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Abstract.  Solving a system of linear or non-linear equations is required to analyze any kind of structures. 

There are many ways to solve a system of equations, and they can be classified as implicit and explicit 

techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation 

method (DR) is one of the powerful and simple explicit processes. The important point is that the DR does 

not require to store the global stiffness matrix, for which it just uses the residual loads vector. In this paper, a 

new approach to the DR method is expressed. In this approach, the damping, mass and time steps are similar 

to those of the traditional method of dynamic relaxation. The difference of this proposed method is focused 

on the method of calculating the damping. The proposed method is expressed such that the time step is 

constant, damping is equal to zero except in steps with maximum energy and the concentrated damping can 

be applied to minimize the energy of system in this step. In this condition, the calculation of damping in all 

steps is not required. Then the volume of computation is reduced. The DR method for form-finding of 

membrane structures is employed in this paper. The form-finding of the three plans related to the membrane 

structures with different loading is considered to investigate the efficiency of the proposed method. The 

numerical results show that the convergence rate based on the proposed method increases in all cases than 

other methods.  
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1. Introduction 
 

Solving system of equations for analysis of every structure is necessary. For this purpose, two 

ways are available. One of them is repetitive method that is used for linear or nonlinear analysis of 

structures. Dynamic relaxation method (DR) is one of these iterative methods. The DR is used for 

analysis of static and dynamic systems. In DR, static systems are converted to artificial dynamic 
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systems by adding fictitious mass and damping forces to them. When masses and damping terms 

are selected properly, the responses of system converge to the static solutions. 

The mathematical basis of Dynamic Relaxation method was rooted in the second order 

Richardson method that was proposed by Frankel (Frankel 1950). Since then, some other 

researchers (e.g., Otter 1966, Rushton 1969) have proposed variable methods for linear and 

nonlinear analysis by DR and improved it. This method was utilized for solving linear and 

nonlinear structural problems. The stability conditions of frame structures in DR were studied, and 

DR was formulated by Brew and Brotton (1971). The convergence rate of DR was increased by 

defining fictitious mass (Wood 1971, 2002), and then critical damping was estimated by Bunce 

(1972). The fictitious mass value and application of this for nonlinear problems was introduced 

using Geershgorin theory (Cassell and Hobbs 1976) by Cundall (1976). By deleting damping 

factor from the DR procedure, a new method was proposed in 1976 (Cundall 1976). This new DR 

was named Kinetic damping that was further improved in 2008 (Topping and Ivanyi 2008). Also, 

the DR method was used for nonlinear analysis of plates (Frieze et al. 1978). The Frist analysis of 

error in DR was done in 1981, and an automatic procedure for selection of their parameters was 

introduced by Papadrakakis (1981). The common formulation of DR was proposed by Underwood 

(1983). The DR was used for form-finding of pre-stressed membrane structures and for the finite 

element analysis of plate bending, which were studied in 1987 and 1988 by Al-Shawi and 

Mardirosian (1987) and Barnes (1988), respectively. After these studies, many other ways for 

calculating fictitious parameters of DR were proposed (Qiang 1988, Zhang and Yu 1989, Zhang et 

al. 1994, Rezaiee-Pajand and Taghavian Hakkak 2006, Kadkhodayan et al. 2008, Rezaiee-Pajand 

and Alamatian 2010, Rezaiee-Pajand et al. 2011, Rezaiee-Pajand and Sarafrazi 2010, 2011, 

Alamatian 2012). Regarding the form-finding of membrane structures, previous studies were done 

that are briefly stated below. 

The form-finding is a process of finding the basic static shape of the structure taking into 

account pre-tension forces only. It is done before a detailed analysis, involving imposed loads such 

as snow and wind loads (Lewis 2003, Xu et al. 2015, Gil Pérez et al. 2016, 2017). Barnes (1988) 

discussed about Kinetic damping of DR in form-finding of pre-stressed membrane roofs. Wood 

(2002) presented a simple technique for controlling mesh in the process of the form-finding of 

membrane structures using DR method. Recently, Bagrianski and Halpern (2014) presented a new 

DR method for the form-finding of compressive structures. Veenenedaal and Block (2012) 

compared existing form-finding methods such as stiffness matrix, force density, surface stress 

density and DR method in form-finding of fabric structures (Veenendaal et al. 2011). Also, 

Veenendaal and Block (2012) studied these methods in form-finding of discrete networks. Nabaei 

et al. (2013) proposed form-finding procedure using a newly modified DR method for the form-

finding of timber fabric structures. Very recently, Labbafi et al. (2017) studied the best method 

among five viscous and kinetic dynamic relaxation methods in form-finding of membrane 

structures. They investigated the rate of convergence is increased the most by considering the 

damping and mass in the algorithms proposed by Rezaiee-Pajand and Alamatian (2010). 

In this paper, a new approach for damping factor in dynamic relaxation process is used for 

formulating concentrated damping that has not been used. As such, formulation of concentrated 

damping (C-damping) and steps of this method are proposed. To demonstrate the new features of 

this approach, several membrane structures are studied. Three different models of membrane 

structures of flat stretched membrane, spherical cap membrane, and triangular stretched membrane 

are investigated. 
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Fig. 1 Variable time step in successive DR iterations 

 
 
2. Overview of dynamic relaxation method 
 

2.1 Popular damping method 
 

The idea of Dynamic Relaxation method is to add fictitious inertial and damping forces into a 

static system of equations and transfer it to a dynamic system as below (Rezaiee-Pajand and 

Rezaee 2014) 

MX CX SX P+ + =  (1) 

where X , X and X are the vectors of displacement, velocity and acceleration, respectively. In 

addition, M  is the fictitious mass matrix, C  is the fictitious damping matrix, K  is the stiffness 

matrix, and P is the external force vector. 

For the formulation of a dynamic relaxation, numerical techniques are used. According to the 

form, the velocity and acceleration vectors can be written as follows 
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where is the time step and n is the iteration of DR method. By using Eqs. (2) to (4) and plugging 

them into dynamic system (Eq. (1)), the main formulations of DR are obtained as below 
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In these equations, m
n
ii and r

n
i are the i-th diagonal element of mass matrix and the residual 
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force for i-th degree of freedom, respectively. The residual force in n-th step is calculated by the 

vectors of P  and f  that represent the external and internal forces, respectively, as shown below 

n n n R P f
 

(7) 

Typically, the damping matrix is defined as a multiple of the mass matrix. This equation of 

damping can be written as cC M , where c is the damping factor that is used in Eq. (6). 

In the DR process, fictitious mass, damping factor and time step are unknown. In common 

approaches, Gerschgorin’s theory and Rayleigh’s principle are used for mass matrix and damping 

factor, respectively (Cassell and Hobbs 1976). Also, in many DR methods, the time step is 

constant and equal to one. 

For the i-th diagonal element of the mass matrix and critical damping, the below formulation 

can be used 

 
2
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m S
4
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ii ij

i


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 
 

(8) 

   

 
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T
n n

n

T
n n

c 
X f X

X MX  
(9) 

where ndof is the number of degrees of freedoms and S is the stiffness matrix. 

 

2.2 Kinetic damping method 
 

The Kinetic damping method is one of the DR methods that do not require calculating the 

damping factor in the DR process. The initial idea for Kinetic damping was suggested by Cundall 

(1976) for analyzing unstable rock mechanics problems and then it was impoved by Topping and 

Ivanyi (2008). The deletion of damping factor reduces volume of calculations, and time step and 

mass matrix are unknown. In this method, Eq. (8) is used for the calculation of mass matrix and 

time step is constant as other methods. 

In Kinetic damping, no damping factor is used. The kinetic energy of a complete structure is 

traced as the undamped oscillations proceed, and all current nodal velocities are reset to zero 

whenever an energy peak is detected. Then the velocities in (n+1/2) is recalculated by the below 

formula 

1/2

2

n n X R
M  

(10) 

where 
n

R  is the residual forces and is calculated from 
1/2n

X , as shown below 

1/2 2
1/2 1 3

2 2

n n
n n  
   

X R
X X

M  
(11) 

 
 

3. Proposed method 
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The process of DR is started by assuming an initial solution. The next steps are done in such a 

way that the residual forces are decreased. The proper value of fictitious mass and time step 

guarantees the convergence of the proposed DR procedure. On the other hand, the convergence 

rate is dependent upon the value of damping factor, which is calculated using the lowest 

eigenvalue of artificial dynamic system in the common dynamic relaxation method. The 

convergence of the DR method with zero damping factor is achieved utilizing Kinetic damping. In 

the Kinetic dynamic relaxation process, the velocities of the joints are set to zero when a fall in the 

level of total kinetic energy of the structure occurs. However, it is difficult to calculate the extreme 

point of kinetic energy. Topping and Ivanyi (2008) suggested assuming the peak point at the mid-

point of the previous time-step when a fall down in kinetic energy occurs. The time-step ratio can 

be calculated in such a way that the responses converge to exact solutions. 

In this proposed method, the time step is constant and equal to one, and the damping is equal to 

zero except in steps with maximum energy. Thus the concentrated damping can be applied to 

minimize the energy of system just in this step. The kinetic energy of the system is given by the 

following 

1
U

2

T X MX

 

(12) 

With replacement of the values of velocity in the energy equation and its derivative with 

respect to damping, the following equation is obtained 
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One of the answers of the above equation is obtained as follows 

1 1
12 22 2

n n nc 
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
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(17) 

1
122 2

n n
  B X M R  

(18) 

The calculation of damping just in some of steps is the main difference of this method from the 

traditional method. Thus, the volume of computation is reduced. Also, the above method does not 

require calculating the residual forces in the middle of steps as in Kinetic damping. Therefore, a 

large amount of calculation of the Dynamic Relaxation process is eliminated. To verify the 

proposed method and the number of iterations to converge, numerical examples are considered in 
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Section 5, Numerical examples. 

The algorithm for the proposed method is given as follows: 

1. Define 0 1 2, , 0
r

  X X . 

2. n = 1. 

3. Assembling the internal force vector and applying boundary conditions. 

4. Evaluating the residual forces, stiffness matrix and artificial mass matrix. 

5. Determine 1 2n
X  and 1n

X . 

6. Calculating energy (En). 

7. If En-1 < En, continue the iteration from step (3). 

8. Evaluating damping factor from Eq. (16). 

9. Recalculating 1n
X , 1 2n

X and En. 

10. If 1n

r
 R  then stop the algorithm. 

11. n = n + 1. 

12. If n < Nmax, continue from step (3). 

Here, Nmax is the maximum allowable number of iterations, which should be defined by the 

analyst, and εr is the maximum allowable error of displacement. 

 

 

4. Required formulation for form-finding of membrane structures  
 

 

 
Fig. 2 Triangular finite element in its local coordinate system (Spillers et al. 1992, Levy and Spillers 2003) 

 

 

The simplest finite element, the triangular plane stress (constant stress) element, is used. In the 

element, the node equilibrium equations appear in the local coordinate system (Spillers et al. 1992, 

Levy and Spillers 2003) (see Fig. 2). 
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Here, σx, σy and τ are the usual stresses of plane elasticity, t is thickness of membrane, and b and 

c are the coefficients defined below. The gradient of Eq. (19) has the following particular simple 

form 

0 -

- 0

- 0

e

G

 
 


 
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A A

K A A

A A
 

(20) 

where, 

t

2

xy x

y xy

 

 

 
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A

 
(21) 

The gradient in Eq. (20) is taken with respect to the node coordinates xi, yi, …, while holding 

the stress of σx, σy and τ fixed. To do so, it is required to define the coefficients used in Eq. (19), 

which are typically given as 

, , ...i i m i m jb y y c x x   
 

(22) 

For completeness, the plane stress elastic stiffness matrix for the system is given as 
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Here, E and  are the Young’s modulus and Poisson’s ratio, respectively, and A is the surface 

area of the triangular finite element. An additional step is required to deal with three dimensional 

membranes using the stiffness matrix (KG
*
) for 3D as follows 
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5. Numerical examples  
 

 

 

Fig. 3 Flat stretched membrane (Levy and Spillers 2003) (Units: in.; Conversion: 1 in. = 25.4 mm) 

(Numbering is shown)  

 

Table 1 Cases for form-finding of spherical cap  

Location of applied force Pre-tension force (MPa) Load (kN) Type of loading Case 

Center of the membrane 551.72 44.482 kN First loading 1 

All internal nodes 551.72 44.482 kN Second loading 2 

Two mid-points of the plan 5.517 0.4448 kN Third loading 3 

 

 

To study the efficiency of the proposed method in form-finding of membrane structures, seven 

different schemes summarized in the preceding Section 2, Overview of Dynamic Relaxation 

method, and Section 3, Proposed method, are considered. Geometrically nonlinear analysis is 

programmed to analyze these schemes. The initial value of the time step in the DR method 

procedures is set equal to 1. The acceptable residual errors are the same for all solutions and are 

equal to 10
-4

. Also, the total number of iterations and the analysis durations are recorded for each 

case. These schemes have the same accuracy. However, they require the different number of 

iterations to achieve the desired accuracy. 

130



 

 

 

 

 

 

A novel approach to the form-finding of membrane structures using dynamic relaxation method 

5.1 Flat stretched membrane 
 

Fig. 3 shows a plan view of the analysis model. This model has 81 nodes that are subject to 

three different loadings. The Young’s modulus is 10,000 ksi (68,950 MPa) and Poisson’s ratio is 

0.3. The pre-tension forces in x and y directions are 80,000 psi (551.72 MPa) for all different 

loadings of this example. Characteristics of different cases are summarized in Table 1. 

 

5.1.1 Flat stretched membrane, Case 1 
For the first loading, a concentrated load of 10,000 lb (44.482 kN) is applied at the center of the 

membrane. The results of analysis of Case 1 are shown in Table 2. The proposed method in this 

case has a very good performance. The form-finding shape and load displacement curve of this 

case are shown in Figs. 4 and 5, respectively. 

 

 
Table 2 Results of analysis for form-finding of stretched membrane, Case 1 

CPU time (sec) Number of iterations Method of analysis Case 

8.11 1312 DR 

1 9.92 2019 Kinetic DR 

2 428 Proposed method 

 

 
Fig. 4 Form-finding of flat stretched membrane in Case 1 (Units: in.; Conversion: 1 in. = 25.4 mm) 

 

 
Fig. 5 Load-displacement curve for flat stretched membrane in Case 1 (Load in lb and Displacement in in.; 

Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 
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5.1.2 Flat stretched membrane, Case 2 
For the second loading of flat stretched membrane, the forces of 10,000 lb (44.482 kN) are 

distributed over all internal nodes. The shapes of all four support sides are parabolic with different 

height. The results of analysis of Case 2 are shown in Table 3 and Figs. 6 and 7. The proposed 

method in this case reduces the number of iteritions and CPU time compared to the other methods. 

 

 
Table 3 Results of analysis for form-finding of stretched membrane, Case 2 

CPU time (sec) Number of iterations Method of analysis Case 

9.30 1252 DR 

2 11 1681 Kinetic DR 

7.68 4 Proposed method 

 

 
Fig. 6 Form-finding of flat stretched membrane in Case 2 (Units: in.; Conversion: 1 in. = 25.4 mm) 

 

 
Fig. 7 Load-displacement curve for flat stretched membrane in Case 2 (Load in lb and Displacement in in.; 

Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 
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5.1.3 Flat stretched membrane, Case 3 
Finally for the third loading in flat stretched membrane, only two mid-points of the plan are 

subject to concentrated loads of 50 lb (0.22241 kN) for each point. From Table 4, the proposed 

method has better performance than the DR method and Kinetic DR method, as the number of 

iterations and CPU time are 155 and 1 sec, respectively (versus 412 or 912 and 3.25 or 6.5 sec). 

The 3D view of form-finding of this membrane is shown in Fig. 8. Fig. 9 presents the load-

displacement curve for flat stretched membrane in Case 3. 

 

 
Table 4 Results of analysis for form-finding of stretched membrane, Case 3 

CPU time (sec) Number of iterations Method of analysis Case 

3.25 412 DR 

3 6.5 923 Kinetic DR 

1 155 Proposed method 

 

 
Fig. 8 Form-finding of flat stretched membrane in Case 3  (Units: in.; Conversion: 1 in. = 25.4 mm) 

 

 
Fig. 9 Load-displacement curve for flat stretched membrane in Case 3 (Load in lb and Displacement in in.; 

Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 
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5.2 Spherical cap membrane 
 

This example analyzes a spherical cap for membrane, which was also studied by Levy and 

Spillers (2003). Fig. 10 shows a plan view of the analysis model. The radius, thickness, Young’s 

modulus and Poisson’s ratio of this membrane are 0.9 in (22.86 mm), 0.01576 in (0.4 mm), 10,000 

ksi (68,950 MPa) and 0.3, respectively. According to the Fig. 10, this model has 25 nodes that are 

subject to two different loadings that are described in Table 5. The pre-tension forces in x and y 

directions are 250,000 psi (1724.14 MPa) for this plan. 

 

 

 
Fig. 10 Spherical membrane shell (Levy and Spillers 2003) (Numbering is shown) 

 
Table 5 Cases for form-finding of stretched membrane 

Location of applied force Pre-tension Force (MPa) Load (kN) Type of loading Case 

node 1 1724.14 44.48 kN First loading 1 

all internal nodes 1724.14 44.48 kN Second loading 2 

 

 

5.2.1 Spherical cap membrane, Case 1 
For the first loading, the load of 10,000 lb (44.48 kN) is applied at node 1, perpendicular to the 

plane of the membrane and in the positive direction. The number of iterations and the CPU time 

are listed in Table 6, showing reduction of iterations and time in the proposed method. The shapes 

of this loading and load displacement curve are shown in Figs. 11 and 12, respectively. 

 

 
Table 6 Results of analysis for form-finding of spherical cap membrane, Case 1 

CPU time (sec) Number of iterations Method of analysis Case 

0.6 363 DR 

1 2.2 1191 Kinetic DR 

0.5 194 Proposed method 
 

134



 

 

 

 

 

 

A novel approach to the form-finding of membrane structures using dynamic relaxation method 

 
Fig. 11 Form-finding of spherical cap membrane in Case 1 (x-axis and y-axis have normalized dimensions) 

 

 

 
Fig. 12 Load-displacement curve for spherical cap membrane in Case 1 (Load in lb and Displacement in in.; 

Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 
 

 

5.2.2 Spherical cap membrane, Case 2 
For the second loaindg, the load of 10,000 lb (44.48 kN) is applied over all internal nodes. 

Table 7 and Figs. 13 and 14 show the results of analysis of the second loading in spherical cap 

membrane and the load-displacement curves. The CPU time in analysis is under 1 second for the 

proposed method and DR, with the former about half the latter 

 

 
Table 7 Results of analysis for form-finding of Spherical cap membrane, Case 2 

CPU time (sec) Number of iterations Method of analysis Case 

0.63 393 DR 

2 2.5 1418 Kinetic DR 

0.32 238 Proposed method 
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Fig. 13 Form-finding of spherical cap membrane in Case 2 (x-axis and y-axis have normalized dimensions) 

 

 

 
Fig. 14 Load-displacement curve for spherical cap membrane in Case 2 (Load in lb and Displacement in in.; 

Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 

 
 
5.3 Triangular stretched membrane 

 

In Fig. 15, a plan of equilateral triangle with sides of 160 in. (4,064 mm) is considered. This 

plan is created and loaded by the authors. According to the Fig. 15, this membrane has 66 nodes. 

Two cases of form-finding for this plan are achieved. The Young’s modulus and Poisson’s ratio 

are 10,000 ksi (68,950 MPa) and 0.3, respectively. The triangular stretched membrane has a 

thickness of 0.01576 in. (0.4 mm). The pre-tension forces in x and y directions are 300,000 psi 

(2068.95 MPa). Table 8 shows the value of loads and location of them in the two cases of 

triangular stretched membrane. 
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Fig. 15 Triangular stretched membrane (Units: in.; Conversion: 1 in. = 25.4 mm) (Numbering is shown) 

 

Table 8 Cases for form-finding of spherical cap membrane 

Location of applied force Pre-tension force (MPa) Load (kN) Type of loading Case 

All internal nodes 2068.95 44.48 kN First loading 1 

All internal nodes 2068.95 4.448 kN Second loading 2 

 

 

5.3.1 Triangular stretched membrane, Case 1 
For the first loading in triangular stretched membrane, the load of 10,000 lb (44.48 kN) is 

distributed over all internal nodes. The nodes on the sides of a triangle with unequal height are 

considered as a quadratic function. In this case, the proposed method has better performance than 

the DR method, as it reduces the number of iterations and time. Figs. 16 and 17 show the results of 

analysis for the first loading of triangular plan. 
 

 

Table 9 Results of analysis for form-findingof triangular stretched membrane, Case 1 

CPU time (sec) Number of iterations Method of analysis Case 

3 656 DR 

1 8 1908 Kinetic DR 

2.5 600 Proposed method 

 

 
Fig. 16 Form-finding of triangular stretched membrane in Case 1 (Units: in.; Conversion: 1 in. = 25.4 mm) 
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Fig. 17 Load-displacement curve for triangular stretched membrane in Case 1 (Load in lb and Displacement 

in in.; Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 

 

 
5.3.2 Triangular stretched membrane, Case 2 
In the second case, the load of 1,000 lb (4.448 kN) is applied at the center of the plan. The 

height of the membrane varies as a quadratic function. This case has less iterations by the proposed 

method, as shown in the results of analysis in Table 10. 
 

 

Table 10 Results of analysis for form-finding of triangular stretched membrane, Case 2 

CPU time (sec) Number of iterations Method of analysis Case 

6.8 1537 DR 

2 8.7 2474 Kinetic DR 

3.7 895 Proposed method 

 

 
Fig. 18 Form-finding of triangular stretched membrane in Case 2 (Units: in.; Conversion: 1 in. = 25.4 mm) 
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Fig. 19 Load-displacement curve for triangular stretched membrane in Case 2 (Load in lb and Displacement 

in in.; Conversion: 1 lb = 4.448 N and 1 in. = 25.4 mm) 
 

 

6. Conclusions 
 

In this paper, a comprehensive review of Dynamic Relaxation algorithms was conducted. Of 

these, the DR and Kinetic damping DR methods were described in detail. Then, the new Dynamic 

Relaxation algorithm was proposed. In this procedure, the artificial mass and time steps are similar 

to the DR methods. However, the damping factor is different from the DR methods. Damping 

factor is calculated only in some of specified steps. In other words, damping is zero in the most 

steps of the DR algorithm. Therefore, a total number of calculations is reduced. The concentrated 

damping is imposed, when the value of total kinetic energy of system is at its peak point. Utilizing 

the proper values of concentrated damping factors, the kinetic energy converges to zero. The 

presented formulation shows the relation between common and Kinetic Dynamic Relaxation 

processes, as well. It should be noted that the procedures of minimizing the kinetic energy by the 

proposed method and Topping and Ivanyi’s algorithm are different. Topping and Ivanyi’s kinetic 

technique requires more calculations. Finally, some representative membrane structures were 

selected for verification, and their geometric nonlinear analyses were performed. The numerical 

results show that the convergence rate of the proposed method significantly increases in all cases 

compared to the Kinetic damping and also popular damping used in the DR methods. 
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