or non-parametric analysis to detect 

whether there is a significant difference between the data sets. 
 

 

Fig. 2(c) MODI Histogram of PSO Algorithm 

Fig. 2 MODI Histograms of SA, GA and PSO 
 

 
Fig. 3(a) Time Histogram of SA Optimization Algorithm 
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Fig. 3(b) Time Histogram of GA Optimization Algorithm 

 

 
Fig. 3(c) Time Histogram of PSO Algorithm 

Fig. 3 Time Histograms of SA, GA and PSO 

 

 

5.1.2 Non-parametric Analysis 
A non-parametric analysis was accomplished to determine whether there is a significant 

difference between the MODI data sets. The typical non-parametric analysis utilized herein is the 

rank-based Mann-Whitney U Test that is commonly performed for independent variables showing 

non-normal characteristics. Although the MODI of SA is evaluated as approximately normally 

distributed according to the normality analysis, the data set is employed in non-parametric analysis 

for comparison. A comparative analysis was performed for different algorithm pairs such as SA-

GA, GA-PSO, and SA-PSO 
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Having performed the Mann-Whitney U Test, we obtained rank-based comparison graphs as 

shown in Fig. 4(a), (b), (c). The results given in Table 8 show that there is significant difference 

between the data sets of SA-GA, GA-PSO, and SA-PSO optimization algorithms. 

 

 

 

 
(a) Mann-Whitney U Test: SA-GA Comparison 

 
(b) Mann-Whitney U Test: GA-PSO Comparison 

 
(c) Mann-Whitney U Test: SA-PSO Comparison 

Fig. 4 Mann-Whitney U Tests of SA-GA, GA-PSO and SA-PSO 
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Table 8 Mann-Whitney U Test results for the comparison of MODI data sets 

 

 

MODI SA GA PSO 

SA 0 - - 

GA - 0 - 

PSO - - 0 

 
(a) Comparison of Means of MODI 

 
(b) Comparison of Means of Time 

Fig. 5 Comparisons of Means of MODI and Time 
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5.1.3 Parametric Analysis for Time data 
Since the time data of SA, GA, and PSO are approximately normally distributed, a parametric 

analysis was performed to explore the differences between the groups. The parametric analysis 

shows that the mean of time data is less for PSO algorithm, and also the average MODI is 

relatively high compared to SA and GA as illustrated in Fig. 5(a) and (b). The parametric analysis 

revealed that there is a significant difference between the time data of the three groups, and this 

analysis can be used to determine the optimum algorithm to be selected. 
 

 

5. Conclusions 
 

In this work a benchmark study is carried out among the extensively used heuristic search 

algorithms i.e., simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization 

(PSO) in order to observe their performance on a cost function formed with qualitatively and 

quantitatively dissimilar parts. Since the performance may be the cost function type dependent, the 

investigation is restricted to a Multi objective optimal design of laminated composite plates with 

respect to buckling load and non-dimensional fundamental frequencies. In order to avoid 

fluctuations among the results, each algorithm is run multiple times and the statistical evaluation is 

presented. The preliminary outputs point out that particle swarm optimization (PSO) proves to be 

more superior to the remaining two from both computational time and accuracy point of view, on 

the condition that the previously given settings are applied to the algorithm parameters. In the 

statistical evaluation scheme, normality analysis and Non-parametric analysis were carried out. 

Normality tests of all three algorithms were done according to different criteria such as Shapiro-

Wilk’s and Kolmogorov-Smirnov on the basis of MODI and time values. The normality analysis 

shows that MODI data of SA, time data of SA, GA, and PSO can be accepted as approximately 

normally distributed data, however, the MODI data of GA and PSO are not normally distributed. 

A comparative analysis was performed for different algorithm pairs such as SA-GA, GA-PSO, 

and SA-PSO. It was shown that there is significant difference between the data sets of SA-GA, 

GA-PSO, and SA-PSO optimization algorithms. It is important to note that similar statistical 

evaluation methodology can be applied to other optimization algorithms on different types of 

structural problems. 
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Nomenclature 
 

Nx  load in x direction 

I0, I1, I2  moment of inertias 

Ny.   load in y direction     

M  mass matrix 
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Ncr  critical load     

𝜔  natural frequency 

𝐷𝑖𝑗   bending stiffness     

{Θ}  vibration mode shape 

𝑤  transverse deflection     

𝜃  orientation angles 

𝜆𝑏  minimum critical load     

𝜆  weighted ratios for critical load 

𝑢0  mid-plane displacements in x directions   

𝜉  weighted ratios for natural freq. 

𝑣0  mid-plane displacements in y directions   

𝑋𝑖  swarm vector 

𝑤0  mid-plane displacements in z directions   

𝑉𝑖  velocity vector 

𝜙𝑥  the rotations of transverse normal about x- axes  

𝐵𝑖   best position vector 

𝜙𝑦  the rotations of transverse normal about y- axes  

wp  inertia weight 

𝐴𝑖𝑗  laminate stiffness     

c1, c2  positive acceleration constants 

𝐵𝑖𝑗   laminate stiffness     

r1, r2  random numbers 

𝑊  virtual work     

𝑇𝑗  temperature parameter 

𝐾  linear stiffness matrix     

𝑓𝑡  current cost 

E  elasticity modulus     

𝑓ℎ  highest cost 

ρ   density      

υ  Poisson's ratio 
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