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Abstract.  This paper presents a variant of the Harmony Search Algorithm (HS) and its application to 

discrete optimization. The main proposed modifications regarding original HS are related to stopping 

criterion and reinitialization of population, called Harmony Memory. In order to investigate the efficiency of 

the algorithm, it was applied for obtaining optimal sections of reinforced concrete columns subjected to 

uniaxial flexural compression. To minimize the cost of the section, the amount and diameters of the 

reinforcement bars and the dimensions of the columns cross sections were considered as design variables. 

The obtained results were compared to those generated by other optimization methods. Since, to the 

examples, Harmony Search reached the same results achieved by Simulated Annealing, some additional 

analysis are presented in order to compare these methods regarding success rate and number of iterations to 

reach the optimum. 
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1. Introduction 
 

Structural analysis and design usually involve both highly complex procedures and a great 

number of variables. As a consequence, the solution has to be found iteratively while initial values 

are set to the variables based mainly on designer’s sensitivity and experience. Also, the number of 

analysis steps is remarkably increased if optimum values are to be found among all possible 

alternatives. To mathematically describe the physical response of a structure, extreme function 

values can be found by using optimization techniques.  

The great development of structural optimization took place in the early 60’s, when 

programming techniques were used in the minimization of structures weight. From then on, a great 

diversity of general techniques has been developed and adapted to structural optimization. 

However, one of the reasons normally attributed to the little application of the optimization 

techniques to real structural engineering problems consists of the complexity of the mathematic 

model generated, normally described by non-linear behavior functions and producing a non-

convex space of solutions (several points of optimum), problems for which the resolution by  
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traditional mathematical programming methods have proved to be little efficient. For the resolution 
of these kind of problems the heuristic methods have played an important role, since they involve 
only values of functions in the process, regardless if there is unimodality or even continuity in their 
derivatives. Despite the great emphasis in the development of global optimization methods, 
researchers are even far from the attainment of a method that can be applied with the same efficiency 
to any class of problems. 

The Harmony Search Algorithm is a metaheuristic proposed by Geem, Kim et al. (2001), which 
makes an analogy to musical improvisation of jazz. Since the method was first developed and 
published in 2001, it has been successfully applied to various research areas (Yoo, Kim et al. 2014). 

This work presents a variant of Harmony Search Algorithm, illustrating its application with the 
cost optimization of reinforced concrete columns subjected to uniaxial flexural compression. 
Amongst the articles that involve the optimization of reinforced concrete columns, stand out the 
studies by Zielinski, Long et al. (1995), who presented a procedure for the optimization of 
reinforced concrete columns; Argolo (2000), who developed an optimization study of reinforced 
concrete sections subjected to uniaxial flexion using Genetic Algorithms; Camp, Pezeshk et al. 
(2003), who minimized the cost of frames and short columns using Genetic Algorithms; Rodrigues 
Júnior (2005), who proposed a formulation for the optimal design of reinforced concrete columns of 
tall buildings; Martínez-Martín (2008), who compared several optimization algorithms that allow to 
obtain the design of reinforced concrete rectangular columns with hollow sections for road and 
railway viaducts of different heights and spans; Bordignon and Kripka (2012), who minimized the 
cost of rectangular concrete columns subjected to uniaxial flexural by Simulated Annealing, and 
Medeiros and Kripka (2014), who minimized the environmental costs of reinforced concrete 
columns by Harmony Search. 

The next sections of this paper present, a description of the optimization method, the developed 
formulation, some examples, a comparison between Harmony Search and Simulated Annealing 
performance and the conclusions. 
 
 
2. Harmony Search Optimization Algorithm 
 

The Harmony Search Algorithm, or simply HS, makes an analogy to musical improvisation of 
jazz, where musicians try to find, through repeated attempts, the perfect harmony (best solution to a 
problem). Iterations are called improvisations or practice. Variables correspond to musical 
instruments. Values for variables are the sounds of instruments. Each solution is called harmony, 
and the calculation of the objective function is called aesthetic estimation. The method can be 
sumarized in five steps: 

Step 1 - Initialization of problem and algorithm parameters: definition of the objective function, 
the constraints and parameters of the algorithm. Main parameters are Harmony Memory Size 
(HMS), Harmony Memory Considering Rate (HMCR), Pitch Adjusting Rate (PAR) and Maximum 
Improvisation (MI). 

Step 2 - Initialization of Harmony Memory: definition of first Harmony Memory (initial group of 
solutions). Harmony Memory (HM) is represented by a matrix of Eq. (1). Each line corresponds to a 
solution vector. The matrix has a number of rows equal to HMS and number of columns equal to the 
number of variables of the problem (N). Harmonies are generated randomly between a lower and 
upper range. 
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𝐻𝑀 =  �
𝑥11 ⋯ 𝑥𝑁1
⋮ ⋱ ⋮

𝑥1𝐻𝑀𝑆 ⋯ 𝑥𝑁𝐻𝑀𝑆
� (1) 

Step 3 - Improvise a new harmony: from the initial solution, a new harmony is generated. This 
step is performed by using the parameters PAR and HMCR. For each variable of the new solution, a 
random number between 0 and 1 is generated. This number is compared to the value of HMCR 
(Harmony Memory Considering Rate). If the random number is lesser (probability equal to HMCR), 
the value of the respective variable in the new solution vector is retrieved from Harmony Memory 
existing. If the random number is greater (probability equal to 1-HMCR), a new value for the 
variable is generated, Eq. (2) 

𝑥𝑖′ ⟵ �
𝑥𝑖′ ∈ �𝑥𝑖1,𝑥𝑖2, … , 𝑥𝑖𝐻𝑀𝑆� 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐻𝑀𝐶𝑅

𝑥𝑖′ ∈ 𝑋𝑖  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 −𝐻𝑀𝐶𝑅)
� (2) 

The choice of this new value can be done in two different ways, according to Eq. (3). Again, a 
random number between 0 and 1 is generated and compared to the parameter PAR. If the number is 
less than the rate (probability equal to PAR), Harmony Memory is considered, but with little 
adjustment, according to Eq. (4). This adjustment is defined by bw (maximum variation of tone) and 
a random number. If this is greater than PAR (probability equal to 1-PAR), the new value for the 
variable is randomly generated within the interval of possible solutions 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑡𝑒 𝑥𝑖′ ⟵ �
𝑌𝐸𝑆,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝐴𝑅

𝑁𝑂𝑇,𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  (1 − 𝑃𝐴𝑅)� (3) 

𝑥𝑖′ ⟵ 𝑥𝑖′ ± 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑏𝑤 (4) 

Step 4 - Update of Harmony Memory: At each new harmony improvised, it is checked whether 
this is better than the worst harmony of Harmony Memory (HM), relative the objective function. If 
confirmed this condition, the new harmony replaces the worst harmony of HM. 

Step 5 - Check the stopping criterion: usually, the maximum number of improvisations MI. If it is 
not achieved, the algorithm returns to the third step. 

Regarding the original work of Geem, Kim et al. (2001), several improvements and variations of 
the method have been proposed by other authors. An extensive study regarding these variations can 
be found, e.g., in Ingram and Zhang (2009), and in Fourie, Green et al. (2013). 

Mahadavi, Fesanghary et al. (2007), for example, refined the method by developing the 
Harmony Improved Search Algorithm (IHS). It was suggested in IHS the dynamic variation of 
parameters PAR and bw, according to the number of iterations, between minimum and maximum 
limits for each factor. PAR increases linearly, while the parameter bw decreases exponentially.  

The algorithm proposed and incorporated into present work considers the inclusion of the 
variable parameters of Mahadavi, Fesanghary and Damangir (2007). In addition to IHS, our 
algorithm considers the following modifications regarding original HS:  

- Initialization of Harmony Memory: instead of generating all initial solutions randomly, one (or 
more) predefined solution can be included in the Harmony Memory. It can accounts for the 
designer’s knowledge regarding the specific problem; 

-Harmony Memory reinitialization: to avoid premature convergence to local minimum, the 
Harmony Memory is restarted when all solutions achieve the same value. Only the best current 
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solution is kept in this new HM. This procedure is similar to reanealling, adopted in Simulated 
Annealing Method; 

-Stopping criterion as an additional criterion to avoid unnecessary calculations, the algorithm 
developed in this work can terminate the search when the best solution found does not varies after 
successive restarts, being NR the considered number of restarts.  

 
 

3. Formulation for minimizing the cost of reinforced concrete columns 
 
Considering a rectangular cross section, the objective of optimum design is to obtain a 

configuration that is capable of producing internal forces and moments (Nrd and Mrd) equal or higher 
than the applied external loadings (Nsd and Msd), with minimal cost. 

Moreover, the Brazilian standard NBR 6118/07 (2007) establishes some dimensional constraints 
for the columns. The minimum area of the section (ACmin) can not be less than 360 cm². The height h, 
the largest cross-sectional dimension, must be limited to five times the width b. The Brazilian 
standard also provides that cross-sectional area of the columns can not have dimensions less than 19 
cm. Dimensions between 12 cm and 19 cm are allowed, but the loads must be multiplied by an 
additional coefficient.  

In each corner of the rectangular sections, there should be at least one steel bar. The space 
between the bars can not be smaller than 2 cm, than the largest diameter of the bars, and than 1.2 
times the maximum diameter of aggregate. The maximum spacing between bars is 40 cm or twice 
the section’s dimension b. The diameters adopted for the steel bars should not be less than 10 mm, 
nor more than 1/8 of the smallest cross-sectional dimension. In addition, there are minimum and 
maximum areas of reinforcements that must be respected according to NBR 6118/07 (2007). A 
detailed procedure regarding strength verification of reinforced concrete columns and standard 
requirements can be seen in Medeiros and Kripka (2014). 

The formulation of the optimization problem starts out from the knowledge of some input 
parameters, previously defined and which basically represent the stresses acting on the element and 
the materials characteristics and costs. These design parameters do not change during the 
optimization process and are defined as: Nsd - axial force; Msd - bending moment in relation to the 
axis x; c - cover depth; fyk - characteristic strength of steel; Es - elasticity modulus of steel; Cc - unit 
cost of concrete; Cs - unit cost of steel; Cf - unit cost of formwork. 

The design variables (xi) are the values that represent the cross section dimensions, characteristic 
strength of concrete (fck) and the steel bar diameters as identified in Fig. 1, where x1 and x2 represent, 
respectively, the width (b) and the height (h) of the cross section; x3 is the diameter of the four corner 
bars; x4 represents the number of bars in the two layers parallel to x1; x5 is the diameter of the bars in 
the two layers parallel to x1; x6 represents the number of layers with two bars parallel to x2; and x7 is 
the diameter of the bars in the layers parallel to x2. The strength fck is represented by the variable x8. 

In this study, all variables were considered as discrete, with the dimensions of the cross section 
varying in steps of one or five centimeters, this last to reduce the wastes if a timber formwork is 
used. The diameters of the reinforcement bars were limited to those available in commercial stores. 

The cost function to be minimized in the optimization process considers the total cost of 
materials (concrete and steel) and formwork, and can be expressed by Eq. (5) 

𝑓(𝑥) = 𝑥1.𝑥2.𝐶𝑐 + 𝛾𝑠.𝜋. (𝑥32 + 0.5. 𝑥4.𝑥52 + 0.5.𝑥6. 𝑥72).𝐶𝑆 + 2. (𝑥1 + 𝑥2).𝐶𝑓 (5) 

The first term of the function represents the cost of concrete per unit volume (Cc), while the 
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Fig. 1 Design variables 
 
 
second represents the cost of the longitudinal reinforcement per unit mass (Cs), being γs the specific 
weight of steel. The last term represents the cost of formwork per unit area (Cf). All costs provide a 
relative value per unit length of the optimized element. 

In the process of minimizing the cost function, all constraints imposed to the problem must be 
respected. Basically, the constraints are related to the strength criteria and construction 
requirements, as previously mentioned. 

All design variables must satisfy the prescriptions of the Brazilian standard NBR 6118/07 (2007) 
with reference to the limitations of size, spacing, and steel ratio. Relatively to side constraints, the 
variables x1 and x2 may belong to the intervals contained in Eqs. (6)-(7) (units in cm) 

𝑥1 ∈ [12; … ;  200] (6) 

𝑥2 ∈ [12; … ;  1000] (7) 

Upper limits were determined to be large enough to not interfere on the results of the 
optimization process. For the same reason, the variables x4 and x6 (number of steel bars in the two 
layers parallel to x1 and the number of layers with two bars parallel to x2, respectively) can take only 
integer values between 0 and 18. Also, x3, x5, and x7 are variables that represent the longitudinal steel 
bars, restricted to the following diameters (units in mm) 

𝑥3,𝑥5,𝑥7 ∈ [10; 12.5; 16; 20; 22; 25] (8) 

The variable x8, related to characteristic strength of concrete (fck), can assume discrete values 
shown in Eq. (9). The units are exposed in MPa. 

𝑥8 ∈ [20; 25; 30; 35; 40; 45; 50] (9) 

In the sequence, the inequality constraints of the problem are presented in normalized equations. 
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𝑔1 = 1 −
𝑁𝑟𝑑
𝑁𝑠𝑑

≤ 0 (10) 

𝑔2 = 1 −
𝑀𝑟𝑑

𝑀𝑠𝑑
≤ 0 (11) 

𝑔3 = 1 −
5. 𝑥1
𝑥2

≤ 0 (12) 

𝑔4 = 1 −
𝑒

𝑒𝑚í𝑛
≤ 0 (13) 

𝑔5 = 1 −
𝑒𝑚á𝑥

𝑒
≤ 0 (14) 

𝑔6 = 1 −
𝜌

𝜌𝑚í𝑛
≤ 0 (15) 

𝑔7 = 1 −
𝜌𝑚á𝑥

𝜌
≤ 0 (16) 

𝑔8 = 1 −
𝑥1.𝑥2
𝐴𝑐𝑚𝑖𝑛

≤ 0 (17) 

𝑔9 = 1 −
𝑥1

8. 𝑥3
≤ 0 (18) 

𝑔10 = 1 −
𝑥1

8. 𝑥5
≤ 0 (19) 

𝑔11 = 1 −
𝑥1

8. 𝑥7
≤ 0 (20) 

The constraints described by Eqs. (10)-(11) determine, respectively, that internal resistant force 
Nrd and bending moment Mrd should be greater or equal than acting forces and moments Nsd and Msd. 
Eq. (12) limits the maximum height of the section to five times the size of the base. Minimum and 
maximum spacing e to steel bars constrained by Eqs. (13)-(14), while Eqs. (15)-(16) define 
minimum and maximum reinforcement rates ρ. Eq. (17) ensures sections with concrete area larger 
than AC minimum. Finally, Eqs. (18)-(20) guarantee that the diameter of the steel bars are smaller 
than 1/8 of the base length b. 

Regarding the constraints, a penalty function technique was adopted, in which constrained 
problems are transformed into unconstrained ones by adding to the function f(x) a penalty function 
P(x), which considers a multiplying factor r applied to all the constraints that are not satisfied. Thus, 
the penalized function F(x) can be written as 

𝐹(𝑥) = 𝑓(𝑥) + 𝑃(𝑥) (21) 

Being 
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𝑃(𝑥) = �𝑟.𝑔(𝑥) (22) 

 
 

4. Examples 
 
The formulation described was implemented using the Fortran programming language, and 

numerical simulations were performed in order to test the efficiency of the proposed procedure.  
Regarding HS, the following parameters were adopted:  

  bw Maximum = 2.0 
  bw Minimum = 1.0 
  PAR Maximum = 0.5 
  PAR Minimum = 0.3 
  Harmony Memory Size (HMS) = 50 
  Harmony Memory Considering Rate (HMCR) = 0.9 
  Pitch Adjusting Rate (PAR) = 0.45 
  Maximum Variation of Tone (bw) = 1.5 
  Maximum Improvisation (MI) = 250,000 

  Number of restarts (NR) = 5 
This first example was taken from Argolo (2000), who optimized columns sections according to 

the Brazilian standard NBR-6118/80. From a column section initially dimensioned by iteration 
abacuses (fixed section of 30×70 cm), the author proposed a new configuration using Genetic 
Algorithms (GA). The acting force and moment, along with the costs of the materials (in Brazilian 
Reais, R$) used in the example are: Nsd=2,142.86 kN, Msd=375 kN.m, Cc=125.00 R$/m³, Cs=1.27 
R$/kg and Cf=16.49 R$/m². It was adopted fck=25 MPa and fyk=500 MPa. 

Fig. 2(a) and Fig. 2(b) show sections obtained by Argolo (2000) by iteration abacuses and  
 
 

 

Fig. 2 Detailing of sections for example I 
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Table 1 Optimal solutions costs for example I (R$/m) 

Method Concrete Steel Formwork Total Cost Variation 
Iteration Abacuses (a) 26.25 43.35 32.98 102.58 - 
Genetic Algorithm (b) 23.44 18.79 32.98 75.21 -26.68% 

Simulated Annealing (c) 25.01 8.70 36.28 70.00 -31.76% 
Harmony Search (d) 25.01 8.70 36.28 70.00 -31.76% 
Harmony Search (e) 25.00 11.15 34.63 70.78 -31.00% 

 
 
Genetic Algorithms, respectively. This author detailed the dimensions of the concrete sections as 
multiple of 5 cm. Fig. 2(c) shows the best result obtained by Bordignon and Kripka (2012) by 
Simulated Annealing. The authors discretized sections in 1 cm and used the Brazilian standard 
NBR-6118/07 (2007) in analyzes. Fig. 2(d) and Fig. 2(e) refer to solutions obtained in present work, 
by the usage of Harmony Search, for sections multiple of 1 cm and 5 cm, respectively. 

Table 1 shows the optimal cost obtained by each method employed. In the last column it is 
indicated the percentual variation in cost, regarding the original solution proposed by iteration 
abacuses. It can be observed that SA and HS led to the same results, with an additional economy in 
relation to GA (6.93%) and to Abacus (31.76%). In addition, optimum sections generated by Argolo 
(2000) violate the constraint related to minimum spacing between longitudinal bars. 

The solution obtained by Harmony Search, considering multiple dimensions of 5 cm, causes an 
increase of 1.11% on the cost, but the solution is still economical compared to that obtained by 
Iterations Abacuses (31%) and Genetic Algorithms (5.89%). 

For this example, some tests of the Harmony Search Algorithm were performed in order to study 
the dependence of the algorithm regarding the initial solution. In some trials, all variables initially 
assumed its maximum value (upper limit). In others, they initially assumed its minimum value 
(lower limit). Results confirmed the conversion to the optimal solution in both situations (Fig. 3). 
The graph illustrates the cost function variation (not penalized) according to the number of 
iterations. These results were obtained with an average of ten trials in sequence. 

 
 

 

Fig. 3 Convergence for optimal from different initial solutions 
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Another example was taken from Zielinski, Long, and Troitsky (1995), who studied a case of 
uniaxial flexural compression according to the Canadian standard CSA CAN3-A23.3-M84. The 
costs of the materials used were: Cc=110.00 $/m³, Cs=2.10 $/kg and Cf=27.00 $/m² along with the 
acting force Nsd=1780 kN and moment Msd=362 kN.m. It was adopted fck=30 MPa and fyk=500 
MPa. 

The optimum design, based on Mathematical Programming (MP) and using the Powell method 
suggested by the authors, corresponds to a rectangular cross section of 31.96×59.36 cm and a steel 
section of 25.8 cm². This section has been simplified assuming the practical dimensions of 35×60 
cm (Fig. 4(a)). Argolo (2000) compared these results to those obtained from the implementation of 
the Genetic Algorithm method, following the same Canadian standard, and adopting multiple 
sections of 5 cm. The section optimized by this method assumed values of 30×65 cm in cross section 
(Fig. 4(b)), resulting in a reduction of 6.04% in the final cost of the section when compared to the 
optimal result obtained by Zielinski, Long, and Troitsky (1995), and 13.87% in relation to the 
practical result suggested by the same authors. Camp, Pezeshk, and Hansson (2003) employed the 
American standard ACI 318-89 to optimize the same column, also using GA. An optimal section of 
30.48 cm×63.5 cm was obtained (steel area of 20.26 cm²), when working with continuous variables. 
A cost reduction of 6.45% was achieved in relation to the optimal section obtained by Zielinski, 
Long, and Troitsky (1995), and 14.24% in relation to practical section proposed by the same authors. 

The optimal section generated by the Harmony Search (Fig. 4(d)), following the criteria 
prescribed by the Brazilian standard NBR 6118/07 (2007), and adopting sections dimensions 
multiple of 1 cm, showed a decrease in cost of 24.23% when compared to the optimal section of 
Zielinski, Long et al. (1995), 30.54% over the practical result suggested by the same authors, 
19.35% in comparison to the section optimized by Argolo (2000), and 19.01% in relation to the 
section by Camp, Pezeshk et al. (2003). The same results were obtained by Bordignon and Kripka 
(2012) with Simulated Annealing, employing the Brazilian standard NBR 6118/07 (2007), 
according to section of Fig. 4(c). The same figure shows another section obtained by the Harmony 
Search, but considering dimensions of the concrete section discretized in 5 cm. In this case, the cost 
was also effectively reduced compared to solutions obtained by Mathematical Programming 
(28.78%) and Genetic Algorithms (17.31%), considering only the practical sections. Regarding the 
solution proposed by Harmony Search, the increase obtained was only 2.54% to section dimensions 
discretized in 1 cm. 

 
 

 
Fig. 4 Detailing of sections to example II 
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Table 2 Optimal solutions costs for example II (R$/m) 

Method Concrete Steel Formwork Total Cost Variation 
Mathematical Optimization1 20.87 42.53 49.31 112.71 - 

Mathematical Optimization (a) 23.10 48.55 51.30 122.95 9.08% 
Genetic Algorithm2 21.29 33.40 50.75 105.44 -6.45% 

Genetic Algorithm (b) 21.45 33.15 51.30 105.90 -6.04% 
Simulated Annealing (c) 19.54 12.94 52.92 85.40 -24.23% 

Harmony Search (d) 19.54 12.94 52.92 85.40 -24.23% 
Harmony Search (e) 20.63 12.94 54.00 87.57 -22.31% 

1) Results obtained by continuous variables [Zielinski, Long, and Troitsky (1995)] 
2) Results obtained by continuous variables [Camp, Pezeshk, and Hansson (2003)] 
 

 

Fig. 5 Iteration history to example of Kripka et al. (2015) 
 
 

Again, the sections obtained by Zielinski, Long, and Troitsky (1995) and Argolo (2000) did not 
consider some constructive provisions required by the Brazilian standard NBR 6118/07 (2007) for 
reinforced concrete columns. Table 2 shows the optimal cost obtained by each method employed. 
The last column indicates the percentual variation in cost, regarding the original solution proposed 
by Zielinski, Long, and Troitsky (1995), who employed Mathematical Programming. 

Fig. 5 illustrates the process of reinitialization of the Harmony Memory to another structure 
analyzed by the authors (Kripka et al. 2015). It can be noticed that, when the worst and best solution 
achieve the same value, just the best result is maintained in HM. In general, the worst result 
corresponds to an unfeasible solution, which was penalized as previously described.  
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Fig. 6 Optimal cost versus number of iterations (Simulated Annealing) 

 

 
Fig. 7 Optimal cost versus number of iterations (Harmony Search) 

 
 
5. Comparison between Harmony Search and simulated annealing 
 

In previous examples, it was verified that Harmony Search reached the same results achieved by 
Bordignon and Kripka (2012) by the usage of Simulated Annealing. This item presents a more 
detailed comparison between these optimization methods, using software developed in this paper 
and the computer program of Bordignon and Kripka (2012). 

Comparing the number of iterations required for convergence, Harmony Search showed more 
satisfactory results. In Fig. 6 and Fig. 7 the relation between cost variation and number of iterations 
for the second example is shown, considering ten runs to each method. The results for each attempt 
by Harmony Search and Simulated Annealing are presented, respectively. Upper limits were the 
initial solution of variables. It can be seen that optimal cost decreases rapidly to HS, when compared 
to SA. 
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Table 3 Comparison between SA and HS algorithms (upper limits) 

Method Number of 
Iterations Best Solution Worst Solution Average 

Solution 

Number of 
Repetitions of Best 

Solution 
Simulated 
Annealing 

156,4001 85.40 86.05 85.55 1 
250,0002 85.40 85.47 85.44 4 

Harmony Search 
156,4001 85.40 85.47 85.42 8 
250,0002 85.40 85.47 85.42 8 

1) Average number of iterations for HS 
2) Maximum number of iterations for SA and HS 
 
Table 4 Comparison between SA and HS algorithms (lower limits) 

Method Number of 
Iterations Best Solution Worst Solution Average 

Solution 

Number of 
Repetitions of Best 

Solution 
Simulated 
Annealing 

184,9501 85.40 85.64 85.47 3 
250,0002 85.40 85.47 85.45 3 

Harmony Search 
184,9501 85.40 85.47 85.41 9 
250,0002 85.40 85.47 85.41 9 

1) Average number of iterations for HS 
2) Maximum number of iterations for SA and HS 
 
 

A higher convergence rate using the Harmony Search was also observed, which achieved 85%, 
for the example considered, against 35% obtained by Simulated Annealing to the maximum number 
of iterations (MI). Combined with a faster convergence, this makes the Harmony Search competitive 
with Simulated Annealing. The results for this example, starting the solution from upper and lower 
limits of the variables, are presented in Table 3 and Table 4, respectively. The number of iterations 
used for the comparison is related to the average number of iterations for Harmony Search and the 
maximum number of iterations for both methods, according to the legend of tables. 
 
 
6. Conclusions 
 

This paper dealt with the problem of optimization of rectangular reinforced concrete columns 
subjected to uniaxial flexural compression, following the requirements of the Brazilian standard 
NBR 6118/07 (2007), and using the Harmony Search Method. 

Modifications were proposed in the original Harmony Search Algorithm developed by Geem et 
al. (2001), which proved to be valid to obtain the optimum solutions with fewer iterations and higher 
convergence rate. Aiming to test the proposed formulation and the Harmony Search Algorithm 
developed, three examples were performed.  

For the examples analyzed, Harmony Search led to a better solution than the Genetic Algorithms, 
Mathematical Programming and the practical dimensioning performed with the aid of iteration 
abacuses. Regarding Simulated Annealing, the results obtained were the same, but HS outperformed 
SA in relation to the convergence rate (85% versus 25% for the example analyzed), as well as the 
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number of iterations required to achieve the optimal solution, showing up Harmony Search quite 
competitive with the Simulated Annealing. 
 
 
Acknowledgements 
 

To the Brazilian Research Council CNPq for the financial support granted to the second author.  
 
 
References 
 
Argolo, W.P. (2000), “Optimal design of reinforced concrete section subjected to axial load and moment using 

genetic algorithms”, Master Thesis, Federal University of Rio De Janeiro, Rio de Janeiro. (in Portuguese) 
Bordignon, R. and Kripka, M. (2012), “Optimum design of reinforced concrete columns subjected to uniaxial 

flexural compression”, Comput. Concrete, 9(5), 345-358. 
Brazilian Association of Technical Standards, NBR 6118 - Design of Structural Concrete: Procedure (2007), 

Rio de Janeiro. (In Portuguese) 
Brazilian Association of Technical Standards, NBR 8681 - Actions and Safety of Structures: Procedure 

(2003), Rio de Janeiro. (In Portuguese) 
Camp, C.V., Pezeshk, S. and Hansson, H. (2003), “Flexural design of reinforced concrete frames using a 

genetic algorithm”, J. Struct. Eng., 129(1), 105-115. 
Fourie, J., Green, R. and Geem, Z.W. (2013), “Generalised adaptive harmony search: A comparative analysis 

of modern harmony search”, J. Appl. Math., 2013, Article id 380985. 
Geem, Z.W., Kim, J.H. and Loganathan, G.V.A. (2001), “A new heuristic optimization algorithm: Harmony 

search”, Simulation, 76(2), 60-68. 
Ingram, G. and Zhang, T. (2009), “Overview of applications and developments in the harmony search 

algorithm”, Music-Inspired Harmony Search Algorithm, Springer, 15-37. 
Kripka, M., Boito, D., Triches, J. And Medeiros, G.F. (2015), “Optimization of reinforced concrete frames by 

harmony search method”, Proceedings of the 11th World Congress on Structural and Multidisciplinary 
Optimisation, Sydney, Austrália.  

Mahadavi, M., Fesanghary, M. and Damangir, E. (2007), “An improved harmony search algorithm for solving 
optimization problems”, Appl. Math. Comput., 188(2), 1567-1579. 

Martínez-Martín, F.J. (2208), “Heuristic optimization of rectangular reinforced concrete columns”, Ph.D 
Thesis, Polytechnic University of Valencia, Valencia. (in Spanish) 

Medeiros, G.F. and Kripka, M. (2014), “Optimization of reinforced concrete columns according to different 
environmental impact assessment parameters”, Eng. Struct, 59, 185-194. 

Rodrigues Júnior, S.J. (2005), “Optimization of reinforced concrete columns of high buildings”, Ph.D. Thesis, 
Pontifical Catholic University of Rio De Janeiro, Rio de Janeiro. (in Portuguese) 

Yoo, D., Kim, J. and Gee, Z. (2014), “Overview of harmony search algorithm and its applications in civil 
engineering”, Evolut. Intel., 7(1), 3-6. 

Zielinski, Z.A., Long, W. and Troitsky, M.S. (1995), “Designing reinforced concrete short-tied columns using 
the optimization technique”, ACI Struct. J., 92(5), 619-625.  

 
 
CC 
 

13

http://lattes.cnpq.br/0811357090167648

	1-1(1).pdf
	1-2(1)
	2. Harmony Search Optimization Algorithm
	The Harmony Search Algorithm, or simply HS, makes an analogy to musical improvisation of jazz, where musicians try to find, through repeated attempts, the perfect harmony (best solution to a problem). Iterations are called improvisations or practice. ...
	Step 1 - Initialization of problem and algorithm parameters: definition of the objective function, the constraints and parameters of the algorithm. Main parameters are Harmony Memory Size (HMS), Harmony Memory Considering Rate (HMCR), Pitch Adjusting ...
	Step 2 - Initialization of Harmony Memory: definition of first Harmony Memory (initial group of solutions). Harmony Memory (HM) is represented by a matrix of Eq. (1). Each line corresponds to a solution vector. The matrix has a number of rows equal to...
	Step 3 - Improvise a new harmony: from the initial solution, a new harmony is generated. This step is performed by using the parameters PAR and HMCR. For each variable of the new solution, a random number between 0 and 1 is generated. This number is c...
	The choice of this new value can be done in two different ways, according to Eq. (3). Again, a random number between 0 and 1 is generated and compared to the parameter PAR. If the number is less than the rate (probability equal to PAR), Harmony Memory...
	Step 4 - Update of Harmony Memory: At each new harmony improvised, it is checked whether this is better than the worst harmony of Harmony Memory (HM), relative the objective function. If confirmed this condition, the new harmony replaces the worst har...
	Step 5 - Check the stopping criterion: usually, the maximum number of improvisations MI. If it is not achieved, the algorithm returns to the third step.
	Regarding the original work of Geem, Kim et al. (2001), several improvements and variations of the method have been proposed by other authors. An extensive study regarding these variations can be found, e.g., in Ingram and Zhang (2009), and in Fourie,...
	Mahadavi, Fesanghary et al. (2007), for example, refined the method by developing the Harmony Improved Search Algorithm (IHS). It was suggested in IHS the dynamic variation of parameters PAR and bw, according to the number of iterations, between minim...
	The algorithm proposed and incorporated into present work considers the inclusion of the variable parameters of Mahadavi, Fesanghary and Damangir (2007). In addition to IHS, our algorithm considers the following modifications regarding original HS:
	- Initialization of Harmony Memory: instead of generating all initial solutions randomly, one (or more) predefined solution can be included in the Harmony Memory. It can accounts for the designer’s knowledge regarding the specific problem;
	-Harmony Memory reinitialization: to avoid premature convergence to local minimum, the Harmony Memory is restarted when all solutions achieve the same value. Only the best current solution is kept in this new HM. This procedure is similar to reanealli...
	-Stopping criterion as an additional criterion to avoid unnecessary calculations, the algorithm developed in this work can terminate the search when the best solution found does not varies after successive restarts, being NR the considered number of r...
	Being
	Regarding HS, the following parameters were adopted:
	bw Maximum = 2.0
	bw Minimum = 1.0
	PAR Maximum = 0.5
	PAR Minimum = 0.3
	Harmony Memory Size (HMS) = 50
	Harmony Memory Considering Rate (HMCR) = 0.9
	Pitch Adjusting Rate (PAR) = 0.45
	Maximum Variation of Tone (bw) = 1.5
	Maximum Improvisation (MI) = 250,000
	Number of restarts (NR) = 5




