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Abstract.  The flexural strength of circular concrete-filled tubes (CCFT) can be estimated by several codes 

such as ACI, AISC, and Eurocode 4. In AISC and Eurocode, two methods are recommended, which are the 

strain compatibility method (SCM) and the plastic stress distribution method (PSDM). The SCM of AISC is 

almost the same as the SCM of the ACI method, while the SCM of Eurocode is similar to the ACI method. 

Only the assumption of the compressive stress of concrete is different. The PSDM of Eurocode approach is 

also similar to the PSDM of AISC, but they have different definitions of material strength. The PSDM of 

AISC is relatively easier to use, because AISC provides closed-form equations for calculating the flexural 

strength. However, due to the complexity of calculation of circular shapes, it is quite difficult to determine 

the flexural strength of CCFT following other methods. Furthermore, all these methods give different 

estimations. In this study, an effort is made to review and compare the codes to identify their differences. 

The study also develops a computing program for the flexural strength of circular concrete filled tubes under 

pure bending that is in accordance with the codes. Finally, the developed computing algorithm, which is 

programmed in MATLAB, is used to generate design aid graphs for various steel grades and a variety of 

strengths of steel and concrete. These design aid graphs for CCFT beams can be used as a preliminary 

design tool. 
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1. Introduction 
 

Recently, many long span structures are being built (Kang et al. 2009, Yang and Kang 2011, 

Lee et al. 2016), and the usage of concrete filled tubes (CFTs) for long span structures is becoming 

greater because of their structural advantages such as greater stiffness and strength compared to 

bare steel tubes (Probst et al. 2010, Kim et al. 2014, Kang et al. 2015, Manikandan and Sukuma 

2016). This trend promotes the use of CFT beams. 

The flexural strength of a CFT can be estimated according to available codes (Eurocode 4 

2004, Leon and Hajjar 2008, AISC 2011a, b, Kang et al. 2011, ACI 318 2014, Lee et al. 2016). 

Despite many codes being available for composite structures worldwide, design codes are not  
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consistent in design philosophy or recommendations of material or section. Furthermore, it is more 

difficult to estimate the flexural strength of circular CFTs than rectangular CFTs, due to the 

complicated computation associated with a circular section (especially thick-walled). Thus, this 

study aims to provide numerical analysis guides for calculating the flexural strength of the circular 

CFT under pure bending. This means that the study only addresses the nominal moment capacity 

of the CCFT with no axial force. Even though this situation represents one point of the axial load-

bending interaction curve (P-M curve) for beam-column members, it is meaningful in itself to 

obtain the flexural strength of the CCFT with a high degree of accuracy. In addition, it is 

significant not only to determine the nominal moment capacity of CCFT beams, but also to 

describe a P-M curve as an important reference point. Therefore, the start of this paper identifies 

the differences between the ACI, AISC, and Eurocode 4 methods. It then proposes a computer 

program to calculate the flexural strength of the CCFT that reflects each difference. The current 

codes do not provide detailed computing algorithm for circular tubes, except for the plastic stress 

distribution method of AISC. The proposed method gives accurate nominal moment strength 

values that are in accordance with the current codes. Currently, no other information is available 

that instructs how to calculate CCFT’s moment strength based on the strain compatibility method 

(SCM) of ACI, AISC, and Eurocode 4 and PSDM of Eurocode 4. Finally, design aid graphs for the 

flexural capacity of circular concrete filled tubes prepared by using the proposed computing 

program are presented, which would be useful at the preliminary design phase, and the resultant 

values according to each method and different material properties are compared. 

 

 

2. Review on design codes 
 

As mentioned earlier, there are many available design codes for the flexural strength of CCFT. 

The applied design codes differ from country to country, and the codes are not consistent each 

other. Consequently, the calculated value of the flexural strength or moment capacity of the CFT 

beams under pure bending varies depending on the design code. This study addresses ACI, AISC, 

and Eurocode 4, which provide methods of estimating the flexural strength of a concrete filled 

tube. 

First, the ACI building code and AISC-LRFD specification provide design rules for composite 

members in the United States. While the ACI building design code (ACI 318-14) provides only 

one method, AISC provides two methods: the strain compatibility method (SCM) and the plastic 

stress distribution method (PSDM). However, the ACI method is conceptually the same as the 

strain compatibility method of AISC-LRFD (2011), which is one of the two methods that AISC 

provides. The ACI method regards the CFT as regular reinforced concrete by replacing the steel 

tube with the same amount of reinforcement bars. The moment capacity of the CFT beam is 

computed based on the assumption of 0.003 of concrete compressive strain. Moreover, according 

to ACI 318-14 Section 22.2.2.3, the relationship between concrete compressive stress distribution 

and concrete strain can be assumed in several shapes, such as rectangular or trapezoidal. Even 

though there are many ways to assume the relationship between concrete compressive stress 

distribution and strain, this study only deals with the rectangular compressive stress distribution of 

concrete, because it is the most common assumption. Thus, this study uses the assumption that the 

compressive strength of concrete is an equivalent rectangular stress distribution, and its value is 

0.85f’c as Whitney rectangular stress distribution, where f’c is the specified concrete compressive 

strength. The depth of the concrete equivalent stress block, a, is the same as β1c, but the tensile 
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strength of concrete is ignored, where β1 is the Whitney stress block depth factor and c is the 

neutral axis depth from the extreme compression fiber. For steel, it is assumed to follow a 

perfectly elasto-plastic stress-strain relationship and have a perfect bonding condition between the 

steel tube and concrete. 

AISC suggests two methods. PSDM is the other method that is suggested by AISC, and it is 

different from the ACI method or the SCM of AISC. The PSDM is a simplified version of the 

SCM, and computes the strength of the section based on the plastic stress distribution. Concrete 

compressive stress in the plastic state for circular concrete filled tubes is assumed to be uniform 

stress of 0.95f’c. As mentioned above, the ACI method assumes that the compressive uniform 

stress of concrete is 0.85f’c, and in fact, AISC also makes the same assumption for rectangular 

concrete filled tube (RCFT). However, the PSDM of AISC considers the confinement due to hoop 

stresses in circular tubes, so it uses the factor of 0.95 for the uniform stress of concrete of CCFTs. 

The depth of the concrete equivalent stress block equals the distance from the extreme 

compressive fiber of concrete to the neutral axis (different from the Whitney stress block depth). 

In particular, only the PSDM of AISC provides the equations for computing the flexural strength 

of the CCFT, and those equations are presented as below (AISC 2011). For a CCFT, the moment 

capacity Mn (or MB as used in AISC) can be calculated as 

'0.95

2

c cB
B y sB

f Z
M F Z   (1) 

where Fy, ZsB, f’c, and ZcB denote the yield strength of steel tube, the plastic section modulus of 

steel tube at point B where no axial force is applied to the CCFT as illustrated in Fig. 1(a), the 

compressive strength of concrete, and the plastic section modulus of concrete at point B, 

respectively. 

Here, ZsB and ZcB are also provided as follows 
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(a) P-M curve (b) Section and stress distributions of CCFT at point B of P-M curve 

Fig. 1 Section and stress distributions of CCFT under pure bending with P-M curve 

*The figures are adopted from and applied by AISC 2011. 
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Eqs. (2)-(3) show that there are several parameters: d, h, and θ. Fig. 1(b) shows these three 

parameters, where d is the outer diameter of the CCFT, h is the diameter of the concrete section or 

inner diameter of the steel tube, and θ is the angle that defines the location of the plastic neutral 

axis at the inner face of the steel. This third parameter can be calculated by the following equation 

 
2

0.0260 2 0.8570.0260 2

0.0848 0.0848

c s c sc s

c c

K K K KK K

K K


 
   (4) 

where 

' 2
c cK f h  (5) 

2
s y

d t
K F t

 
  

 
 (6) 

By using these equations, hand calculation to estimate the flexural strength of a CCFT is finally 

possible only in the PSDM of AISC. However, the PSDM allows errors during the process of 

inducing the plastic section modulus of concrete and steel at point B, so the flexural capacity by 

equations in the PSDM of AISC is not exact, but an approximated value of the CCFT 

(Geschwindner 2010). The degree of approximation becomes larger for thick-walled CCFTs. 

Eurocode 4 makes it possible to compute the capacity of the concrete filled tube in two ways 

called the general method and the simplified method, which are the strain compatibility method 

(SCM) and the plastic stress distribution method (PSDM), respectively, like AISC. However, in 

various aspects, the SCM of Eurocode 4 is different from the ACI method or the SCM of AISC; 

and the PSDM of Eurocode 4 is also different from the PSDM of AISC. 

Like the ACI method or SCM of AISC, according to Eurocode 2 Section 3.1.7, the stress-strain 

relations for concrete can be assumed in three ways: parabolic, trapezoidal, or rectangular. 

However, this study uses just the rectangular shape for concrete stress distribution, because it is the 

most common and convenient assumption. In the SCM of Eurocode 4, the ultimate compressive 

strain, uniform compressive stress, and depth of the equivalent rectangular stress distribution for 

concrete are diverse depending on the strength of concrete. For example, if the concrete strength is 

27 MPa, the ultimate compressive strain of concrete is 0.0035, the uniform compressive stress is 

f’c, and the depth of the equivalent rectangular stress distribution is 0.8c; but if the concrete 

strength is 60 MPa, the ultimate compressive strain of concrete is 0.0029, the uniform compressive 

stress is 0.95f’c, and the depth of the equivalent rectangular stress distribution is 0.775c. For 

tension, like the ACI method or the SCM of AISC, the tensile strength of concrete is ignored, and 

steel is assumed to have a perfectly elasto-plastic relationship. 

The PSDM of Eurocode 4 also has some aspects that are in common with, and different from, 

the PSDM of AISC. Like the PSDM of AISC, the PSDM of Eurocode 4 also uses rigid plastic 

analysis, so the moment capacity is obtained based on the assumption that there is full interaction 

between the steel and concrete. The compressive stress distribution of concrete is assumed to have 

an equivalent rectangular stress distribution; but the value is f’c, which is different from the value 

for the PSDM of AISC, where its depth is once again the distance from the extreme compressive 

fiber to the neutral axis. 

 

 

300



 

 

 

 

 

 

Flexural strength of circular concrete-filled tubes 

3. Algorithm of calculating flexural strength of circular concrete filled tube 
 

Even though several methods make possible to calculate the flexural strength of CFT, it is very 

tough to calculate the flexural strength of CFT according to each method due to its complexity and 

delicate differences between each method. Moreover, it is much more difficult to calculate that of 

circular shaped concrete filled tube due to the shape of section. For this reason, there is a need to 

use a computer program to compute the flexural strength of circular concrete filled tube (CCFT) 

with getting accuracy and convenience so that a computing program is suggested in this study. The 

algorithm of the suggested program which is coded by MATLAB is explained step by step as 

below. 

Before computing the flexural strength, the way of separating section should be carefully 

considered and decided for section analysis. That is because it can be a main cause of errors by 

making missing or additional parts of section as in the following examples. If the sections of 

CCFT are cut by circular segment as shown in Fig. 2, not only the additional concrete part but also 

the missing parts of steel are formed. 

However, if the sections of CCFT are divided by circular sector as shown in Fig. 3, the 

additional concrete part is no longer formed, but both ends of steel parts are not included, so errors 

still exist. 

Therefore the following way to divide the section for sectional analysis is newly proposed in 

this study. The section is first separated by the composed materials, steel and concrete, and the 

steel is divided into two parts, inner steel core and total section, which is composed of the inner 

steel core and outer steel crust. These three detached components of inner steel core, total section, 

and concrete are independently analysed, and according to the contribution of each component to 

the CCFT, the CCFT is analysed as shown in Fig. 4. In other words, the sectional analysis of the 

inner steel core is subtracted from that of the total section, and the sectional analysis of 

 

 

 
Fig. 2 Errors caused by circular segment analysis for steel tube (modified from Geschwindner. 2010) 

 

 
Fig. 3 Errors caused by circular sector analysis for steel tube (modified from Geschwindner. 2010) 
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concrete is added instead. By this means, there is no possibility of getting additional or missing 

parts of a section, so errors can be avoided, and this is applied to make the suggested computing 

program. 

Fig. 5 shows the logical flow chart of computing the flexural strength of the CCFT that is 

applied to the suggested program by using MATLAB. The first step of the program is to input data 

that are the material properties of the CCFT by user choice. The minimum number of needed 

material properties to obtain the flexural strength is five, which are the outer steel diameter bo, 

thickness of steel t, yield stress of steel Fy, Young’s modulus of steel Es, and strength of concrete 

 

 

 
Fig. 4 Conceptual diagram for calculating program 

 

 
Fig. 5 Flow chart for calculating the flexural strength of CCFT 
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f’c. It is possible to compute the flexural strength of any kind of CCFT by using this algorithm, 

because the first step of the algorithm accepts whatever material properties of CCFT a user enters. 

The next step is selecting the method to analyse the CCFT. This study addresses five methods, 

which are the ACI method, the SCM of AISC, the PSDM of AISC, the SCM of Eurocode 4, and 

the PSDM of Eurocode 4, so the user can choose among those five methods. After selecting the 

needed method, one is finally ready to begin sectional analysis for computing the nominal moment 

capacity of the CCFT. 

As mentioned in the previous section, according to the assumptions of each method, the stress 

distributions of concrete and steel are different, so the program is designed to select the 

appropriate stress distributions of concrete and steel as in Table 1. These procedures that define the 

strain and stress distributions are the third and fourth steps of the algorithm, and the same 

procedures are repeated in each method according to the method. 

 

 
Table 1 Strain and stress distributions according to each method 

Method Strain and stress distributions 

ACI 

 

PSDM of AISC 

 

SCM of Eurocode 4 

 

0.003

Fy/Es

d1t

Fy

Fy

0.85f’c

d2

d3

d4

β1c

Strain Concrete Stress Steel Stress

C.L.
N.A.

0.003

Fy/Es

d1t

Fy

Fy

0.95f’c

d2

d3

d4

c

Strain Concrete Stress Steel Stress

C.L.
N.A.

εcu

Fy/Es

d1t

Fy

Fy

ηf’c

d2

d3

d4

λc

Strain Concrete Stress Steel Stress

C.L.
N.A.
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Table 1 Continued 

Method Strain and stress distributions 

PSDM of Eurocode 4 

 
 

 

For example, Fig. 6 describes the strain distribution and the stress distribution according to the 

ACI method in more detail. First, the steel and concrete have the same strains, and the strain 

distribution is linear. From this strain distribution, the stress distributions of concrete and steel can 

also be determined. In the ACI method, while the stress distribution of concrete is assumed to be 

an equivalent rectangular block, the stress distribution of steel is different from that of concrete. 

Moreover, the strain or stress distribution of steel can be divided into four zones, according to the 

meaning of each location. The suggested program in this study uses these four zones in the 

computing process. The first zone is from the extreme compression fiber to the point where the 

steel starts to yield in the compression region, and the second zone is from the end of the first zone 

to the neutral axis. The third zone is from the neutral axis to the point where the steel starts to yield 

in the tension region, and the last zone is from the end of the third zone to the extreme tension 

fiber. The definitions of those four zones are available not only in the ACI method, but also in the 

other methods. 

Through the definitions of four zones and stress distributions corresponding to each method, 

the suggested program finds the neutral axis. The neutral axis is located where the sum of forces 

from all materials and zones becomes zero, so by using this fact, the neutral axis can be 

 

 

 
Fig. 6 Strain and stress distributions of concrete and steel in the ACI method 
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mathematically found. To get all the forces from all materials and zones, the areas and stresses at 

the corresponding locations clearly need to be determined. 

In addition, to determine the corresponding area, it is necessary to know the values of variables, 

d1, d2, d3, and d4, which are the distances in zones 1, 2, 3, and 4, respectively. At the beginning of 

finding the neutral axis, d1 is tentatively determined, and d2 is calculated by using the strain 

distribution. From the strain distribution, Eq. (9) below is proportionally extracted 

1
2

s s

cu s

d t
d

 

 





 (9) 

where εs is the steel strain when the steel starts to yield (εs=Fy/Es), and εcu is the ultimate 

compressive strain of concrete (=0.003 in all methods, except the SCM of Eurocode 4 where εcu 

varies according to the compressive strength of concrete). In all methods, the value of d3 equals 

that of d2 because the compressive and tensile behavior of steel is the same. The value of d4 is the 

distance remaining after subtracting d1, d2, and d3 from the total distance (the diameter of the outer 

steel). 

The exact stresses at each location need to be determined to compute the exact forces at 

corresponding locations, as mentioned earlier. In the ACI method and the SCM of Eurocode 4, 

zones 1 and 4 are already known as they are yielded parts, so the stresses are Fy; however, the 

stresses in zones 2 and 3 are yet to be determined. From the stress distribution, formulae for the 

stresses of zones 2 and 3 can be subtracted as in the following Eqs. (10) and (11). Here, a positive 

sign means compression and a negative sign means tension 

  1
2

2

y y

y d
f y F F

d


    (10) 

  1
3

3

y y

y d
f y F F

d


     (11) 

For the PSDM of AISC and Eurocode 4, it is far easier to get the stress of steel than in the ACI 

method and the SCM of Eurocode 4. That is because steel is assumed to have a plastic stress 

distribution in both of the first two methods, so only the magnitude of the yield stress of steel and 

the sign convention need to be considered. 

By using the above stress and distance equations, the forces at each material and each zone can 

be computed. From this process, the concept as in Fig. 4 is applied to the algorithm, so the forces 

are investigated by three imaginary components of total section, inner steel core, and inner 

concrete (Table 2). 

Table 2 shows that the integral formulae with Lo and Li, which are the chord length of the total 

section and that of the inner steel core as shown in Fig. 6, respectively, represent the area (A) of 

corresponding locations; and other terms, such as Fy, f2(y), and f3(y) in the steel part and kf’c in the 

concrete part, represent the stresses at corresponding locations. 

By using the equations of Table 2, it is possible to estimate the forces from four zones of steel 

and concrete. As mentioned above, the program is made to independently analyse the total steel 

section, inner steel core, and concrete; and it then properly subtracts or adds the results of each 

material’s sectional analysis. Thus the sum of forces is estimated as in Eq. (12), like the basic 

concept shown in Fig. 4 

305



 

 

 

 

 

 

Minsun Lee and Thomas H.-K. Kang 

       
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' ' ' '
1 1 2 2 3 3 4 4
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concrete

F F F F

F F F F F F F F F

  

        


 (12) 

The program keeps iteratively operating the same process until the sum of the forces is zero; 

but after the sum of forces reaches zero, the neutral axis can be found, and the next step, which is 

calculating the flexural strength of CCFT under the pure bending case, can proceed. In the same 

manner as calculating the sum of forces, the flexural strength of CCFT is computed as in Eq. (13), 

like the basic concept. 

 

 
Table 2 Forces of steel and concrete at each zone 

 SCM of ACI and Eurocode 4 PSDM of AISC and Eurocode 4 

Total section 

(Inner steel core 

+ 

Outer steel crust) 

1

1
0

d

y oF F L dy   
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1 2
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2 2

d d
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
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2
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'
a t

concrete c i
t

F kf L dy


   

where  1 1 2a d d t   (ACI) or 

 1 2d d t   (SCM of EC) 

0.85k  (ACI) or 

 (SCM of EC) 

'
a t

concrete c i
t

F kf L dy


   

where 1 2a d d t    

0.95k  (PSDM of AISC) or 

1.0 (PSDM of EC) 

 

 

*β1: the factor relating to depth of equivalent rectangular compressive stress block to neutral axis depth (ACI 

318-14, Section 22.2.2.4); λ: the factor defining the effective height of the compression zone (Eurocode 2 

Eqs. (3.19)-(3.20)); k: the factor defining the effective magnitude of equivalent rectangular compressive 

stress block; and η: the factor defining the effective strength (Eurocode 2, Eqs. (3.21)-(3.22)) 
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       
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' ' ' '
1 1 2 2 3 3 4 4

outer steel inner steel concrete
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M M M M

M M M M M M M M M

  

        


 (13) 

Before computing the flexural strength of the CCFT, the moments of all components should be 

known, and those are presented in Table 3. Compared to the equations in Table 2, the equations in 

Table 3 just add the term (d1+d2–y). The new term means the moment arm length, so the moment 

of each component can be induced. By using Eq. (13) and Table 3, the flexural strength of CCFT 

can be computed. The final step of the suggested program is to print out this flexural strength of 

the CCFT under pure bending. 

 

 
Table 3 Moments of steel and concrete at each zone 

 SCM of ACI and Eurocode 4 PSDM of AISC and Eurocode 4 

Total section 

(Inner steel core 

+ 

Outer steel crust) 

 
1

1 1 2
0

d

y oM F L d d y dy    

  
1 2

1
2 2 1 2

d d

o
d

M L f y d d y dy


    

  
1 2 3

1 2
3 3 1 2

d d d

o
d d

M L f y d d y dy
 


    

 
1 2 3

2

4 1 2

or

y o
d d d

M F L d d y dy
 

    

where  
222o o oL r r y    

 
1

1 1 2
0

d

y oM F L d d y dy    

 
1 2

1
2 1 2

d d

y o
d

M F L d d y dy


    

 
1 2 3

1 2
3 1 2

d d d

y o
d d

M F L d d y dy
 


    

 
1 2 3

2

4 1 2

or

y o
d d d

M F L d d y dy
 

    

where  
222o o oL r r y    

Inner steel core 

 
1'

1 1 2
0

d

y iM F L d d y dy    

  
1 2

1

'
2 2 1 2

d d

i
d

M L f y d d y dy


    

  
1 2 3

1 2

'
3 3 1 2

d d d

i
d d

M L f y d d y dy
 


    

 
1 2 3

2
'
4 1 2

or

y i
d d d

M F L d d y dy
 

    

where  
222i i oL r r y    

 
1'

1 1 2
0

d

y iM F L d d y dy    

 
1 2

1

'
2 1 2

d d

y i
d

M F L d d y dy


    

 
1 2 3

1 2

'
3 1 2

d d d

y i
d d

M F L d d y dy
 


    

 
1 2 3

2
'
4 1 2

or

y i
d d d

M F L d d y dy
 

    

where  
222i i oL r r y    

Concrete 

 '
1 2

a t

concrete c i
t

M kf L d d y dy


    

where  1 1 2a d d t   (ACI) or 

 1 2d d t   (SCM of EC) 

0.85k  (ACI) or 

 (SCM of EC) 

 '
1 2

a t

concrete c i
t

M kf L d d y dy


    

where 1 2a d d t    

0.95k  (PSDM of AISC) or 

1.0 (PSDM of EC) 

 

 

*β1: the factor relating to depth of equivalent rectangular compressive stress block to neutral axis depth (ACI 

318-14, Section 22.2.2.4); λ: the factor defining the effective height of the compression zone (Eurocode 2 

Section 3.1.7); k: the factor defining the effective magnitude of equivalent rectangular compressive stress 

block; and η: the factor defining the effective strength (Eurocode 2, Section 3.1.7) 
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4. Design aid graphs for circular concrete filled tube 
 

Through the suggested program with the algorithm, the nominal moment capacity for any sort 

of CCFT can be calculated in any kind of method among the five methods addressed in this study. 

The following Figs. 7-10 represent the flexural strength of CCFTs based on the ACI method (same 

with the SCM of AISC), the PSDM of AISC, the SCM of Eurocode 4, and the PSDM of Eurocode 

4, respectively. 

For each method, there are six flexural strength versus CCFT diameter relationship graphs. 

Three graphs of these six graphs are divided by the concrete strength, which for one is 27 MPa, 

and for the other is 60 MPa. In addition, for the same method and same concrete strength, three 

graphs are generated for the nominal moment capacities of thick, medium, and thin walled CCFT. 

This study defines the thick, medium and thin walled CCFTs according to their diameter to 

thickness ratio (bo/t). The CCFTs with bo/t values of 20, 35 and 50 are selected to represent thick 

walled, medium walled, and thin walled CCFTs, respectively. 

Furthermore, each graph has four lines, and these represent flexural strengths for the 

 

 

   

 
(a) Flexural strength – diameter graph with f’c = 27 MPa 

   

 
(b) Flexural strength - diameter graph with f’c=60 MPa 

Fig. 7 Flexural strength - diameter graph based on the ACI method 
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Flexural strength of circular concrete-filled tubes 

   

 
(a) Flexural strength - diameter graph with f’c=27 MPa 

   

 
(b) Flexural strength - diameter graph with f’c=60 MPa 

Fig. 8 Flexural strength - diameter graph based on the plastic stress distribution method of AISC 

 

   

 
(a) Flexural strength - diameter graph with f’c=27 MPa 

Fig. 9 Flexural strength - diameter graph based on the strain compatibility of Eurocode 4 

309



 

 

 

 

 

 

Minsun Lee and Thomas H.-K. Kang 

   

 
(b) Flexural strength - diameter graph with f’c=60 MPa 

Fig. 9 Continued 

 

   

 
(a) Flexural strength - diameter graph with f’c=27 MPa 

   

 
(b) Flexural strength - diameter graph with f’c=60 MPa 

Fig. 10 Flexural strength - diameter graph based on the plastic stress distribution method of Eurocode 4 

 

310



 

 

 

 

 

 

Flexural strength of circular concrete-filled tubes 

   

 
(a) Flexural strength - diameter graph with f’c=27 MPa 

   

 
(b) Flexural strength - diameter graph with f’c=60 MPa 

Fig. 11 Comparison between the flexural strength - diameter graphs in the ACI method and plastic stress 

distribution method of AISC 

 

 

corresponding yield strengths of steel, which are 230, 250, 290, and 315 MPa according to steel 

grades. The range of CCFT diameters is determined based on the size of steel tubes that are 

generally used and provided in the construction field. 

Figs. 7-10 show that if the strength of concrete is greater, the flexural strength of the CCFT is 

also greater than the flexural strength of the CCFT with a smaller strength of concrete. Moreover, 

if the thickness of steel tube is greater, the strength of CCFT is greater than that of CCFT with 

thinner steel tube. In other words, thick walled CCFT has higher nominal moment capacity 

compared with medium and thin walled CCFT with the same other conditions. If the yield strength 

of the steel increases, the nominal moment capacity of the CCFT also increases. Likewise, if the 

diameter of the CCFT increases, the moment resistance value increases, but it increases 

exponentially.  

When all the methods and codes are compared, the ACI strain compatibility method provides 

the smallest flexural strength values of CCFTs (Fig. 11), while the PSDM of Eurocode 4 provides 
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the largest values for all CCFT cases (Fig. 10 vs. 8). Most of all, these generated twenty four 

design aid graphs can be used for the design of circular concrete filled tube beams at the 

preliminary design phase. The design aid graphs are especially useful given that hand calculation 

to estimate the flexural strength of a CCFT is very tough and even that there is no commercial 

software that allows such calculations. 

 
 

5. Conclusions 
 
This study investigates the nominal flexural strength of CCFTs calculated according to ACI, 

AISC, and Eurocode 4. The differences between the methods come from each method’s basic 

concept and/or assumption. These differences are based on different stress distributions of concrete 

and steel at the ultimate stage. By accurately accounting for these differences, the suggested 

computing algorithm is programmed to accurately calculate the flexural strength of the CCFT, 

which is impossible without a computer (except for PSDM of AISC). This developed program is 

made to solve the problems that are errors caused during circular section calculation by avoiding 

missing and adding extraneous parts. The program is also configured to account for the material 

properties of diverse CCFTs. The developed program is used to generate design aid graphs for 

various steel sections/grades and various strengths of concrete. These design aid graphs for CCFT 

beams can be used as a preliminary design tool. 

It is worth mentioning as a final remark that the confined concrete is not used for nominal 

strengths in ACI and AISC, and that the accurate sectional analysis with consideration of confined 

concrete, strain hardening, debonding, etc. is not the purpose of this paper. This paper also does 

not attempt to give any information regarding the advantages and disadvantages of each code, as it 

is beyond the scope of the study. 
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