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Abstract.  In this article, the static behavior of non-prismatic sandwich beams composed of functionally 

graded (FG) materials is investigated for the first time. Two types of beams in which the variation of elastic 

modulus follows a power-law form are studied. The principle of minimum total potential energy is applied 

along with the Ritz method to derive and solve the governing equations. Considering conventional boundary 

conditions, Chebyshev polynomials of the first kind are used as auxiliary shape functions. The formulation is 

developed within the framework of well-known Timoshenko and Reddy beam theories (TBT, RBT). Since 

the beams are simultaneously tapered and functionally graded, bending and shear stress pushover curves are 

presented to get a profound insight into the variation of stresses along the beam. The proposed formulations 

and solution scheme are verified through benchmark problems. In this context, excellent agreement is 

observed. Numerical results are included considering beams with various cross sectional types to inspect the 

effects of taper ratio and gradient index on deflections and stresses. It is observed that the boundary 

conditions, taper ratio, gradient index value and core to the thickness ratio significantly influence the stress 

and deflection responses. 
 

Keywords:  static analysis; Ritz method; tapered sandwich beam; functionally graded material; Chebyshev 

polynomials 

 
 
1. Introduction 

 
As the manufacturing technologies have advanced during the last few decades, application of 

sandwich structures has been widely come into vogue in many industrial scopes. Sandwich 

structures consist of a thick and routinely soft core enclosed between two thin and stiff facings. 

Different types of such structures have been developed including FRP sandwich beams, CFRP 

sandwich beams, aluminum composite beams and etc. On the other hand; the main reason behind 

application of tapered beams is that an optimum design can be achieved using lower amounts of 

material. Weight savings and high flexural stiffness offered by tapered sandwich beams result in 

their potential application in many engineering fields such as shuttle structural elements, aerospace 

engineering, ships and marine structures and railroad constructions. Therefore, it of significant 
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importance to propose simple and accurate analysis methods to study the behavior of tapered 

sandwich structures undergoing different loading types. Energy methods based on the first-order 

shear deformation theory (FSDT) and finite element methods (FEM) are the well-known solutions, 

which have been employed for analysis of sandwich beams (Ha 1990, Vinson 1999, Hu et al. 

2008). Nowadays, soft cores are used in advanced sandwich structures. Softness and 

compressibility of the core throughout the thickness affect the behavior of structure. In 1992, a 

new method based on the higher-order solution of the sandwich structures was proposed by Frostig 

et al. (Frostig et al. 1992). In this research, the sandwich structure was divided into three 

substructures, including upper and lower faces and a soft core. To model the upper and lower 

faces, the classical theory of plates subjected to the pure bending was employed. On the other 

hand, the core of the beam was modeled based on the 3D elastic theory. These three substructures 

were analyzed simultaneously. Moreover, the compatibility conditions of faces and core 

displacements at the contact position were employed to solve the governing equations analytically.  

The higher-order shear deformation theories, widely known as HSDT, offer advantageous 

properties including consideration of various boundary conditions on the upper and lower faces. 

Further, compaction and shear deformation effects of the core can be modeled using these theories. 

It should be added that other researchers employed higher-order shear deformation theories to 

investigate the behavior of sandwich structures with various cross-section types subjected to 

different loadings. In addition, different types of boundary conditions were considered in these 

researches. A number of these studies are available in full detain in (Frostig and Thomsen 2004, 

Frostig 2009, Santiuste et al. 2011, Phan et al. 2013).   

It has been proven that one of the effective parameters on the behavior of beams is their shear 

deformations. Various general theories are capable of incorporating the shear deformation effects 

into the governing equations. A number of these theories are available in the literature, including 

the first-order shear deformation theory (FSDT), higher-order shear deformation theory (HSDT), 

Carrera Unified Formulation (CUF) and quasi-3D displacement fields. In the FSDT, the shear 

strain varies linearly along the height of the cross section. To satisfy the stress-free boundary 

conditions at the upper and lower surfaces, a shear correction factor should be utilized (Nguyen, 

Vo et al. 2014, Thai et al. 2014). In contrast, higher-order shear deformation theories satisfy the 

stress-free boundary conditions by offering non-linear variation of shear strains through the height 

of the cross section. Hence, no shear correction factor is required (Zenkour 2005, Zenkour 2005, 

El Meiche et al. 2011, Merdaci et al. 2011, Fahsi et al. 2012, Natarajan and Manickam 2012, 

Sobhy 2013, Nguyen et al. 2014, Thai et al. 2014). In the preceding studies, the cross-section of 

the beam is considered to be prismatic. So the effects of variable cross-section along the length of 

the beam have been ignored.  

In light of the aforementioned pints, many researches have been carried out regarding the static 

analysis of sandwich beams. In the recent years, several researchers have explored different 

impacts of geometry and material on the behavior of sandwich beams. Among them, Xiang et al. 

employed finite element method to examine the effects of blast loads on the responses of sandwich 

beams. Their results were validated through an experimental study (Xiang et al. 2016). Moreover, 

finite element method was used by Kahya for buckling analysis of laminated and sandwich beams. 

He proposed a laminated beam element. It should be added that delamination and slipping effects 

were ignored in his research (Kahya 2016). On the other hand, an analytical solution was presented 

for dynamic analysis of clamped sandwich beams having thick weak cores under a central impact 

by Liu et al. (Liu et al. 2017). In 2017, a finite element model was developed for linear elastic 

analysis of the sandwich beams subjected to severe boundary conditions by Panteghini and 
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Bardella (2017).   

Functionally graded materials (FGM) are a novel generation of composites in which the 

material properties are allowed to vary from a point to point. It is obvious that FGMs are used in 

different engineering applications, including aerospace structures, engine combustion chambers, 

structural elements in micro/nano-electromechanical systems, fusion energy devices and etc. A 

great variety of potential applications are offered by FGMS in different engineering fields. FGMs 

are being increasingly used as the constituent material of structural elements, including beams, 

plates and shells. Numerous researches have been implemented pertaining to the behavior of FG 

beams. Among them, Davoodinik and Rahimi studied large deflection behavior of tapered FG 

beams. They introduced a curvilinear coordinates to simplify their nonlinear equations 

(Davoodinik and Rahimi 2011). Some other researches were also performed about nonlinear 

behavior of tapered FG beams subjected to different types of loads (Nguyen and Gan 2014, 

Niknam et al. 2014). Further, an analytical solution was presented for static analysis of FG beams 

with variable cross-section by Nguyen et al. They developed their formulations for axially or 

transversely variation of elastic modulus (Nguyen et al. 2014). Also, a new finite element method 

was employed by Li et al. to investigate static and free vibration analysis of FG tapered beams in 

which the elastic modulus varied through the thickness and the axial direction (Li et al. 2013). 

Moreover, transient and free vibration analyses of tapered FG Timoshenko beams were studied 

(Rajasekaran 2013, Calim 2016).  

Recently, static and dynamic analysis of FG sandwich beams has widely attracted the attention 

of researchers. In general, two major types of FG sandwich beams include FG faces-isotropic core 

and isotropic faces-FG core. Many studies have been dedicated to the behavior of FG sandwich 

beams, plates and shells. Among them, the research of Venkataraman and Sankar is of significant 

importance. In this study, they presented elastic theory for stress analysis of sandwich beams with 

FG core (Venkataraman and Sankar 2003). Moreover, free vibration analysis of FG beams using 

Rayleigh-Ritz method was investigated by Pradhan and Chakraverty. They developed their 

formulations within the framework of two theories, including EBBT and TBT (Pradhan and 

Chakraverty 2013). 

In 2015, Filippi et al. developed the static analysis of FG beams based on different theories 

using the finite-element method. Carrera Unified Formulation (CUF) was employed in their study 

(Filippi et al. 2015). Besides, CUF was implemented for free vibration analysis of FG layered 

beams by Mahat et al. They also utilized finite element method in their research (Mashat et al. 

2014). Based on the third-order shear deformation theory (TSDT), a quasi-3D model was 

presented by Vo et al. for buckling and free vibration analysis of FG sandwich beams. They 

applied the finite element method for verification purposes (Vo et al. 2015). Furthermore, Ai and 

Weaver proposed a simplified analytical theory for non-prismatic sandwich beams in which the 

core material stiffness was variable. In their research, the faces and core of the sandwich beams 

were modeled based on the Euler-Bernoulli beam and first-order shear deformation theories, 

respectively (Ai and Weaver 2017). Moreover, a trigonometric higher-order theory of the beam 

was also presented by Bourada et al. They investigated bending and vibration of FG beams 

(Bourada et al. 2015). Further researches corresponding to analysis of FG beams are available in 

(Masoodi and Moghaddam 2015, Thai et al. 2015, Rezaiee-Pajand and Hozhabrossadati 2016, 

Rezaiee-Pajand and Masoodi 2016, Shafiei et al. 2016, Banić et al. 2017, Rezaiee-Pajand et al. 

2017, Shafiei and Kazemi 2017, Tornabene et al. 2017, Tornabene et al. 2017, Zare Jouneghani et 

al. 2017).  

A survey in the literature reveals that the number of works regarding to the analysis of tapered 
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FG beams are very limited. However, to the best of the authors’ knowledge, there are no reported 

works on static analysis of FG tapered sandwich structures. Owing to this fact, consideration is 

given to the static behavior of FG tapered FG tapered beams having sandwich cross sections the 

present study for the first time. Variation of the cross-section height is assumed to be linear across 

the length of the beam. Chebyshev polynomials will be used as auxiliary shape functions. It should 

be mentioned that the authors’ scheme is based on two well-known Timoshenko and Reddy beam 

theories. Several numerical examples are included in graphical and tabulated forms to show the 

validity and accuracy of the proposed formulations. For practical purposes, not only the bending 

and shear stress pushover curves are reported, but also the maximum displacements and stresses 

are obtained for two types of sandwich beams having different characteristics. In this context, the 

effects of various factors on static responses of FG tapered sandwich beams are exhaustively 

investigated. 

 

 

2. Assumptions 
 

In order to investigate the behavior of a loaded structural member, it is inevitable to consider 

some simplifying assumptions. Previous researches revealed that the results obtained via Euler-

Bernoulli beam theory are not as accurate as those achieved by the higher-order theories, 

especially, in case of thick and tapered beams. Owing to this fact, Timoshenko and Reddy beam 

theories, which take the shear effects into account and thus lead to more reliable results, are 

invoked in the present study. Moreover, since there are no abrupt changes in the mechanical 

properties of the material constituents at core/face-sheet interfaces, the continuity conditions are 

satisfied. Hence, the formulation will be based on the single-layer equivalent theory. In order to 

avoid coupling effects, the non-linear effects are neglected and the cross sections of the beams are 

considered to be symmetric. 

 

 

3. Material properties 
 

The non-prismatic FG sandwich beams under consideration are shown in Fig. 1. According to 

this figure, L is the beam length, 02h is the core height at the left end of the beam, 12h denotes the 

core height at the right end of the beam and 2 ( )h x stands for the core height at any distance from 

the x origin. Note that fh and b represent the thickness of the facings and the width of the beam, 

respectively. 

 

x 2h(x) Ceramic

Metal

Metal

12h02h

L
z

x

fh

fh  

 

(a) Type (I) (b) Type (II) 

Fig. 1 Tapered functionally graded sandwich beams 
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Beam type (I): Tapered sandwich beam with homogenous core and FG facings 

As depicted in Fig. 1(a), beam type (I) is composed of a ceramic core and functionally graded 

facings. The facing material gradually varies from ceramic at the interfaces to metal at the free 

edge. The variation of elastic modulus in the face-sheets is given by 

                                                 (1) 

where cE and mE refer to the elastic modulus of ceramic and metal constituents, respectively. Note 

that the z coordinate is divided into three local coordinates. These local coordinates are denoted by 

 where 1z , 2z  and 3z  correspond to the bottom facing, the core part and the top 

facing, respectively. Also, ( , )c kV x z  is the volume fraction of ceramic phase, which is defined as 

                            (2) 

Beam type (II): Tapered sandwich beam with FG core and homogenous facings According to 

Fig. 1(b), the core of this beam type is symmetrically functionally graded about the mid-plane of 

the cross section. Meanwhile, the face-sheets are composed of ceramic. The variation of elastic 

modulus is expressed by 

                                               (3) 

In the last equation, ( , )m kV x z  refers to the volume fraction of the metal phase and is given by 

                         (4) 

In Eqs. (2) and (4), 0p   corresponds to the gradient index. This exponent dictates the rate of 

material gradation through the beam height. It is obvious that 0p   denotes a homogenous 

material. 

 

 

4. Geometry and Kinematics 
 

Clearly, it is difficult and rather impractical to fabricate and bond curved facings and cores in a 

tapered sandwich beam. For this reason, the core height is assumed to vary linearly along the x 

direction. Consider Fig. 2, which shows the general configuration of a non-prismatic sandwich 

beam. As it can be seen, upper and lower points of the core at the left end of the beam converge at 
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point a, which is located in a distance designated by  . Hereinafter,   is referred to as the 

convergence distance. 

If one places the x origin at point a ,which is used to define the function of the variation of the 

cross-sectional height, the variation of core height will be given by a function of x and as follows 

0( ) ( ) , [ , ]
x

h x h x L 


  

                                                     (5)

 

In order to calculate , the taper ratio parameter is defined as 1

0

h

h
  . Using the taper ratio 

relation, will be obtained as 

1

L





                                                                    (6)
 

By means Eq. (6), one will be able to obtain the convergence distance for any arbitrary taper 

ratio. It is important to note that in case of a prismatic member, must be set to 1. This makes Eq. 

(6) to become meaningless. Hence, point a must be theoretically placed at    . In such a case, 

a prismatic member will be defined by Eq. (5) based on the following procedure 

1 0 0 0lim lim (1 )
L L

h h h h
 



  


   

                                            (7)

 

The displacement field under general beam theory is expressed as (Simsek 2010) 

0
0 0

0

( , ) ( ) ( , ) ( )

( , ) ( )

dw
u x z u x z x z x

dx

w x z w x




  

                                         (8)

 

where 0u and 0w  represent the longitudinal and transverse displacements of the mid-plane, 

respectively. Also, 0 denotes the shear strain on the mid-plane and is given by 

                                                 (9) 
 

 

 

Fig. 2 Geometry of a tapered sandwich beam 
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in which ( )x corresponds to the rotation of the cross section about the mid-plane of the beam. In 

addition, ( , )x z is a function which determines the variation of shear strains along the height of 

the cross section. In case of a prismatic member,   will be only a function of z. A variety of shear 

deformation theories will be attained by choosing proper expressions for ( , )x z . Based on the 

TBT and RBT, and in case of a non-prismatic member, ( , )x z can be defined as 

 

                                   (10) 

Based on the foregoing definitions, the non-zero strains will be expressed by 

0, 0, 0, , 0

, 0

x x xx x x

xz z

u
u zw

x

u w

z x

  

 


    


 
   
                                      (11) 

where the subscript (,) indicates differentiation with respect to coordinates. In the present study, 

0u is set to zero due to symmetry. Based on the plane stress conditions and assuming that the 

material of the tapered beams follows Hooke’s law, the stress-strain relationships are given by (Vo 

et al. 2015)

 

( )x xE z   

( )xz xzG z 
                                                             (12)

 where 
( )

( )
2(1 )

E z
G z





 refers to the shear modulus and  is the Poisson’s ratio. 

 

 

5. Problem formulation and solution procedure 
 

The strain energy of the structure is given by 

   
3

( ) ( )

1

1 1

2 2 k

k k

x x s xz xz x x s xz xz k
L z

k

U k d b k dz       




     
                    (13)

 

where   denotes the beam domain on which the integration must be carried out and  is the 

shear correction factor. In the TBT formulation,  equals to  for isotropic homogenous 

rectangular cross sections. On the other hand, a shear correction factor is not required for the RBT 

since the stress-free boundary conditions are satisfied. Upon substitution for strains and stresses 

from Eqs. (11) and (12) into Eq. (13), one arrives at the following weak form statement 

      

   

2 2

0, 0, 0, 0, 0, ,

2 2 2

0, 0, 0, , 0, 0, , ,

1
2 2

2

2 2

xx s xz x x x xx xx xx xx x
L

xx xx xx xx xx x xx xx xx x x

U A k A w w w B w E w

D w F w w H w w dx

   

  

         

     



       (14)
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where the subsequent stiffness coefficients are used 

 
3

, ,

1

, ( ) ( , )
k

xx xx xk kx i
z

k

A B b E z z dz


    

 
3

,

1

, ( ) ( , )
k

xx xx x k

k

k k
z

E F b E z z dz


    

3
2

1

( )
k

xx k
z

k

k

H b E z dz


   

 
3

2

,

1

( )
k

x z
z

z k k

k

A b G z dz


 
                                                    (15)

 

It is important to note that the coefficients outlined in Eq. (15) are functions of x for non-

prismatic sections. In this study, it is assumed that the beam is subjected to a transversely 

distributed load. The external potential energy exerted by the distributed load q(x) is defined as 

0( )
L

V q x w dx                                                          (16)
 

The total potential energy can be obtained as 

                                                            (17) 

Based on the Ritz method, the unknown functions )x(  and )x(w0  must be approximated in 

such a way that satisfies the essential boundary conditions. Improper shape functions may reduce 

the rate of convergence and lead to numerical instabilities. However, Lagrangian multipliers can 

be applied for shape functions which do not satisfy the boundary conditions (Nguyen et al. 2017). 

In the present study, Chebyshev polynomials of the first kind are invoked as the auxiliary shape 

functions. It will be later shown that the exceptional orthogonality of these polynomials results in a 

significant convergence rate. Generally, the range of these orthogonal polynomials is  11,R    

on the domain of the beam length, that is [ , ]x L   . The shifted Chebyshev polynomials are 

expressed by 

                       (18) 

where
2( )

1
x

L





  is the shifted coordinate. Making use of Eq. (18), unknown displacement 

functions are assumed in the following approximate form 

 

                                    (19) 
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Table 1 The values of shape function powers 

Boundary Conditions 
x   x L    

p1 p2 p3 p4 

Pinned-Pinned 1 1 0 0 

Clamped-Clamped 2 2 1 1 

Free-Clamped 0 2 0 1 

 

 

In Eq. (19), nw  and n are unknown constants to be determined and N is the number of 

selected terms. Also, )x(  and )x( ,  which depend on the boundary conditions, are defined as 

 

                                             (20) 

The values of powers p1 to p4 are proposed in Table 1 for various conventional boundary 

conditions. As it is well-known, application of the principle of minimum total potential energy 

yields 

0, 0, 0,1,...,
n n

n N
w 

 
  

 
                                            (21)

 

To obtain the system of governing equations, Eq. (19) is inserted into Eq. (14) and the 

subsequent expression is substituted into Eq. (17). Then, by introducing the resulting expression 

for the total potential energy into Eq. (21), one arrives at the following system of linear algebraic 

equations 

    S D Q
                                                               (22)

 

where S, D and Q refer to the coefficients matrix, displacements vector and load vector, 

respectively. Eq. (22) can be further expanded as 

   
 

 

 
 11 12

22 0

wS S Q

sym S 

      
    

                                                     (23)

 

The components of the coefficients matrix and the load vector of Eq. (23) are explicitly 

obtained as 

   

   

   

11 1 , 2 , , 2 , 3 , ,

12 4 , 2 , , 3 ,

22 , , , 3

( , )

( , )

( , )

j xx j x i xx j xx j x i x

L

j x j i xx xx j x j i x

L

xx j x xx j i x xx j x j i

L

i i
L

S i j A f A f f A f A f f dx

S i j A g A g f E g A g f dx

S i j H g E g g E g A g g dx

Q f dx

    
 

    
 

    
 









                     (24)
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where 1 2 32 , ,xx xx xx xx xx s xz xxA D F H A E B A k A A       and 4 xx xxA H F  . Further, i and j 

refer to the row number and the column number of the submatrices, respectively. Solving the 

system of equations given by Eq. (23) simultaneously results in the unknown coefficients. 

 

 

6. Numerical results 

 
In this section, verification and comparative studies are carried out to illustrate the accuracy of 

the proposed scheme for prismatic members. Furthermore, the effects of taper ratio, gradient index 

and beam length to the depth ratio on deflections, and stresses are investigated. Various cross 

sectional types for sandwich beams are considered. Each of these cross sections indicates specific 

core height to face-sheet thickness ratios at x  . For example, in 1-8-1 cross section, the core 

height at x   is 8 times greater than the thickness facings while the thicknesses of the face-

sheets are identical. Hereinafter, F, C and S indicate free, clamped and simple boundary 

conditions. In all cases, Alumina with Ec = 380 GPa  and  v = 0.3 is considered as the ceramic 

constituent while Aluminum, with Em = 70 GPa  and v = 0.3 consists the metal phase. For the sake 

of simplicity and generality, maximum deflection, bending and shear stresses will be reported in 

the following normalized form 

 

 

                                                        (25) 

Note that q0 indicates the intensity of the uniform distributed load and 2( ( ) )fH h h   

corresponds to the total height of the cross section at x L  . 

  

6.1 Tapered sandwich beam type (I) 
 

This example is dedicated to the static analysis of beam type (I). Maximum deflections of a 

prismatic beam type (I) ( 1  ) with two cross sectional types of 1-1-1 and 1-2-1 are compared 

with the results presented by Vo et al. (2015) in Table 2. There is excellent agreement between the 

present results obtained by Chebyshev polynomials, and those obtained by Vo et al. Thus, the 

validity of the proposed scheme is clearly established. 

In order to examine the convergence efficiency of the proposed solution procedure, 

convergence studies for maximum deflections and shear stresses of beam type (I) with 1-2-1 and 

2-1-2 cross sections, 2  and 1p   are carried out in Table 3. To highlight the shear effects, the 

slenderness ratio is considered as / 5L H  . As it can be seen, Chebyshev polynomials bear a 

remarkable rate of convergence. Stable responses are likely to be achieved by selecting 6 or 8 

terms in the series solution. In the problems to be presented below, 10 terms in the series solution 

would be sufficient to assure negligible error. 
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Table 2 Comparison study of the maximum deflections for a prismatic beam of type (I) 

L/H p Theory 

Boundary Conditions 

S-S C-C F-C 

1-1-1 1-2-1 1-1-1 1-2-1 1-1-1 1-2-1 

5 

0 

FSDT 

 (Vo et al. 2015) 
3.1657 3.1657 0.8630 0.8630 28.7811 28.7811 

TSDT  

(Vo et al. 2015) 
3.1654 3.1654 0.8501 0.8501 28.7555 28.7555 

Present TBT 3.1657 3.1657 0.8631 0.8630 28.7811 28.7811 

Present RBT 3.1653 3.1654 0.8501 0.8501 28.7555 28.7555 

1 

FSDT  

(Vo et al. 2015) 
6.3128 5.4408 1.5783 1.3770 58.3924 50.2103 

TSDT 

 (Vo et al. 2015) 
6.2693 5.4122 1.5232 1.3372 58.1959 50.0741 

Present TBT 6.3128 5.4407 1.5783 1.3770 58.3924 50.2103 

Present RBT 6.2693 5.4122 1.5233 1.3373 58.1959 50.0741 

2 

FSDT  

(Vo et al. 2015) 
8.4582 6.8003 2.0523 1.6758 78.6742 63.0722 

TSDT 

(Vo et al. 2015) 
8.3893 6.7579 1.9715 1.6225 78.3753 62.8813 

Present TBT 8.4582 6.8003 2.0523 1.6758 78.6742 63.0722 

Present RBT 8.3893 6.7580 1.9715 1.6225 78.3753 62.8813 

5 

FSDT  

(Vo et al. 2015) 
11.3372 8.5762 2.6879 2.0635 105.8940 79.8939 

TSDT 

 (Vo et al. 2015) 
11.2274 8.5137 2.5652 1.9896 105.4300 79.6213 

Present TBT 11.3372 8.5764 2.6879 2.0635 105.8940 79.8939 

Present RBT 11.2273 8.5137 2.5652 1.9896 105.4300 79.6213 

20 

0 

FSDT 

 (Vo et al. 2015) 
2.8963 2.8963 0.5936 0.5936 27.7034 27.7034 

TSDT  

(Vo et al. 2015) 
2.8963 2.8963 0.5933 0.5933 27.7029 27.7029 

Present TBT 2.8965 2.8963 0.5936 0.5936 27.7034 27.7034 

Present RBT 2.8963 2.8963 0.5933 0.5933 27.7029 27.7029 

1 

FSDT  

(Vo et al. 2015) 
5.9428 5.1024 1.2083 1.0385 56.9123 48.8566 

TSDT 

 (Vo et al. 2015) 
5.9401 5.1006 1.2053 1.0365 56.9009 48.8489 

Present TBT 5.9428 5.1024 1.2083 1.0385 56.9123 48.8566 

Present RBT 5.9401 5.1006 1.2053 1.0365 56.9009 48.8489 

2 

FSDT 

 (Vo et al. 2015) 
8.0356 6.4302 1.6297 1.3058 76.9836 61.5921 

TSDT  

 (Vo et al. 2015) 
8.0313 6.4276 1.6250 1.3028 76.9658 61.5809 

Present TBT 8.0356 6.4302 1.6297 1.3058 76.9836 61.5921 

Present RBT 8.0312 6.4276 1.6250 1.3028 76.9658 61.5809 

5 

FSDT 

 (Vo et al. 2015) 
10.8445 8.1681 2.1952 1.6554 103.9230 78.2614 

TSDT   

(Vo et al. 2015) 
10.8376 8.1642 2.1880 1.6512 103.8950 78.2451 

Present TBT 10.8445 8.1681 2.1952 1.6554 103.9230 78.2614 

Present RBT 10.8376 8.1642 2.1880 1.6512 103.8950 78.2451 
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Table 3 Convergence of normalized maximum deflections and shear stresses for a simply supported tapered 

FG beam type (I) 

No. of terms 

(N) 

1.2.1 2.1.2 

TBT RBT TBT RBT 

*

maxw  
* ( ,0)xz   *

maxw  
* ( ,0)xz   *

maxw  
* ( ,0)xz   *

maxw  
* ( ,0)xz   

1 2.0670 0.7358 2.0701 0.9391 4.0647 0.8846 4.0261 0.9956 

2 2.3762 0.7512 2.3883 0.5811 4.2054 0.8901 4.2211 0.5622 

3 2.6860 0.7533 2.6745 0.6837 5.0645 0.8905 5.0219 0.8358 

4 2.7456 0.7536 2.7226 0.7757 5.0944 0.8906 5.0477 0.9093 

5 2.7417 0.7537 2.7205 0.8075 5.0912 0.8906 5.0454 0.9194 

6 2.7410 0.7537 2.7202 0.8124 5.0912 0.8906 5.0455 0.9176 

7 2.7410 0.7537 2.7203 0.8096 5.0912 0.8906 5.0455 0.9166 

8 2.7410 0.7537 2.7203 0.8077 5.0912 0.8906 5.0455 0.9166 

9 2.7410 0.7537 2.7203 0.8077 5.0912 0.8906 5.0455 0.9166 

10 2.7410 0.7537 2.7203 0.8077 5.0912 0.8906 5.0455 0.9166 

 

 

Tables 4-6 are presented to show the maximum dimensionless deflections of beam type (I) with 

various boundary conditions, cross sectional types, gradient indexes and taper ratios. Length to 

depth ratios are selected 5 and 20 to underscore the shear effects. Clearly, the maximum deflection 

in prismatic CC and SS beams occurs at mid span, i.e., 
2

L
x   . In contrary, various factors, 

including taper ratio, elastic modulus variation and cross sectional types change the location of this 

point in tapered beams. As it is expected, an increment in taper ratio results in smaller maximum 

deflections. In addition, similar to prismatic beams, the maximum deflection obtained via RBT is 

smaller than that obtained by TBT.  

It is also seen that for / 5L H  , which indicates a thick beam, the difference between TBT and 

RBT results is more significant than the difference observed in slender beams with / 20L H  . 

Insomuch as the shear effects do not require a correction factor in RBT, this theory results in more 

accurate deflections and the difference between TBT and RBT responses relatively increase as   

is amplified and /L H is decreased. These facts demonstrate the importance of shear effects in 

thick beams. Another important result is that the maximum deflection of type (I) beam, with a 

given taper ratio, increases as the gradient index is increased. This takes place due to the decrease 

in the volume fraction of ceramic phase in the face-sheets which eventually leads to a decrease in 

the flexural stiffness of the beam. 

Considering various factors, the maximum non-dimensional shear stresses for a simply 

supported beam type (I) are outlined in Table 7. As it could be predicted, the maximum shear 

stress is not influenced by variation of the taper ratio. This is owing to the fact that a simply 

supported beam is always determinate and the support reactions are not influenced by chaning the 

taper ratio. Morever, an increase in gradient index results in higher shear stresses. 
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Table 4 Maximum dimensionless deflections of beam type (I) with SS supports 

p 
 

Theory 
L/H=5 L/H=20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

0 

1.5 
TBT 2.5416 2.3007 1.9503 2.7653 2.2922 2.0594 1.7219 2.5084 

RBT 2.5408 2.2993 1.9478 2.7649 2.2921 2.0594 1.7218 2.5083 

2 
TBT 2.0946 1.7622 1.3447 2.4406 1.8607 1.5412 1.1420 2.1945 

RBT 2.0925 1.7587 1.3385 2.4397 1.8607 1.5412 1.1417 2.1944 

3 
TBT 1.5078 1.1491 0.7770 1.9503 1.2976 0.9562 0.6062 1.7219 

RBT 1.5029 1.1411 0.7642 1.9478 1.2974 0.9558 0.6055 1.7218 

1 

1.5 
TBT 4.8409 3.7363 2.3561 5.9257 4.5068 3.4404 2.1103 5.5523 

RBT 4.8039 3.7135 2.3500 5.8764 4.5045 3.4391 2.1099 5.5493 

2 
TBT 3.8381 2.7410 1.5844 5.0912 3.5304 2.4741 1.3678 4.7394 

RBT 3.8051 2.7202 1.5758 5.0455 3.5287 2.4728 1.3673 4.7365 

3 
TBT 2.5974 1.6794 0.8869 3.8809 2.3271 1.4503 0.7055 3.5623 

RBT 2.5677 1.6587 0.8727 3.8401 2.3252 1.4491 0.7047 3.5597 

2 

1.5 
TBT 6.3551 4.5507 2.5234 8.1918 5.9782 4.2307 2.2713 7.7519 

RBT 6.2978 4.5181 2.5161 8.1104 5.9747 4.2289 2.2709 7.7468 

2 
TBT 4.9519 3.2751 1.6811 6.9623 4.6077 2.9881 1.4593 6.5515 

RBT 4.9021 3.2465 1.6715 6.8881 4.6052 2.9863 1.4587 6.5468 

3 
TBT 3.2596 1.9533 0.9300 5.2032 2.9600 1.7086 0.7446 4.8356 

RBT 3.2169 1.9271 0.9153 5.1388 2.9576 1.7070 0.7438 4.8316 

5 

1.5 
TBT 8.3860 5.5926 2.7073 11.1647 7.9538 5.2440 2.4485 10.6293 

RBT 8.2967 5.5457 2.6984 11.0297 7.9484 5.2413 2.4479 10.6209 

2 
TBT 6.4376 3.9468 1.7861 9.4430 6.0470 3.6364 1.5589 8.9490 

RBT 6.3616 3.9071 1.7753 9.3214 6.0430 3.6339 1.5582 8.9414 

3 
TBT 4.1307 2.2894 0.9764 6.9727 3.7946 2.0266 0.7870 6.5374 

RBT 4.0681 2.2551 0.9607 6.8695 3.7907 2.0245 0.7860 6.5310 

 

 

 

Fig. 3 is presented to illustrate the variation of * ( ,0)xz   obtained via RBT for a simply 

supported beam with various cross sectional types. As it is seen in this figure, the maximum shear 

stress, which occurs at the mid-surface, increases by increasing the value of gradient index. 

Another interesting result is that for a given cross section, the effect of gradient index on the 

maximum shear stress is hardly significant. This happens because the height of the cross section, 

and the support reaction at x  remain constant irrespective of the taper ratio. 
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Table 5 Maximum dimensionless deflections of beam type (I) with CC supports 

p 
 

Theory 
L/H=5 L/H=20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

0 

1.5 
TBT 0.7087 0.6534 0.5718 0.7596 0.4708 0.4236 0.3551 0.5145 

RBT 0.7069 0.6475 0.5653 0.7569 0.4708 0.4234 0.3551 0.5145 

2 
TBT 0.6055 0.5274 0.4266 0.6856 0.3833 0.3184 0.2371 0.4511 

RBT 0.5994 0.5203 0.4177 0.6800 0.3832 0.3183 0.2370 0.4508 

3 
TBT 0.4664 0.3777 0.2809 0.5718 0.2688 0.1992 0.1275 0.3551 

RBT 0.4584 0.3683 0.2686 0.5653 0.2687 0.1989 0.1272 0.3551 

1 

1.5 
TBT 1.2354 0.9831 0.6662 1.4847 0.9172 0.7018 0.4334 1.1287 

RBT 1.1981 0.9579 0.6572 1.4364 0.9152 0.7004 0.4331 1.1234 

2 
TBT 1.0103 0.7569 0.4844 1.2984 0.7191 0.5057 0.2824 0.9639 

RBT 0.9759 0.7351 0.4740 1.2512 0.7171 0.5046 0.2821 0.9611 

3 
TBT 0.7257 0.5068 0.3091 1.0246 0.4744 0.2975 0.1473 0.7245 

RBT 0.6969 0.4873 0.2959 0.9838 0.4729 0.2965 0.1468 0.7222 

2 

1.5 
TBT 1.5714 1.1644 0.7045 1.9906 1.2128 0.8605 0.4658 1.5713 

RBT 1.5158 1.1302 0.6946 1.9115 1.2091 0.8585 0.4653 1.5658 

2 
TBT 1.2594 0.8778 0.5072 1.7174 0.9345 0.6084 0.3007 1.3275 

RBT 1.2096 0.8492 0.4963 1.6422 0.9315 0.6068 0.3004 1.3229 

3 
TBT 0.8759 0.5706 0.3198 1.3224 0.5994 0.3484 0.1551 0.9777 

RBT 0.8362 0.5466 0.3063 1.2603 0.5972 0.3472 0.1545 0.9741 

5 

1.5 
TBT 2.0197 1.3943 0.7464 2.6601 1.6089 1.0635 0.5014 2.1502 

RBT 1.9338 1.3466 0.7352 2.5307 1.6039 1.0607 0.5009 2.1432 

2 
TBT 1.5884 1.0279 0.5319 2.2751 1.2207 0.7373 0.3207 1.8072 

RBT 1.5142 0.9893 0.5202 2.1548 1.2162 0.7351 0.3203 1.7999 

3 
TBT 1.0699 0.6474 0.3313 1.7183 0.7621 0.4106 0.1634 1.3129 

RBT 1.0133 0.6170 0.3173 1.6216 0.7589 0.4089 0.1628 1.3071 

 

 

It is also important to note that regardless of the effects of taper ratio and cross sectional types, 

an increment in the gradient index decreases the shear stress in the face-sheets. As the ratio of the 

face-sheet thicknesses to the core height increases, the effects of the volume fraction of metal 

constituent gain importance. Hence, the stiffness of the cross section decreases, which results in 

larger axial and shear strains. As it can be seen in Table 7 and Fig. 3, this will lead to higher shear 

stresses. Clearly, in case of a CC beam, increase of taper ratio changes the rigidity of the supports 

and their reactions. This factor in turn reduces the maximum shear stress along the beam.  
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Table 6 Maximum dimensionless deflections of beam type (I) with FC supports 

p 
 

Theory 
L/H=5 L/H=20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

0 

1.5 
TBT 20.0699 17.0822 13.1097 23.0280 19.1141 16.1702 12.2667 22.0321 

RBT 19.9825 16.9730 12.9687 22.9579 19.1091 16.1639 12.2584 22.0282 

2 
TBT 14.6954 11.1643 7.3114 18.7953 13.8196 10.3581 6.6026 17.8542 

RBT 14.5630 11.0050 7.1248 18.6963 13.8118 10.3487 6.5917 17.8484 

3 
TBT 8.7389 5.7351 3.1645 13.1150 7.9896 5.0791 2.6260 12.2670 

RBT 8.5611 5.5405 2.9655 12.9687 7.9791 5.0675 2.6142 12.2584 

1 

1.5 
TBT 37.9562 27.3489 15.6574 49.4834 36.7009 26.2427 14.7563 48.0494 

RBT 37.7541 27.1755 15.5113 49.2274 36.6879 26.2322 14.7475 48.0339 

2 
TBT 26.2339 16.7888 8.4400 38.7667 25.1034 15.8336 7.6888 37.4413 

RBT 26.0066 16.5881 8.2503 38.5133 25.0895 15.8215 7.6773 37.4257 

3 
TBT 14.2623 7.9162 3.5087 25.1901 13.3323 7.1629 2.9459 24.0417 

RBT 14.0273 7.7020 3.3101 24.9277 13.318 7.1500 2.9340 24.0257 

2 

1.5 
TBT 49.5649 33.0273 16.6910 68.3585 48.1451 31.8374 15.7674 66.6768 

RBT 49.2854 32.8255 16.5419 67.9853 48.1278 31.8249 15.7585 66.6538 

2 
TBT 33.3487 19.7313 8.8795 52.6408 32.0965 18.7002 8.1150 51.1088 

RBT 33.0719 19.4995 8.6912 52.2871 32.0796 18.6869 8.1038 51.0853 

3 
TBT 17.4052 8.9630 3.6384 33.1472 16.3933 8.1703 3.0669 31.8442 

RBT 17.1426 8.7408 3.4400 32.8173 16.3772 8.1569 3.0551 31.8239 

5 

1.5 
TBT 65.0861 40.2064 17.8190 93.2875 63.4672 38.9155 16.8695 91.2542 

RBT 64.6943 39.9596 17.6632 92.7117 63.4440 38.9004 16.8603 91.2183 

2 
TBT 42.7409 23.3187 9.3503 71.1892 41.3387 22.2284 8.5729 69.3681 

RBT 42.3886 23.0733 9.1634 70.6764 41.3170 22.2135 8.5616 69.3361 

3 
TBT 21.4286 10.2008 3.7751 43.8075 20.3183 9.3641 3.1947 42.3006 

RBT 21.1238 9.9665 3.5766 43.3672 20.2996 9.3498 3.1828 42.2735 

 

Fig. 4 depicts the variation of bending stress through the height of the clamped support of a FC 

beam with various taper ratios and gradient indexes. In this figure, 
1 2( ( ) )fH h L h   denotes 

the total height of the beam at the clamped end, i.e., x L  .  

The most important point in Fig. 4 is that when the value of the gradient index is 1, the 

maximum bending stress occurs at the face-sheets for cross sectional type 2-1-2 in which the 

facings are thick. In other cases, the maximum bending stress occurs at the core/face interfaces. 

Thus, in practical cases, the interfaces must be strengthened properly. Moreover, as it can be 

predicted, for a certain cross sectional type, an increase in taper ratio results in smaller bending 

stresses. 
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(a) 1-8-1, 1.5    (b) 1-8-1, 2   

  
(c) 2-1-2, 1.5   (d) 2-1-2, 2   

Fig. 3 Variation of * ( , )xz z  for various cross sectional types in a simply supported beam , / 5L H   

 

 
Table 7 Maximum dimensionless shear stress * ( ,0)xz   in a simply supported beam type (I) 

p 
 

Theory 
L/H =5 L/H =20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

0 

1.5 
TBT 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 

RBT 0.7401 0.7382 0.7336 0.7385 0.7486 0.7473 0.7477 0.7490 

2 
TBT 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 

RBT 0.7401 0.7382 0.7336 0.7385 0.7486 0.7473 0.7404 0.7490 

3 
TBT 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 

RBT 0.7401 0.7382 0.7336 0.7385 0.7486 0.7473 0.7314 0.7490 

1 

1.5 
TBT 0.8241 0.7537 0.6532 0.8906 0.8241 0.7537 0.6532 0.8906 

RBT 0.8660 0.8077 0.7643 0.9166 0.8716 0.8232 0.7747 0.9269 

2 
TBT 0.8241 0.7537 0.6532 0.8906 0.8241 0.7537 0.6532 0.8906 

RBT 0.8660 0.8077 0.7643 0.9166 0.8716 0.8232 0.7667 0.9269 

Continued- 
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3 
TBT 0.8241 0.7537 0.6532 0.8906 0.8241 0.7537 0.6532 0.8906 

RBT 0.8660 0.8077 0.7643 0.9166 0.8716 0.8232 0.7569 0.9269 

2 

1.5 
TBT 0.9412 0.8241 0.6732 1.0621 0.9412 0.8241 0.6732 1.0621 

RBT 0.9325 0.8544 0.7758 1.0269 0.9379 0.8595 0.7850 1.0350 

2 
TBT 0.9412 0.8241 0.6732 1.0621 0.9412 0.8241 0.6732 1.0621 

RBT 0.9325 0.8544 0.7758 1.0269 0.9379 0.8595 0.7850 1.0350 

3 
TBT 0.9412 0.8241 0.6732 1.0621 0.9412 0.8241 0.6732 1.0621 

RBT 0.9325 0.8544 0.7758 1.0269 0.9379 0.8595 0.7850 1.0350 

5 

1.5 
TBT 1.0973 0.9089 0.6944 1.3153 1.0973 0.9089 0.6944 1.3153 

RBT 1.0207 0.8974 0.7873 1.1934 1.0265 0.9026 0.7956 1.2027 

2 
TBT 1.0973 0.9089 0.6944 1.3153 1.0973 0.9089 0.6944 1.3153 

RBT 1.0207 0.8974 0.7873 1.1934 1.0265 0.9026 0.7956 1.2027 

3 
TBT 1.0973 0.9089 0.6944 1.3153 1.0973 0.9089 0.6944 1.3153 

RBT 1.0207 0.8974 0.7873 1.1934 1.0265 0.9026 0.7956 1.2027 

 

  
(a) 1-8-1, 1.5    (b) 1-8-1, 2   

  
(c) 2-1-2, 1.5   (d) 2-1-2, 2   

Fig. 4 Variation of *( , )x L z  for various cross sectional types in the clamped end of a FC beam, 

/ 5L H   
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Table 8 Maximum dimensionless deflections of beam type (II) with SS supports 

p 
 

Theory 
L/H =5 L/H =20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

1 

1 
TBT 3.2327 3.3145 3.6404 3.1958 2.9209 2.9761 3.2405 2.9025 

RBT 3.2793 3.3917 3.7665 3.2207 2.9239 2.9810 3.2484 2.9041 

1.5 
TBT 2.6171 2.4480 2.3005 2.8014 2.3216 2.1370 1.9557 2.5170 

RBT 2.6675 2.5240 2.4055 2.8304 2.3248 2.1418 1.9623 2.5189 

2 
TBT 2.1746 1.9030 1.6197 2.4815 1.8930 1.6133 1.3110 2.2054 

RBT 2.2263 1.9742 1.7058 2.5133 1.8963 1.6178 1.3165 2.2074 

3 
TBT 1.5909 1.2739 0.9691 1.9983 1.3317 1.0157 0.7064 1.7364 

RBT 1.6404 1.3329 1.0261 2.0332 1.3348 1.0194 0.7101 1.7387 

2 

1 
TBT 3.2030 3.2405 3.3710 3.1840 2.9067 2.9287 3.0267 2.8991 

RBT 3.2307 3.2851 3.4457 3.1994 2.9085 2.9315 3.0314 2.9001 

1.5 
TBT 2.5829 2.3745 2.1048 2.7868 2.3045 2.0908 1.8101 2.5123 

RBT 2.6125 2.4178 2.1668 2.8045 2.3064 2.0936 1.8140 2.5134 

2 
TBT 2.1378 1.8327 1.4685 2.4640 1.8742 1.5703 1.2057 2.1993 

RBT 2.1674 1.8724 1.5181 2.4836 1.8761 1.5728 1.2089 2.2005 

3 
TBT 1.5521 1.2120 0.8668 1.9778 1.3118 0.9801 0.6441 1.7282 

RBT 1.5789 1.2427 0.8968 1.9977 1.3135 0.9821 0.6460 1.7295 

5 

1 
TBT 3.1808 3.1918 3.2223 3.1740 2.8986 2.9028 2.9200 2.8970 

RBT 3.1932 3.2114 3.2553 3.1810 2.8994 2.9040 2.9221 2.8975 

1.5 
TBT 2.5581 2.3265 1.9956 2.7749 2.2949 2.0658 1.7382 2.5094 

RBT 2.5709 2.3448 2.0219 2.7828 2.2957 2.0669 1.7399 2.5099 

2 
TBT 2.1115 1.7870 1.3829 2.4511 1.8637 1.5471 1.1541 2.1957 

RBT 2.1236 1.8025 1.4017 2.4593 1.8645 1.5481 1.1553 2.1962 

3 
TBT 1.5249 1.1717 0.8069 1.9619 1.3008 0.9612 0.6136 1.7235 

RBT 1.5340 1.1807 0.8135 1.9696 1.3014 0.9617 0.6141 1.7240 

10 

1 
TBT 3.1732 3.1777 3.1879 3.1700 2.8970 2.8979 2.9015 2.8965 

RBT 3.1795 3.1876 3.2046 3.1736 2.8974 2.8986 2.9026 2.8968 

1.5 
TBT 2.5498 2.3126 1.9690 2.7703 2.2930 2.0611 1.7257 2.5088 

RBT 2.5561 2.3214 1.9812 2.7742 2.2934 2.0617 1.7265 2.5090 

2 
TBT 2.1029 1.7737 1.3611 2.4460 1.8616 1.5428 1.1450 2.1949 

RBT 2.1082 1.7800 1.3677 2.4499 1.8620 1.5432 1.1454 2.1952 

3 
TBT 1.5162 1.1597 0.7906 1.9562 1.2986 0.9576 0.6082 1.7225 

RBT 1.5184 1.1604 0.7876 1.9590 1.2988 0.9577 0.6080 1.7227 

 

 

6.2 Tapered sandwich beam type (II) 
 

The maximum dimensionless deflections of beam type (II), with various taper ratios, boundary 

conditions, gradient indexes and slenderness ratios are presented in Tables 8-10. Contrary to the 

beam type (I), RBT results in higher deflections in beam type (II) compared to TBT. The 

difference between the deflections obtained via TBT and RBT is more evident in thick beams 

again.  
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Table 9 Maximum dimensionless deflections of beam type (II) with CC supports 

p  Theory 
L/H =5 L/H =20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

1 

1 
TBT 0.8975 0.9353 1.0500 0.8753 0.5998 0.6122 0.6682 0.5950 

RBT 0.9400 1.0060 1.1655 0.8979 0.6030 0.6173 0.6763 0.5971 

1.5 
TBT 0.7681 0.7467 0.7433 0.7958 0.4795 0.4433 0.4083 0.5181 

RBT 0.8021 0.8030 0.8238 0.8129 0.4821 0.4474 0.4141 0.5210 

2 
TBT 0.6676 0.6186 0.5726 0.7250 0.3929 0.3371 0.2766 0.4552 

RBT 0.7028 0.6709 0.6370 0.7420 0.3956 0.3410 0.2816 0.4567 

3 
TBT 0.5307 0.4629 0.3953 0.6159 0.2791 0.2152 0.1522 0.3605 

RBT 0.5647 0.5053 0.4354 0.6368 0.2819 0.2187 0.1560 0.3623 

2 

1 
TBT 0.8790 0.8991 0.9513 0.8661 0.5962 0.6014 0.6226 0.5941 

RBT 0.9043 0.9399 1.0198 0.8800 0.5982 0.6045 0.6275 0.5954 

1.5 
TBT 0.7403 0.7091 0.6627 0.7848 0.4752 0.4325 0.3765 0.5166 

RBT 0.7626 0.7369 0.7067 0.7908 0.4765 0.4347 0.3799 0.5221 

2 
TBT 0.6448 0.5813 0.5047 0.7124 0.3880 0.3268 0.2532 0.4534 

RBT 0.6609 0.6065 0.5380 0.7189 0.3895 0.3289 0.2560 0.4541 

3 
TBT 0.5061 0.4275 0.3428 0.6009 0.2738 0.2064 0.1378 0.3580 

RBT 0.5208 0.4465 0.3620 0.6089 0.2752 0.2082 0.1399 0.3589 

5 

1 
TBT 0.8633 0.8710 0.8878 0.8577 0.5939 0.5951 0.5992 0.5933 

RBT 0.8745 0.8888 0.9179 0.8640 0.5950 0.5966 0.6015 0.5941 

1.5 
TBT 0.7292 0.6804 0.6099 0.7748 0.4724 0.4263 0.3602 0.5155 

RBT 0.7289 0.6865 0.6234 0.7719 0.4729 0.4270 0.3615 0.5148 

2 
TBT 0.6261 0.5531 0.4597 0.7012 0.3850 0.3209 0.2411 0.4521 

RBT 0.6271 0.5577 0.4681 0.6984 0.3854 0.3216 0.2421 0.4522 

3 
TBT 0.4864 0.4011 0.3076 0.5880 0.2705 0.2013 0.1302 0.3563 

RBT 0.4861 0.4020 0.3079 0.5855 0.2709 0.2019 0.1309 0.3565 

10 

1 
TBT 0.8570 0.8607 0.8681 0.8541 0.5933 0.5936 0.5947 0.5930 

RBT 0.8626 0.8696 0.8832 0.8573 0.5940 0.5946 0.5960 0.5936 

1.5 
TBT 0.7222 0.6699 0.5930 0.7633 0.4717 0.4250 0.3574 0.5152 

RBT 0.7175 0.6677 0.5943 0.7706 0.4717 0.4250 0.3574 0.5152 

2 
TBT 0.6188 0.5429 0.4450 0.6966 0.3842 0.3196 0.2389 0.4517 

RBT 0.6140 0.5396 0.4431 0.6900 0.3842 0.3196 0.2389 0.4517 

3 
TBT 0.4789 0.3915 0.2957 0.5828 0.2697 0.2002 0.1287 0.3559 

RBT 0.4729 0.3854 0.2884 0.5761 0.2697 0.2002 0.1287 0.3559 

 

 

Since the facings are homogenous and composed of ceramic, as the face-sheet thickness to  

core height ratio increases, the stiffness will be increased. This will lead to smaller strains and 

deflections. Another important finding is that unlike beam type (I), an increment in the gradient 

index increases the volume fraction of the ceramic constituent. This also results in smaller 

deflections, bending and shear stresses. 
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Table 10 Maximum dimensionless deflections of beam type (II) with FC supports 

p  Theory 
L/H =5 L/H =20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

1 

1 
TBT 29.1648 29.7903 32.5501 28.9213 27.9245 28.4441 30.9593 27.7545 

RBT 29.3223 30.0635 33.0070 28.9969 27.9358 28.4629 30.9902 27.7604 

1.5 
TBT 20.5413 18.0495 15.3083 23.2247 19.3999 16.8622 14.0224 22.1176 

RBT 20.6239 18.1637 15.4036 23.2651 19.4061 16.8707 14.0302 22.1215 

2 
TBT 15.2051 12.0315 8.7559 19.0400 14.1318 10.9529 7.6626 17.9709 

RBT 15.2184 12.0344 8.6913 19.0469 14.1338 10.9545 7.6602 17.9722 

3 
TBT 9.2463 6.4050 3.9552 13.4194 8.2933 5.4952 3.1084 12.4264 

RBT 9.1748 6.2939 3.7754 13.3742 8.2902 5.4898 3.0988 12.4246 

2 

1 
TBT 28.9723 29.2392 30.2969 28.8584 27.7938 27.9989 28.9273 27.7251 

RBT 29.0587 29.3894 30.5603 28.8981 27.8004 28.0097 28.9454 27.7287 

1.5 
TBT 20.3026 17.5228 14.0158 23.1348 19.2303 16.4442 12.9197 22.0678 

RBT 20.3174 17.5445 14.0240 23.1365 19.2321 16.4466 12.9218 22.0689 

2 
TBT 14.9438 11.5616 7.9203 18.9257 13.9458 10.5921 6.9950 17.9028 

RBT 14.8980 11.4987 7.8200 18.8913 13.9439 10.5892 6.9900 17.9013 

3 
TBT 8.9845 6.0465 3.5150 13.2713 8.1114 5.2413 2.8043 12.3325 

RBT 8.8707 5.9057 3.3423 13.1865 8.1053 5.2337 2.7948 12.3281 

5 

1 
TBT 28.8438 28.9084 29.1218 28.8098 27.7213 27.7586 27.9193 27.7082 

RBT 28.8723 28.9638 29.2279 28.8180 27.7241 27.7632 27.9272 27.7097 

1.5 
TBT 20.1473 17.2092 13.3337 23.0696 19.1370 16.2214 12.3829 22.0403 

RBT 20.1085 17.1595 13.2652 23.0371 19.1353 16.2193 12.3795 22.0366 

2 
TBT 14.7774 11.2826 7.4754 18.8454 13.8443 10.4022 6.6734 17.8644 

RBT 14.6842 11.1671 7.3325 18.7762 13.8393 10.3958 6.6650 17.8608 

3 
TBT 8.8192 5.8324 3.2715 13.1708 8.0134 5.1100 2.6592 12.2804 

RBT 8.6713 5.6641 3.0897 13.0536 8.0050 5.1004 2.6488 12.2738 

10 

1 
TBT 28.8065 28.8285 28.8871 28.7925 27.7077 27.7156 27.7479 27.7040 

RBT 28.8121 28.8475 28.9315 28.7877 27.7090 27.7178 27.7517 27.7053 

1.5 
TBT 20.1053 17.1343 13.1907 23.0480 19.1198 16.1820 12.2913 22.0344 

RBT 20.0446 17.0556 13.0868 23.0011 19.1167 16.1778 12.2859 22.0320 

2 
TBT 14.7321 11.2135 7.3746 18.8198 13.8257 10.3684 6.6184 17.8570 

RBT 14.6202 11.0769 7.2115 18.7369 13.8194 10.3600 6.6090 17.8525 

3 
TBT 8.7741 5.7767 3.2101 13.1405 7.9955 5.0865 2.6340 12.2705 

RBT 8.6124 5.5963 3.0208 13.0104 7.9861 5.0760 2.6230 12.2631 

 

Table 11 gives the maximum normalized bending stress *

max for a simply supported beam of 

type (II). It must be noted that the facings are homogenous and thus the maximum bending stress 

occurs at ( ( ) )fz h x h    along the beam length. Based on Table 11, the bending stresses 

obtained via RBT are larger than those obtained by TBT. This takes place because the shear 

correction factor for rectangular functionally graded cross sections is not equal to  and thus this 

correction factor results in smaller strains compared to RBT theory. 
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Table 11 Maximum non-dimensional bending stress *

max for beam type (II) with SS supports 

p  Theory 
L/H =5 L/H =20 

1-1-1 1-2-1 1-8-1 2-1-2 1-1-1 1-2-1 1-8-1 2-1-2 

1 

1 
TBT 3.7785 3.8481 4.1872 3.7561 15.1141 15.3924 16.7489 15.0245 

RBT 3.8476 3.9264 4.2801 3.8182 15.1313 15.4118 16.7720 15.0398 

1.5 
TBT 3.2509 3.1054 3.0302 3.4182 13.0038 12.4217 12.1209 13.6731 

RBT 3.3214 3.1884 3.1305 3.4820 13.0217 12.4422 12.1454 13.6890 

2 
TBT 2.8546 2.6056 2.3752 3.1371 11.4186 10.4227 9.5011 12.5485 

RBT 2.9312 2.6954 2.4877 3.2033 11.4375 10.4443 9.5268 12.5649 

3 
TBT 2.2978 1.9737 1.6590 2.6956 9.1912 7.8949 6.6363 10.7826 

RBT 2.3839 2.0786 1.8055 2.7672 9.2110 7.9187 6.6693 10.8001 

2 

1 
TBT 3.7613 3.7886 3.9134 3.7524 15.0454 15.1545 15.6538 15.0097 

RBT 3.8244 3.8572 3.9916 3.8112 15.0610 15.1715 15.6732 15.0243 

1.5 
TBT 3.2288 3.0412 2.8089 3.4127 12.9154 12.1651 11.2357 13.6510 

RBT 3.2939 3.1133 2.8933 3.4724 12.9315 12.1829 11.2563 13.6658 

2 
TBT 2.8292 2.5411 2.1909 3.1298 11.3168 10.1647 8.7639 12.5193 

RBT 2.8978 2.6190 2.2859 3.1914 11.3336 10.1833 8.7854 12.5346 

3 
TBT 2.2688 1.9131 1.5217 2.6853 9.0753 7.6527 6.0871 10.7415 

RBT 2.3456 2.0043 1.6465 2.7513 9.0928 7.6733 6.1314 10.7575 

5 

1 
TBT 3.7520 3.7568 3.7781 3.7504 15.0080 15.0273 15.1127 15.0017 

RBT 3.8097 3.8170 3.8430 3.8061 15.0223 15.0422 15.1287 15.0155 

1.5 
TBT 3.2168 3.0072 2.7009 3.4097 12.8675 12.0291 10.8038 13.6389 

RBT 3.2757 3.0690 2.7707 3.4658 12.8820 12.0446 10.8207 13.6528 

2 
TBT 2.8154 2.5072 2.1017 3.1258 11.2618 10.0290 8.4070 12.5034 

RBT 2.8771 2.5747 2.1804 3.1832 11.2769 10.0450 8.4244 12.5176 

3 
TBT 2.2533 1.8816 1.4559 2.6797 9.0133 7.5267 5.8236 10.7191 

RBT 2.3218 1.9604 1.5596 2.7408 9.0287 7.5445 5.8638 10.7339 

10 

1 
TBT 3.7503 3.7513 3.7554 3.7500 15.0015 15.0053 15.0219 15.0003 

RBT 3.8058 3.8081 3.8147 3.8044 15.0152 15.0193 15.0365 15.0137 

1.5 
TBT 3.2147 3.0014 2.6829 3.4092 12.8591 12.0056 10.7316 13.6368 

RBT 3.2710 3.0600 2.7464 3.4637 12.8730 12.0201 10.7470 13.6504 

2 
TBT 2.8130 2.5014 2.0869 3.1251 11.2523 10.0056 8.3476 12.5006 

RBT 2.8718 2.5644 2.1584 3.1808 11.2667 10.0205 8.3632 12.5144 

3 
TBT 2.2506 1.8763 1.4449 2.6788 9.0026 7.5052 5.7798 10.7152 

RBT 2.3156 1.9498 1.5394 2.7377 9.0171 7.5216 5.8181 10.7295 

 

 

Pushover curves of the maximum bending stress are presented in Fig. 5 for a simply supported 

beam type (II). The effect of gradient indexes and cross sectional types on bending stresses is 

obvious in these figures. As it can be seen, the gradient indexes are more influential in cross 

sectional types with large core height to facing thickness ratios, e.g 1-8-1. As p increases from 5 to 

10, the pushover curves are marginally affected. According to the this outcome, the effect of 

gradient index on bending stress can be disregarded for 5p  . Another important result is that the 

maximum bending stress will not occur at the mid-span of beams with 1  . In fact, as the taper 
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ratio and the core height increase, the point at which the maximum bending stress occurs will be 

shifted leftwards of the mid-span (see Fig. 5(c)). Moreover, for cross sectional types in which the 

facings are thicker than the core, the effect of gradient index on maximum bending stress is 

negligible. Fig. 6 is presented to illustrate the pushover curves of the maximum shear stress for a 

FC beam type (II). It must be reminded that the considered beam is clamped at x L  . As it is 

expected, the maximum shear stress occurs in the vicinity of the clamped edge. In addition, the 

difference between the shear stresses related to various gradient indexes becomes more evident as 

the core height increases. It is important to note that the Ritz method is an assymptotic solution 

and results in zero shear strains, and shear stresses in the clamped support. Based on the Saint 

Venant’s principle, the distribution of strains and stresses near the supports can be neglected. 

Hence, the pushover curves are accurate at every point except near the region of clamped edge. 

 

5. Conclusions 
 

In this research, static analysis of tapered FG sandwich beams was carried out. The core height 

was assumed to vary linearly along the x direction. Moreover, two different beam types in which 

the material properties followed a power-law form were considered. In order to obtain the 

deflections, the well-known Ritz method was implemented.  
 

  
(a) 1-1-1  (b) 1-2-1 

  
(c) 2-1-2 (d) 1-8-1 

Fig. 5 The effect of cross sectional type and gradient index on *

max ( , )x z  pushover curves of a simply 

supported beam type (II), / 20L H  , 3   
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(a) 1-1-1  (b) 1-2-1 

  
(c) 2-1-2 (d) 1-8-1 

Fig. 6 The effect of cross sectional type and gradient index on *

max ( , )x z  pushover curves of beam type (II) 

with FC supports, / 20L H   

 

 

Through a convergence study, it was shown that the Chebyshev polynomials offer a remarkable 

rate of convergence in analysis of FG non-prismatic sections. On the other hand, both Timoshenko 

and Reddy beam theories were applied, and the results were compared. It was shown that TBT 

leads to larger deflections, and smaller shear stresses compared to RBT for beam type (I). 

However, for beam type (II), TBT leads to smaller deflections and bending stresses compared to 

RBT. It was also observed that the taper ratio, slenderness, cross sectional type and gradient index 

had significant effects on static responses. The shear effects were found to be more considerable in 

FG tapered sandwich beams with small slenderness and large taper ratios. Therefore, appropriate 

responses can be achieved by imposing certain geometrical characteristics and gradient indexes to 

the beam profile. The outcomes of the present study may provide the researchers with useful 

results for design of structures, which make use of FG tapered sandwich beams. 
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