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Abstract.  Building Information Modeling (BIM) is increasingly used throughout the facility’s life cycle for 
various applications, such as design, construction, facility management, and maintenance. For existing buildings, the 
geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with 
laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the 
buildings’ elements. This paper presents a semi-automatic method for generation of material and texture rich as-built 
BIM. The method captures and integrates material and textural information of building elements into as-built BIM 
using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls 
of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. 
The digital numbers in the resulted images are then transformed into radiance values that represent the emitted 
thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance 
values and the material type in each image. The radiance values were used to extract textural information from the 
images. The extracted textural and material information are then robustly integrated into the as-built BIM providing 
the data needed for the assessment of building conditions in general including energy efficiency, among others. 
 

Keywords:  As-Built BIM; building materials; thermal infrared imaging; thermography; texture extraction; 

feature technology; information visualization; machine learning 

 
 
1. Introduction 
 

Having a full record of information of a facility is essential as it helps in assessing building 

performance, managing building repairs, and renovations. However, full documentation of 

information of an existing building faces many difficulties and challenges. Until recently, 

documentation procedures are mainly done manually, which is tedious, time-consuming, labor-

intensive, error-prone, and costly (Fadoul et al. 2017, Klein et al. 2012, Arayici 2008). Current 

methods for data acquisition at construction sites include laser distance meters, digital cameras, 
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measuring tapes (Jung et al. 2014) and laser scanners (Klein et al. 2012, Ali et a. 2008) are gaining 

wide acceptance. In general, information about a specific building object that exists in reality 

might have not been recorded during construction or it might have changed since then. If this 

change is not verified, it will lead to unnecessary efforts, which can be costly and time-consuming. 

Previous research (Tang et al. 2010, Klein et al. 2012, Dimitrov et al. 2014, Wang et al. 2013, 

Armesto et al. 2009, Lagela et al. 2013) have addressed issues related to utilizing remote sensing 

technologies such as laser scanners to collect geometric information about an existing facility to 

create the BIM geometry. This method produced relatively accurate geometric databases that 

proved to be helpful in facility maintenance and space management. The information collected 

with a non-destructive, automated process such as remote sensing, stored in a BIM-compliant 

database also has many advantages for many facility management practices, such as 

commissioning and closeout, quality control and assurance, energy management, maintenance and 

repair, and space management (Alkadri et al. 2018, Volk et al. 2014, Abdalla et al. 2014). However, 

having a geometric-rich BIM is not enough to determine the condition of the facility without other 

important parameters that cannot be obtained by laser scanning such as textural and material 

information. Spectral properties of objects surfaces (e.g. interior walls) in terms of the amount of 

the electromagnetic radiation (EMR) reflected or emitted by them can be used to gather lots of 

information about them. This is because the amount of reflected, absorbed, transmitted, or emitted 

radiation depends on the nature of the material of the surface, the wavelength of EMR, texture, and 

the illumination angle (angle between the inward surface normal and the direction of EMR). The 

aim of this research is to extract material and textural information using infrared remote sensing 

technology and integrate that into the as-built BIM. This would help in creating an updated 

information-rich BIM database, which would be useful in building performance evaluation, energy 

analysis, energy management and water leaks detection in pipes inside interior walls. 

 

1.1 As-Built BIM 
 

Building Information Model (BIM) is a term that has become very common in the design and 

construction fields over the past 20 years (Fadoul et al. 2018, Abdalla et al. 2018, NIBS 2007a). 

BIM transformed building information documentation from paper-centric processes into a digital 

workflow to develop the 3D model and further learn about the architectural and structural 

attributes of building elements. This is used to simulate and employ reality-based models to 

manage the built environment within a fact-based, repeatable and confirmable decision process 

that minimizes risk and increases the quality of actions and products, industry-wide (Eastman et al. 

2011). BIM is defined by the Charter for the National Building Information Model Standard, as an 

improved planning, design, construction, operation, and maintenance process using a standardized 

machine-readable information model for each facility, new or old, which contains all appropriate 

information about that facility in a format useable by all throughout its life cycle (NIBS 2007b).  

There is a growing interest in the construction industry for the use of BIM in facility 

management (FM) for coordinated, accurate, and computable building information from the design 

to construction to maintenance and to operation stages of a buildings life cycle including 

rehabilitation. Creation of as-built drawings for a building is an essential stage of the building life-

cycle as the other stages, such as planning, design, and construction (Volk et al. 2014). Successful 

management of operating facilities and infrastructure involves extensive, up to date, and accurate 

field records such as facility spaces, equipment, materials, and energy systems (Tang et al. 2010, 

Klein et al. 2012). During the design, construction, initial handover, and even operation stages, 
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building documents undergoes continuous changes and updates. Documentation of this 

information is essential as it helps the owners and facility managers in assessing building 

performance, managing building repairs, and renovations (Gallaher et al. 2004). Today, full 

documentation of information faces many difficulties and challenges (Hara et al. 2019, Francis et 

al. 2019, Volk et al. 2014, Tang et al. 2010, Klein et al. 2012, Becerik-Gerber et al. 2012, 

Dimitrov et al. 2014). Information about a specific element that exists, in reality, might not be 

recorded or changed without being verified. Otherwise, the quality may drop without being noted, 

and these undocumented changes normally lead to unnecessary efforts and costs (Gallaher et al. 

2004). A study by the National Institute of Standard and Technology (NIST) found out that the 

cost of inadequate interoperability of building information is very high for new construction and 

relatively high for maintenance (Eastman et al. 2011). Moreover, large amount of capital 

expenditures are lost every year in the United States due to the lack of information at construction 

sites for the maintenance and repair personnel (Becerik-Gerber et al. 2012).  

There is an increasing demand to automate the building information acquisition and storing 

processes in order to support facility personnel in getting necessary information about buildings 

whenever needed (Cho et al. 2019, Lu et al. 2017, Tang et al. 2010). Furthermore, artificial 

intelligence techniques such as genetic algorithms and gaming were used by researchers for 

simulation and building information modeling integration (Sandoval et al. 2018, Kim et al. 2017). 

In response to the demand for more efficient as-built surveys, researchers are investigating the 

ways remote sensing tools and sensor networks can provide valuable information about the 

existing buildings such as geometry, elements location, materials, etc. (Abdalla et al. 1991, Tang 

et al. 2010, Klein et al. 2012, Volk et al. 2014). 

 

1.2 Building information acquisition techniques 
 

Over the past decade, multiple efforts by several researchers have been made to make 

computers acquire, understand, index, and interpret images expressing a wide variety of concepts, 

with much progress (Eastman et al. 2011, Santos 2017). The main challenges researchers faced 

include variable and sometimes uncontrolled imaging situations, complex and hard-to-describe 

objects in the image, objects occluding other objects, and conceptual information perceived by 

humans. Automatic image classification algorithms have been an important research topic for 

decades in fields such as development of image processing in space sciences, web searching, 

geographic information systems (GIS), bio-medicine, surveillance and sensor systems, commerce, 

and education (Eastman et al. 2011, Arayici 2008, Jung et al. 2012, Celik et al. 2018). Recent 

studies have given special attention to automated image retrieval based on texture. The common 

objective was to retrieve texture with high accuracy utilizing the least complicated computational 

approaches. The most popular texture extraction techniques that use multi-scale image 

representations are discrete wavelets, Gabor wavelets, dual-tree complex, Grey Level Concurrence 

Matrix (GLCM), and contourlets (Kottawar et al. 2014). All of these approaches fall under the 

spatial-frequency image transforms, where the image is decomposed into sub-images at multiple 

scales, frequencies and orientations of image details and structures using linear filter banks and 

down- or up- sampling operators (Smith et al. 1996).  

Cho et al. (2015) provided a detailed review of several techniques that can semi-automatically 

create as-is geometrical and thermal models for energy modeling of buildings and retrofit 

assessment purposes. They also presented an overview of the main algorithms used by these 

techniques for representing spatial-thermal point clouds. Furthermore, they described how spatial-
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thermal point clouds can be converted into semantic BIMs in gbXML format for as-is energy 

modeling purposes. The fundamental formulations and methods for measuring an actual thermal 

resistance of building assemblies and mapping them into gbXML-based representations were also 

presented. The most recent studies in the IT-driven Building Automation System (BAS) for energy 

conservation purposes were also presented. Although their research addressed acquisition and 

automation of geometric building modeling and non-destructive thermal performance assessment 

processes from raw data including point clouds, images, and thermograpphs, it did not address 

extraction of material and textural information of building elements.  

Ham et al. (2014a) and Ham et al. (2014b) presented a thermography-based method to 

calculate R-values of building assemblies and analyze condensation issues. The process visualizes 

thermal resistance and condensation problems in 3D while taking static occlusions into account. 

The result was a 3D visual representation of the actual thermal resistance distributions and 

building areas associated with condensation taking static occlusions into account by using 2D 

thermal images to reconstruct 3D spatio-thermal models to calculate the R-values. Wang et al. 

(2013) developed a hybrid system consists of a LIDAR and an IR camera to create a thermal 3D 

model of an existing building. The system linked point clouds acquired from a LIDAR with a 

thermal data at each point location, including temperature values.  

Monitoring construction progress and safety is another focus area that is getting attention in the 

image processing field. Roh et al. (2011) used an object-based approach to monitoring detailed 

interior construction progress. They compared an as-planned 3D BIM with as-built photographs, in 

order to provide the user with a realistic perception into the interior construction process. 

Furthermore, Gao et al. (2014) and Yang et al. (2015) have used visualization platform to support 

different activities including corrective maintenance of HVAC, among others. In addition, 

automated reconstruction approach of mechanical systems in BIM, detection of structural 

components from CAD drawings for constructing as-is BIM objects and creation of 3D models 

from buildings’ floor plans were investigated by several researchers (Cho et al. 2017, Cho et al. 

2018, Lu and Lee 2017, Santos et al. 2011). 

Integrating thermal information such as heat transfer, thermal performance, and thermal 

comfort level of an existing building with BIM are complex tasks due to the inaccessibility or lack 

of information available about the materials and their thickness (Natephra et al. 2017, Natephra et 

al. 2018, Abcdalla et al. 2014, Armesto et al. 2009). Lagela et al. (2013) used a GbXML schema 

along with visual recognition process as a standard output for the as-built BIM database, which 

was created from geometric and thermographic data. For the thermal characterization, a 

thermographic camera was used to capture IR images of the walls and roofs and then processed it 

as U-values. The U-values are coefficients of transmission of heat through the materials, which 

have become the standard for energy analysis. A thermally characterized as-built BIM was then 

formed, where the U-values provided descriptive information of the type of every building element. 

Ham et al. (2015) proposed a similar approach for updating thermal properties of building 

elements in the gbXML-based BIM through measuring actual heat transfer condition using 3D 

thermography. The outcome was an updated gbXML-based BIM, which was used as an input of 

the BIM-based energy analysis tools. Natephra et al. (2017) proposed a system that visualizes 

thermal information of building surfaces over time and evaluate the indoor thermal comfort 

condition in the building by integrating BIM with building surface temperature and air temperature 

(4D thermal information). The system uses sensors to implement thermographic survey to collect 

time–coded thermographic images. These acquired images are then integrated into BIM in order to 

visualize up–to–date thermal changes in the surfaces of a building’s geometry. By considering the 
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position of the occupant in the room, this method helps in calculating thermal comfort variables, 

such as operative and mean radiant temperature.  

In addition to capturing of building information to generate as-Built BIM, several techniques 

have been used for detecting building deterioration prompted by material degradations, moisture 

invasions, or water leakages and their effect on energy inefficiency (Balaras et al. 1996). For 

example, thermal inspection was used for condition monitoring of laminates and others (Meola 

2012, Kuenzer et al. 2013), Acoustic Pulse Reflectometry was used in leakage detection (Tafuri et 

al. 1997, Hunaidi et al. 2000) Leak Noise Correlators and Ground Penetrating Radar are used in 

leak detection (Maninder 2010), condition monitoring, Thermal IR was used in building auditing 

(Balaras et al. (1996), Balaras 2002) and quantitative IR thermography was used for building 

diagnosis (Grinzato et al. 1998). 
 

 

2. Methodology, identification and integration of textual and material information 
 

2.1 Methodology 
 

As previously indicated, the purpose of this research is to develop a semi–automated 

methodology to identify the materials and textures of interior walls and integrate them with an as-

built BIM. The proposed methodology for capturing material and texture data using IR consists of 

four stages as shown in Figure 1. 
 

Stage 1: Image Capturing 

A thermal IR camera is used to capture images of the target elements (walls, roofs, etc.) of an 

existing building. A Flir T640 camera has been chosen in this study. The camera needs to first be 

calibrated. The calibration begins with a complete operational check, verification of all internal 

cable and Printed Wiring Boards (PCB) connections, checking internal camera software, 

verification and/or re-equalizing as needed each temperature range for image uniformity.  

Stage 2: Image Segmentation  

The images captured in Stage 1 are then processed. If the target elements are interior walls (the 

case study), then only walls features will be extracted using a segmentation algorithm. Then, an 

image clustering process is used to categorize the similar regions of the target elements. The 

results of this process are different types of thermal contours representing the interior walls.  

Stage 3: Material & Texture Identification and Extraction 

The images are then transformed into emitted thermal infrared radiation and are also used to 

extract textural information. Statistical correlations between these values and models of target 

members such as interior wall materials made of gypsum and concrete of the test facility will then 

be obtained through a Gaussian Mixture Models (GMM) simulation approach and will further be 

used to extract material information from the images. Then Monte Carlo simulation will be applied 

to identify the materials and textures of the target elements. In this study, the target element used to 

test the proposed methodology were interior walls of an existing facility.  

Stage 4: Population of As-Built BIM  

The extracted texture and material information of the target elements is then integrated into the 

as-built BIM of the facility in a semi-automatic way, providing the data needed for multiple 

operations including facility management, preventive and corrective maintenance in addition to 

assessment of building conditions in relation to energy efficiency and water systems leaks. This 

sheet is then populated with the materials and texture properties and imported back to the BIM. 
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Fig. 1 Framework and workflow of the proposed method 

 

 

2.2 Details of material identification 
 

In order to identify the materials of target elements, (interior walls, in the case study), a prior 

process of material training must take place where interior walls with known materials will be 

used to define the types and then store it in the BIM material database. While each material has it 

is own thermal and reflectance property, unknown walls will then be imported for testing and 

verification in the database. For the material identification, the thermal images will be transformed 

into matrix of radiance values that represent each pixel in the image. The radiance values will then 

be analyzed to construct the different thermal distributions in the image that presents different 

material types. These radiance values will then be compiled based on their thermal properties that 

identify them as walls using the model (Machine Learning). Finally, when the model is ready, the 

process of identifying the unknown walls material becomes straight forward. Figure 2 illustrates 

walls material and texture identification workflow process. 

 

 2.3 Details of texture feature and identification 
 

Texture feature is a visual characteristic that does not depend on color and intensity and reflects 

the intrinsic phenomenon of images. It is a combination of all basic surface properties. The texture 

may consist of some basic primitives and may also describe the structural arrangement of a region 

and the relationship of the surrounding regions. In general, the texture forms some interesting 

surface characteristics that can be derived from the image. The texture of an image is defined as 

the frequency of tonal variations in it. It is formed through the accumulation of component features, 

which can be too little to be detected separately from the image. Texture is a result of the elements 

pattern, size, shadow, shape, and tone in the image and it determines the overall visual smoothness  
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or coarseness of the features in the image (Kiefer et al. 2008). Texture analysis helps to segment 

images into homogeneous areas of interest and represent these areas in a simple unique form. The 

texture of an image provides information about the spatial arrangement of the intensity values in 

the image, and as such contains information regarding contrast, homogeneity, rigidity, orderliness, 

etc. (Kottawar et al. 2014, Smith et al. 1996).  

Figure 3 shows the color histogram for three different images that all have an equal number of 

white and black pixels. However, the texture of the three images is totally different although they 

have the same color histogram. The image shown in Figure 3 (a) is divided into two rectangles; a 

white and a black forming a block pattern, the image shown in Figure 3 (b) has eighteen black 

squares and eighteen white squares making a checkerboard pattern while the shown in Figure 3 (c) 

has three black rectangles and three white rectangles making a stripped pattern. Figure 3 (d) 

illustrates change of texture of the same material, which is gypsum board in this case, in the same 

image. 

Texture identification performed within a single material type to identify the in-homogeneity 

within a surface. In-homogeneous surface may not be visible by the naked eye; however, the 

radiance values distribution can be used to identify the texture pattern throughout the image. For 

example, a wet wall might not be identified as such, initially. However it will have different 

radiance contours within it that can be analyzed differently to identify the changes in texture in the 

same material. In this study, a wall texture defines the homogeneity of the overall wall surface. In 

other words, if the clustering algorithm has more than one cluster, it indicates in- homogeneous 

surface. The method is similar to the material identification where machine learning is applied to 

define homogeneity of the wall surface. Figure 2 shows the walls texture and walls materials 

identification workflow. 

 
Fig. 2 Materials and texture identification workflow 
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Fig. 3 Three different textures and an image of a gypsum board ceiling and walls 

 

 

2.4 Material and texture identification using Gaussian Mixture Models (GMM) 
 

 Identification of materials and textures can be considered as a classification problem in 

machine learning. Given a feature vector x the GMM approach models the probability distribution 

function (PDF) assuming a Gaussian distribution model. The assumption of having a Gaussian 

distribution of the underlying data is not random because of the characteristics of the heat 

diffusion in homogeneous materials. 

Figure 4 presents the workflow of the process of materials and texture identification by 

performing a GMM to model the data and using maximizing log likelihood for parameters 

estimation. Based on our assumption of having a Gaussian distribution of the data, the prior 

distribution of the parameters estimates will be 

( )
1

( ) ,
k

i i i
i

p N  
=

=   

where the ith vector is modeled by a Gaussian distribution with the parameters φ, µ and Σ. The 

estimation is based on prior given samples of data. Hence, p(θ) will be replaced by p(θ|x) in the 

above equation. Since the parameters of the Gaussian distribution (φ, µ, Σ) are unknown, the 

Expectation-Maximization (EM) algorithm can be used in an iterative way to estimate the 

distribution parameters.  

Figure 5(a) shows the normalized radiance values patterns for different materials. Let λi be the 

model that corresponds to the material i. After the learning phase is completed (parameters 

estimation for each model λi) the model with the largest likelihood will be selected. Figure 5(b) 

shows the results of GMM analysis on a mixed data set of gypsum and glass materials. 

The GMM approach is the general approach to the problem since it assumes mainly two things. 

First, the distributions of each material data is Gaussian and second those distributions can be split 

after knowing the parameters of each distribution.  
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Fig. 4 Workflow for Material and Texture Identification using GMM model 

 

  
(a) Normalized Radiance Values of Different 

Walls Materials 
(b) GMM (Gypsum & Glass) 

Fig. 5 Normalized Radiance Values of Different Walls Materials and GMM (Gypsum & Glass) 

 

 

However, other method can be used in practice to enhance the GMM approach and differentiate 

the materials based on their probabilistic parameters. For example, using Monte Carlo simulation 

method to identify the µ, σ is a strongly recommended approach since the thermal images contains 

lots of samples and the Monte Carlo simulation tool is more practical and widely used in various 

software packages. In this study, GMM was first used and then Monte Carlo was applied to 

segment each image and identify materials of the interior walls of the test facility. 
 

2.5 Case study: A hospital building 
 

A multi-story reinforced concrete hospital building, located in Abu Dhabi, UAE is used for the 

case study. The Hospital building consists of a two-story basement including service 

accommodation, laboratories, central sterile services department (CSSD), dining and parking, and 

a three-story outpatient building. The building includes clinics, a link bridge, a three-story podium 

building that includes diagnostics units, operating theatres, ER unit, rehab unit, ICU and maternity 

units. It also includes two nine-story and two eleven-story inpatient towers, peripheral buildings 

including substations, cooling plant, workshop, mortuary, underground tanks and service tunnels. 

Data collected in this study include thermal images of the interior walls of the fourth floor of one 

of the towers of the test facility. Figure 6 shows the layout and a 3D view of the section of the 

fourth floor in which the experiment of this case study was carried out. 

Autodesk Revit software, that allows the users to design a 3D model of the building 

components, was used to create the BIM of the test facility. The Revit feature, that provides 2D 

annotations and extraction of building information and quantities from the model’s integrated 

database, was employed. The level of development (LOD) of the BIM of the test facility is 400, 

which includes accurate quantities, shapes, sizes, locations, and orientations of the structural 

elements. The full integrated model consists of architectural model, structural model, interior  
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Fig. 6 Layout and 3D view of section of fourth floor of Tower C 

 

 

model, Mechanical, Electrical, Plumbing (MEP) model, and Facade model. However, the only 

models used in this project were the architectural, the structural, and the facade models.  

The defined methodology and framework with its four stages was followed in carrying out this 

case study stage by stage.  
 

Stage 1: Image capturing of the target walls 
In this stage of image capturing, a FLIR T640 Infrared camera was used to collect thermal 

imagery of the internal walls of the Hospital building. Prior to data acquisition, the FLIR T640 

camera was calibrated by the vendor. This procedure was established using a calibration field 

consisting of a black wooden plate with aluminum targets distributed, identifiable due to their 

different emissivity values with respect to the background. The spatial distribution of the 

aluminum targets is mainly required for the accurate determination of the camera focal length 

(Kuenzer et al. 2013). Data acquisition was performed in the afternoon at a temperature of 25o C 

and relative humidity of 58%. Images were acquired for the targeted internal walls in the rooms of 

the fourth floor of the target tower, and some of the basement (parking) area walls. The process 

took order in terms of the element ID that were generated for each wall in the BIM and then 

manually assigned to each image and excel file accordingly. The material of the imaged walls 

consisted mainly of interior gypsum board in the inpatient rooms and concrete and block work in 

the other areas. The IR images were then processed using the techniques described in the 

following stages in order to extract material and texture information of the walls and further 

integrate that into the BIM of the hospital. 
 

Stage 2: Image segmentation and exploration of the target walls 
Once all of the thermal infrared images were acquired, texture and material information were 

extracted by texture referencing of thermal information at each pixel in the images. The main 

objective of the data processing phase of the project was to extract thermal information from the 

images and further transform it into understandable form that defines the texture and the material 

of the interior walls. 
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Fig. 7 Basic information of the thermal IR image 
 

 

After acquiring the images, a feature extraction process was carried out in order to keep only 

the images of the interior walls. Although it is recommended to take the image of a wall with the 

camera directly facing it; with horizontal camera axis and clear line of sight, images taken with 

slightly different orientation can still be geometrically corrected using the software that comes 

with the camera (FLIR Quick Report v1.2). The images acquired in this project were taken with an 

average length of the line of sight of 2 meters, and were first processed using FLIR Quick Report 

v1.2 software for feature extraction and basic image processing. The outcome of this process was 

raster models of the emitted thermal infrared radiation, which were first converted into 

temperature at each pixel. Figure 7 shows a sample thermal image of the test facility (also known 

as thermographic image) and the basic information it contains. Figure 7(a) shows the original 640 

x 480 pixel image, Figure 7(b) shows the enlargement with 100x100 pixel image Figure 7(c) 

shows the enlargement with 10x10 pixels image and Figure 7(d) shows part of the image attribute 

table with temperature values at each pixel. Then, an algorithm for texture segmentation was 

developed in this study and applied to automatically extract textural information needed for 

identification of the materials of the walls. This texture segmentation algorithm splits the image 

into different homogeneous texture regions. Figure 8 displays the result of texture extraction and 

feature labeling of an interior gypsum board wall and window in a thermal image. Figure 8(a) 

showing the original digital image, Figure 8(b) shows the corresponding thermal image while 

Figures 8(c), 8(d) and 8(e) show wall features isolated from the rest. The outcome of this process 

was raster models that represent the emitted thermal infrared radiation in the thermal image of the 

interior wall material, since only interior walls were considered in this study, interior gypsum 

board and concrete have been identified and used as the two common material types of the interior 

walls. 
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(c) Enlargement 10x10 pixels 

image 

(a) Original 640 x 480 pixel 

image 

(b) Enlargement showing 100x100 pixel 

image 

(d) Part of the image attribute table showing 

temperature values at each pixel 
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Stage 3: Material and Texture Identification and Extraction 
Here, the outcome of the previous stage was analyzed in order to identify the materials of the 

imaged walls and extract material and texture information. The objective of this part of the 

methodology is to search the outcome of the previous process for a pattern that can help in 

identifying the material of the imaged walls. Since each thermal image is represented by a grid (i.e., 

matrix) of pixels that stores emitted thermal infrared radiation values at each pixel in the images of 

the interior walls, these values can be represented by a random variable. The statistical properties 

and distribution of this variable were analyzed for correlation with the type of material of the 

imaged walls. Such problem is a general classification problem in the field of data mining 

(Kottawar et al. 2014). A common approach for estimating the statistical characteristics of such a 

variable is the Monte Carlo Simulation (Robinstein et al. 2008). Monte Carlo Simulation is a 

modeling and simulating technique that generates several scenarios and gathers relevant statistics 

in order to assess relationship between the variable in question and a model of interest. The 

emitted thermal radiation matrices generated in the previous processing phase exhibit random 

behavior that make Monte Carlo Simulation a suitable approach that can help in segmenting each 

image and further identifying the materials of the interior walls. 

Monte Carlo Simulation was utilized given the relationship between the mean and the standard 

deviation of the emitted radiance matrices of each image and the mean and variance of a model of 

two material types adopted in this study as target materials, which were interior gypsum board and 

concrete. 

After identification of texture and material information of the interior walls, extraction these 

information has been carried out. The outcomes of this process were the textural and materials 

information of the interior walls identified based on the statistical characteristics and the models of 

gypsum board and concrete. The processed images have been transformed into data that represent 

the texture and the material of the imaged walls, and this information was then exported into MS 

Excel and sorted according to each walls unique identifier in the BIM database in preparation for 

texture and material integration into the as-built BIM database. 

 
Fig. 8 Texture extraction and feature labeling of an interior gypsum board wall and window in a 

thermal image 
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Stage 4: Population of As-Built BIM 
The way in which texture and material information were integrated into the BIM database of 

the test facility is described in this section. In the as-built BIM database of the test facility, two 

new project parameters were created for the interior walls, which are “Surface Texture” and 

“Surface Material”. Since the Revit software doesn’t define the texture of the target elements in 

the BIM, the type of new parameter defined in this case was “Text”, which was grouped under 

“Energy Analysis” category. This means the texture of the interior walls was described in text 

format in the BIM database. On the other hand, and since Revit has a built-in material library, the 

new parameter for material was defined as “Material”, grouped under Materials and Finishes, and 

was mapped to the existing material library in the BIM database.  

A schedule of the interior walls was then created using Autodesk Revit in the test facility BIM, 

which included the following parameters: Elements ID, Family Name, Area, Length, Volume, 

Surface Text, and Surface Material. Then, the wall schedule was exported into MS Excel using a 

tool called Ideate BIMLink, which is a freely available third-party tool that can be installed and 

integrated in the Autodesk Revit software. This tool allows users to extract data from a Revit file 

into Microsoft Excel and further to export the up- dated database file back into Revit in a user-

friendly fashion. This tool was used in order to automate and speed up the process of populating 

the values of the newly extracted textural and material information of the interior walls into the 

BIM of the test facility. 

 

 

3. Results and discussion 
 
3.1 Image segmentation and exploration results 
 

After acquiring the images, the first step was to enter all the images into the FLIR QuickReport 

software for pre-processing, which included geometric corrections of images taken with the line of 

sight slightly off the horizontal. Using FLIR QuickReport software tools, emitted thermal IR 

images of the walls were then converted into temperature values, and exported into MS Excel. The 

emitted thermal infrared radiance, emissivity, ambient temperature, atmospheric temperature, 

relative humidity, and line of sight distance were also provided as outcomes of the process. Figure 

9(a) shows a thermal image of one of the interior walls (Blue) and a window (Yellow) collected in 

this project as displayed in the FLIR QuickReport software. It is common in thermal analysis that 

different palettes or colors are explored depending on the type of study and user interest. 

The FLIR QuickReport software provided an Excel sheet for every image processed for the 

interior walls storing the emitted thermal infrared radiance values of the corresponding pixel, 

which are convertible to temperature values. In this study, this information was used to identify the 

material type of the interior walls. Since the focus of the case study was the interior walls of the 

test facility, all non-walls data was not needed. An algorithm was created in Python and used to 

filter out all non-walls parts of the images. Two main libraries were imported and used in this 

Python in order to perform this filtering process including the Python Image Library (PIL), which 

contains image import and filtering functions and Skimage (also known as scikit image), which 

contains a collection of numerical algorithms used to process the images. Once an image is 

imported, the matrix is converted into an array where the image analysis takes place. Then, in the 

image analysis phase, the algorithm tries to find similar contours and common features in the 

image, identifies it, and plots the results. Below is an example where the algorithm identified and 
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(a) FLIR QuickReport window 
(b) Digital image of concrete wall with door and 

scaffolding 

  

(c) Thermal image of the thermal image of  
(d) Thermal image after applying the filtering 

algorithm of Python 

Fig. 9 FLIR QuickReport window capture and digital and thermal image of concrete wall with 

door and scaffolding 
 

 

further selected an interior wall from the rest of image components (Figure 9(b), (c), (d)). Figure 

9(b) shows a digital image of a concrete wall with a door opening and some steel scaffolding and 

an electric cable above the door. Figure 9(c) shows the corresponding thermal image where the 

steel scaffolding were shown in the image using color tones similar to that of the wall, while the 

door opening was shown in yellow and the electric cable was in red color. This image was filtered 

using the algorithm described above in order to extract only the wall (Figure 9(d)). Note that in the 

filtered image shown in Figure 9(d), the door opening, the steel scaffolding, and the electric cable 

were filtered out. 
 

3.2 Identification, extraction and population of texture and material information into the BIM 
 

Monte Carlo Simulation was used to find the correlation between the emitted radiance data of 

the images and the models of interior gypsum board and concrete in order to identify the material 

types in the interior walls images. The main purpose of using the Monte Carlo simulation was to 

analyze trends of the emitted radiance recorded in each image such that these values are  
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(a) Interior gypsum board thermal image (b) Statistical summary of Interior gypsum board 

  
(c) Concrete thermal image (d) Statistical summary of the concrete 

  
(e) Cracked concrete thermal image (f) Statistical summary of the cracked concrete 

Fig. 10 Thermal images and corresponding statistical summary 

 

 

represented by the probability distribution instead of by single emitted radiance values. The results 

of the Monte Carlo simulation are distributions of possible outcomes rather than the one predicted 

outcome that a typical deterministic model would provide. That is, the range of possible defined 

material types that could be identified and the likelihood of any outcome occurring based on the 

mean (µ) and standard deviation (σ) of the distribution. In order to produce models of interior  
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(a) Gypsum Wall Board schedule in the BIM 

(b) Updated BIM showing Gypsum Wall Board 

material and homogeneous texture of the interior 

walls 

 
 

(c) Updated BIM showing concrete surface 

material and homogeneous texture of the 

interior walls 

(d) The updated BIM showing concrete surface 

material and inhomogeneous texture of the interior 

walls 

Fig. 11 Gypsum wall board and concrete surface with homogeneous and nonhomogeneous 

textures 

 

 

gypsum and concrete, ten samples from each of the two material types were used in the simulation 

process. Figure 10 shows examples of thermal infrared images of the two material types used in 

this study; interior gypsum board and concrete walls, along with the summary of their 

corresponding statistical characteristics. 

After the texture and materials information of the interior walls were identified and extracted, 

they had been used to populate the newly created parameters. Once the database was updated with 

the texture and material information (Figures 11(a) and Figure 11(b)), it was exported to Revit 

using Ideate BIMLink tool. In the Revit-based BIM, the interior walls now have two new 

parameters populated with texture and the material information (Figures 11(c)). Similar to the 

integration of the gypsum board above, the same procedure was applied for the concrete walls. 

However, notice that here there was an inhomogeneous texture wall that was identified and 

reflected in the schedule of the Revit database as well as in the BIM as shown in Figures 11(d). 
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4. Summary and conclusions 
 

As-Built drawings are expected to represent the building conditions accurately in order to allow 

facility managers and energy auditors to perform correct analysis and communicate the as-is 

building conditions to the owners in a better way. To achieve this goal, this paper presented a semi-

automated method for extracting material and texture information of the interior walls using 

infrared remote sensing and integrating the extracted information into the as Built-BIM of a test 

facility. Such an updated, as-built BIM, would allow practitioners to accurately identify potential 

problems given the homogeneity of the texture and/or material of a wall. As a proof of concept, a 

hospital building (test facility) was used as a case-study. Thermal and digital images of interior 

walls were acquired for the interior walls of the test facility using a consumer-level single thermal 

IR camera. The resulted thermal images of the interior walls were then converted into emitted 

thermal infrared radiance. A statistical analysis approach of the emitted radiance distribution based 

on Monte Carlo simulation was used in order to identify interior walls surface texture and 

materials (interior gypsum board and concrete). Surface texture and material information were 

extracted and then integrated into the database of the as Built-BIM of the hospital. With this 

information integrated into the BIM, one can identify inhomogeneous textured wall patterns and 

further identify potential problems such as heat loss or water leakage. The method developed in 

this study will help energy auditors in saving the time normally spent in analyzing large numbers 

of thermal images provided by site technicians, and instead focus on the sources of the problems 

and examine various retrofit alternatives. 
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