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Abstract.  We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an 

artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual 

kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function 

using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. 

Each iteration involves two steps-shape optimization and size optimization. For both shape and size 

optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an 

initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating 

this surrogate model using an adaptive sampling algorithm until the minimum value of the objective 

function converges. The comparison of the design obtained using our optimization scheme with that 

obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory 

agreement. However, with this surrogate model based approach we reach optimum design with less 

computation effort as compared to the GA based approach which does not use any surrogate model. 
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1. Introduction 
 

Design optimization of aerospace systems usually involves high-fidelity analyses and 

computationally expensive optimization. Surrogate based analysis and optimization (SBAO) is an 

effective means to tackle this issue. The basic idea of using surrogate models (also called meta 
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models) is to replace the high fidelity, expensive analysis code with a less expensive approximate 
model. To obtain an accurate approximation, it is necessary to have a good training set and a 
proper surrogate. Much of the research on surrogates has been done in these two fields, viz., 
design of experiments and selection and validation of surrogate models. While Queipo et al. 
(2005), Forrester and Keane (2009), and Jones (2001) have reviewed the state of the art in 
surrogate model based design optimization in general; Ahmed and Qin (2009) have presented a 
review of the literature related to its application in the field of aerodynamics. Surrogate models can 
be broadly classified into two categories-non interpolating and interpolating. Examples of non 
interpolating (also known as smoothing) surrogate models are polynomial response surface (PRS) 
and artificial neural networks (ANN). Both of these models are fitted by minimizing the sum of 
the squared errors at a finite number of selected data points. At the data points, one may not get 
exact match between the predicted and actual value. Examples of interpolating surrogate models 
include radial basis neural network (RBNN) and kriging. Response surfaces created by an 
interpolating surrogate models passes exactly though the data points used for fitting the model. 

The development of PRS was initiated by Box and Wilson (1951), followed by a 
comprehensive account of the methods of using PRS by Myers and Montgomery (1995). However, 
it has been shown to be unsuitable for highly nonlinear and irregular performance problems 
(Venter et al. 1998, Vavalle and Qin 2007). Several investigations have been carried out to increase 
the accuracy of the PRS for multi disciplinary optimization (Balabanov et al. 1999), by resizing 
the design space. To overcome these limitations of PRS, alternative surrogates like kriging and 
radial basis functions were proposed. Guinta (1997) has shown that quadratic regression 
polynomial gave better results than kriging. However, Wang et al. (2008) concluded that kriging is 
superior in nonlinear problems than PRS. 

An ANN model is a nonparametric regression method. This method utilizes the functional 
concept of neurons in the brain (Daberkow and Mavris 1998). An ANN is composed of neurons 
which can be represented as nonlinear transfer functions of the inputs. The main advantages 
associated with ANN are that: i) it can learn from example and perform the required task, ii) it can 
create its own organization or representation of the information provided to it, iii) it can retain 
some of its capabilities even with major network damage. ANN based surrogate models have been 
successfully used by researchers like Welch et al. (2003), Zaabab et al. (1995) etc. Daberkow and 
Mavris (1998) critically evaluated the use of ANNs as meta models in aircraft design application, 
and contrasted this with the RSM method. They found that RSM worked better than ANNs for a 
problem with few variables and small ranges, but where a large number of variables or extended 
ranges are involved, ANNs yield a better approximation. Kiranyaz et al. (2009) devised a novel 
method for automatic generation of ANNs based on a multi dimensional Particle Swarm 
Optimization. However as ANN is a universal approximator and models the overall nonlinear 
pattern, in case of the optimization problems where the variation of the objective function with the 
design variables show very high nonlinearity, an ANN by itself may not be sufficient. 

Kriging was formally developed by Matheron (Matheron 1963), and was named after a South 
African mining engineer. Kriging considers the value of a function as a sum of a general trend 
(could even be a constant) and a systematic departure. Demonstration of the efficiency of kriging 
for modeling and optimization of deterministic functions can be found in Sacks et al. (1993) and 
Sacks et al. (1989). Jones and Schonlau (1998) investigated the efficacy of kriging by employing 
the DACE stochastic model for constructing a global optimization algorithm. Attempts have also 
been made to increase the performance of kriging by using approaches like Analysis of Variance 
(ANOVA) (Booker et al. 1998) and gradient data (co-kriging) (Toal and Keane 2011). Kriging, 
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along with Gaussian functions, is a special type of Radial Basis Function (RBF) method, which 
uses linear combination of radially symmetric functions to approximate response functions (Keane 
2004). RBFs have a special feature that their response decreases (or increases) monotonically with 
distance from a central point. Michler and Heinrich (2012) have used RBFs to create surrogate 
models for simulating a fighter aircraft in trimmed state. 

Demyanov et al. (1998) and Shen et al. (2004) have proposed the use of a hybridized version of 
ANN and kriging to utilize the benefits of both these models. Demyanov et al. (1998) used the 
ANN residual kriging model to model climatic data. There are various methods for selecting 
training points while developing a surrogate model. These include classical methods like full-
factorial design (FFD), partial factorial design (PFD), face-centered cubic (FCC), central 
composite design (CCD) and D-optimal design. They are easy to implement, but number of points 
increases rapidly with factors and levels. To counter these difficulties, Space Filling Designs are 
used. In these designs, points tend to uniformly cover the entire design space. They are used where 
deterministic errors are expected such as in computer experiments. Latin Hypercube Sampling 
(LHS) (McKay et al. 1979) and Orthogonal arrays (OA) (Hedayat et al. 1979) employ space 
filling designs. OA produces uniform design but can generate particular forms of point replication 
and is sometimes inflexible while LHS does not produce point replicates but is not uniform. To 
address these concerns, OA-based LHS (Leary et al. 2003, Ye 1998) and other optimal LHS 
schemes (Palmer and Tsui 2001) have been proposed. The process of selecting a particular 
surrogate is called validation, in which the generalization error estimates are used to assess the 
quality of the surrogate and select a model for analysis and optimization. Split sample (SS), Cross 
Validation (CV) (Myers and Montgomery 1995) and Bootstrapping (Efron 1983) are some of the 
different schemes that can be used to validate a model.  

In our optimization problem, we have optimized the shape and size of a stiffened panel with 
curvilinear stiffeners to minimize its mass keeping its buckling parameter, crippling parameter and 
von Mises stress parameter within the permissible range. To perform this optimization, we divided 
the optimization process into two steps. In the first step, we optimize the shape to minimize the 
buckling parameter. In the second step, we fix the shape and minimize the mass. Variation of the 
buckling parameter with the design variables is observed to be highly nonlinear. This makes PRS 
and ANN inefficient for this problem. Following the recommendation of Demyanov et al. (1998), 
we have used ANN residual kriging for this problem. Among the different sampling methods, we 
found LHS to be sufficient for application to our problem. However, for higher number of sample 
points with higher number of design variables, we observed LHS and other sampling methods to 
be time consuming. So, we designed our own random sampling alogorithm that meets our needs. 

This work is a part of our research on developing a framework for design optimization of a 
stiffened plate with curvilinear stiffeners. We call this framework EBF3PanelOpt. In this paper, a 
brief description of EBF3PanelOpt is given first. After that, the optimization problem under 
consideration has been explained. Next, descriptions of ANN, kriging, and ANN residual kriging 
have been given. After that, our two step optimization process based upon the artificial neural 
network residual kriging has been explained. We first evaluate the performance of the proposed 
approach by applying it to optimize the modified Rosenbrock’s function to show the robustness of 
surrogate model based optimization scheme. Next, we considered two example problems 
involving mass minimization of a stiffened panel and solved using our proposed artificial neural 
network residual kriging based surrogate model and traditional GA. Comparison of the two 
methods has been shown to prove the efficiency of our proposed artificial neural network residual 
kriging based surrogate model. 
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2. Motivation 
 
The motivation behind this research came from our need to increase the computational 

efficiency of the optimization process in EBF3PanelOpt. EBF3PanelOpt developed by the 
Unitized Structures Research Group at Virginia Polytechninc Institute and State University is a 
framework for analysis and design of stiffened plates with curvilinear stiffeners. Below is a brief 
description of the EBF3PanelOpt framework. 

Msc.Patran (geometry modeling) and Msc.Nastran (finite element analysis) are integrated in 
the optimization framework, EBF3PanelOpt (Mulani et al. 2010, Mulani et al. 2013, Mulani et al. 
2012) using an object oriented script written in Python. EBF3PanelOpt could be coupled with any 
optimizer to minimize the mass of the curvilinear blade-stiffened panel subjected to constraints on 
yielding, buckling, and crippling or local failure of the panel. In EBF3PanelOpt, the panel 
geometry/shape is defined using third-order interpolating B-spline with the help of eight points. 
The perimeter of panel is defined as one single curve by connecting four edges. The stiffener curve 
end-points are created by interpolating this perimeter curve. The stiffener curve is represented 
using third-order uniform rational B-spline using two end-points and a control point, so the 
stiffener always remains in the panel area. The control-point is defined using interpolation of the 
panel surface, so the control-point’s x co-ordinate and y co-ordinate have values between 0 and 1. 
Apart from the definition of stiffener curve points, panel thickness, stiffener thickness, and 
stiffener height are used as design variables. For two and four blade stiffened panel with uniform 
panel thickness, the panel has 13 and 25 design variables, respectively. 

For this work EBF3PanelOpt is utilized along with genetic algorithm (GA) for optimization. It 
was observed that optimization using GA when performed without any surrogate model requires 
very high number of evaluation. To address this issue, we developed a surrogate model based 
optimization scheme that requires less CPU time. 

 
 

3. Description of the optimization problem 
 
The optimization problem is formulated as 

0min  f ( )

f ( ) 1, 1, ,

A B , 1, , .
i

j j j

i m

x j n

 

  

x
x

x 

  

(1)

Here, the design variables xi (i=1,..,m) define the shape, the heights of stiffeners, the 
thicknesses of the stiffeners, and the thickness of the plate. The objective function f0 is the mass of 
the plate, constraints fi (i=1,..,3) are the buckling parameter, crippling parameter, and the von 
Mises stress parameter. Buckling parameter is defined as the reciprocal of the fundamental 
buckling eigenvalue, von Mises stress parameter is the ratio of the aggregated von Mises stress 
Kreiselmier-Steinhauster criteria and yield stress. 

There are total 6Nst+1 design variables, where Nst is the number of stiffeners. Among them, the 
first 4Nst variables xi (i=1,.., 4Nst) define the shape of the stiffeners, whereas the rest 2Nst+1 
variables xi (i=4Nst+1,.., 6Nst+1) define the thickness and height of the stiffeners and the thickness 
of the plate.  

To describe the design variables xi, let us take an example of a plate with 2 curvilinear  
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Fig. 1 Top view of a plate with two curvilinear stiffeners 

 

 
Fig. 2 Front view of a plate with two curvilinear stiffeners 

 
 

stiffeners. Fig. 1 shows the view of the plate from the top. For this plate we have eight shape 
variables xi (i=1,..,8) and five size variables xi (i=9,..,13). 

Variable x4(i-1)+1 and x4i (i=1,2) denote the beginning and end points of the ith stiffener, whereas 
variables x4(i-1)+2 and x4(i-1)+3 (i=1,2) denote the two control points used to define the shape of the ith 
stiffener. These variables have values normalized with respect to the perimeter of the plate as 
shown in Fig. 1.  

Among the size variables, the first Nst variables xi (i=4Nst+1,.., 5Nst) denote the height of the 
stiffeners, xi (i=5Nst+1) denote the thickness of the plate and the last Nst variables xi (i=5Nst+2,.., 
6Nst+1) denote the thickness of the stiffeners, as described in Fig. 2. 

Parameters Aj and Bj define the bounds of the design variables. Values of these parameters are 
Aj=0 (j=1,..,4Nst), Aj=0.01 (j=4Nst+1,.,5Nst), Aj=0.001 (j=5Nst+1,.,6Nst+1), Bj=1 (j=1,..,4Nst), 
Bj=0.06 (j=4Nst+1,.,5Nst), Bj=0.005 (j=5Nst+1,.,6Nst+1). 

 
 

4. Artificial neural networks 
 
An ANN is a soft computing system that follows the principle of the operation of biological 

neurons. It is mostly used for pattern recognition, classification etc. because of its ability to capture 
and represent complex input/output relationships (Sunny and Kapania 2013, Kim and Kapania 
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2003). The building blocks of ANN are interconnected processing elements known as the neurons. 
Like biological neural networks, ANNs acquire knowledge through learning and store knowledge 
within inter-neuron connection strengths known as synaptic weights. The values of connections 
(weights) between different neurons are adjusted to enable the neuron to perform a specific task. 
Figure 3 shows the structure of an ANN with one layer of neurons. The input layer takes the input 
aj (j=1,..4). Each element of the input layer is connected to the neurons in layer-1. Each connection 
between an input element aj and the ith neuron is associated with a weight wij. Apart from that, the 
ith neuron may have a bias bi. Output from the ith neuron is the sum total of weighted inputs and 
bias operated by an activation function fi. An activation function can be a linear function, the step 
function, the sigmoid function etc. The output from each neuron can be written as 

 
(2)

A neural network can have a single (or multiple) layers. Depending on the pattern of 
connections between different layers neural networks can be of two types-feed forward networks 
and recurrent networks. In the feed forward networks, the data flows from input to the output 
layers, but there is no feedback connection i.e., there is no flow of data from output to the input 
layer. Recurrent networks have feedback connections. In some cases, they have dynamic properties 
i.e., the activations undergo relaxation and evolve to a stable state. 

The weights and biases of an ANN are adjusted so that a given set of input produces a desired 
set of output. This is known as the training of an ANN. Training procedures can be divided into 
two categories-supervised training and unsupervised training. In supervised or associative training, 
an ANN is provided with a set of input-output pairs. This set of input-output pairs is called the 
training set. In unsupervised or self organization training, a neural network is trained to respond to 
a cluster of patterns within the input. Basically, all the training algorithms involving adjustments of 
weights are variants of the Hebbian learning rule suggested by Hebb in his classic book, 
Organization of Behavior (Hebb 2002). If the ith neuron in the current layer receives an input xj 
from the jth neuron in the previous layer and outputs xi, then according to the Hebbian rule, the 
weight of the connection wij has to be modified by adding Δwij to it, where Δwij is given by the 
following equation 

ij i jw x x 
 

γ is called the learning rate. In another rule, difference between the actual and desired activation 
are used as the objective function to be minimized for adjusting the weights 

( )ij j j jw y x x  
 

Here, yi is the desired activation. This is called Widrow-Hoff rule or the Delta rule. In a 
network consisting of single layer of neurons with linear transfer functions, the objective function 
is a linear function of the weights and biases. So, the derivatives of the objective function with 
respect to the weights and biases can be easily calculated. In a network with multiple layers of 
neurons with non linear transfer functions, calculations of the derivatives of the objective function 
with the weights and biases become complex. Back propagation algorithm of learning makes the 
calculation of these derivatives easier. Detailed discussions on the different learning rules can be 
found in Hagan et al. (1996). 
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Fig. 3 Architecture of an artificial neural network with one hidden layer 

 
 

5. The kriging model 
 
Kriging is a way of modeling the relationship between the input variables and the output 

function as a realization of a stochastic process. Detailed description of this method can be found 
in Jones (2001). The value of the output for an input vector x  is modelled as a random process 
Y( x ) which has a mean µ and variance σ2. The correlation between the random variables at the 
two points ix  and jx  is given by the relation 

1

[ , ] exp | | l

d
p

i j l il jl
l

Corr Y Y x x


    
 
                        (3) 

Here xil is the lth component of the ith input vector and d is the number of components in each 
vector. 

This is just an example of one specific type of correlation function. One can choose from 
several other types of correlation functions. All these correlation functions should have two 
properties common - i) when ix = jx , the value of the correlation is 1, and ii) as | ix - jx | tends to 
infinity, the value of the correlation tends to zero. If we choose the correlation function given by 
Eq. (3), the parameters θl and pl(l=1,..,d) become the unknown parameters associated with the 
model. Rest of the modeling process involves the determination of values of the parameters θl, and 
pl(l=1,..,d) from a training set. The uncertainty about the function’s value at the n training points 
can be denoted by a vector Y={Y1,..,Yn}

T. 
For this vector, the mean and covariance are µ and cov(Yi, Yj)=σRij. Where Rij is the correlation 

between Yi and Yj. If the output vector at the nth training point is {y1, ..,yn}
T, then the likelihood of 

the observed data at the training points is given by  
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(2 ) | | 2n n

y I R y I
P

R

 
  

   
  

  
                    (4) 

This likelihood is a function of σ and µ, which are function of θl, and pl(l=1,..d). By 
maximizing P, optimum values of θl, and pl(l=1,..d) are obtained. We denote the optimum values 

of θl, and pl(l=1,..d) by 
lθ̂  and lp̂ . Using this model, the value of output at any point 


x  is 
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obtained as 

)ˆ(ˆ 1 μIyRr'μy*                                 (5) 

Here, lμ̂  is the value of µ obtained using the values of lθ̂  and ld̂  and r’ is a vector where the 
ith element ri is given by Corr[Yi,Y*]. 

 
 

6. The artificial neural network residual kriging 
 
Modelling using the ANN residual kriging method involves two steps-training an ANN and 

fitting a kriging model to the data. Let us suppose that we have a training set consisting of n input 
vectors 1x  to nx  and n outputs y1 and to yn. 

In the first step, we train an ANN using this training set. The architecture of the ANN depends 
on the user’s choice. Using the ANN, we predict the values of the output at the training points 
using the trained ANN. Let us denote the ANN predicted output at the ith training point as yni. 
Next, we find out the residue yri=yi-yni at all the data points (i=1,..,n). We define a new training 
data set that has 1x  to nx  as the inputs and yr1 to yrn as the outputs. By using this new training 
data set, we fit a kriging model. This completes the development of an ANN residual kriging 
model. Total output at a point 

x  from this model will be the sum of the output obtained from the 
ANN and the kriging model. 

 
 

7. The two step optimization process 
 
The surrogate model based optimization was performed in an iterative way. Each iteration 

involves two steps. In the first step, the size variables are fixed and the buckling parameter is 
minimized by considering the shape variables as the design variables. In the second step, the shape 
variables are fixed at the optimum values obtained in the first step and the mass is minimized  

 
 

Fig. 4 The two step optimization algorithm 
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keeping the three constraints - buckling parameter, von Mises stress parameter and crippling 
parameter within the permissible values by considering the size variable as the design variables. 
Afterwords, we fix the size variable at the optimum values obtained by performing the size 
optimization at the previous iteration and perform the shape optimization. Again we fix the shape 
variables at the optimum values and perform the size optimization. The iteration continues until 
the difference in the values of the optimum mass obtained at two successive iterations is less than a 
tolerance ɛm defined by the user. Fig. 4 shows the schematic view of this iterative optimization 
procedure. In the first step, we consider the whole design space for both shape and size 
optimization. In each successive iteration, we consider a smaller design space around the optima 
obtained in the previous iteration for both shape and size optimization. 

 
 

8. The optimization process using the surrogate model based approach 
 
8.1 Sampling algorithm 
 
Both the shape and size optimization steps involve random sampling. Before describing each of 

the shape and size optimization steps it is necessary to describe the sampling algorithm used in 
those steps. According to our sampling algorithm, the jth element of the ith sample is 

 ( 1) /sij nd shj sx R R n  
 

Here, ns is the total number of samples generated. Here Rnd is a random quantity between 0 and 
1. Rsh is an array that contains a random combination of the integers ranging from 1 to ns. The jth 
element of this array is Rshj. 

 
8.2 Modified rosenbrock’s function 
 
Before applying our optimization scheme to a complex problem involving shape and size 

optimization, we evaluated its performance on a standard bench-mark problem, optimization of the 
modified Rosenbrook’s function. The optimization problems involves the minimization of a 
modified version of the classical Rosenbrocks’s function (Rossenbrock 1960, Perex et al. 2012) 
with N dimensional constraint. The optimization problem can be formulated as 

    
    

2
2 22

1
1

3

1
1

min  100 1

0.1 1 1 0

-5.12 5.12 , 1, , N.

n

i i i
i

n

i i
i

j j j

x x x

x x

x j







  

    

  





x



                        (6) 

Here, N is the number of design variables considered. This optimization was performed in one 
step i.e., we did not have to break the optimization in different steps unlike the optimization of the 
stiffened plate described in the next two sub sections. For the surrogate model based optimization, 
the objective function was modified as shown in Eq. (7) to account for the constraint 

mod 0 1 1 1H( )f f w f f                                 (7) 
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Here, f0 is the objective function and f1 is the nonlinear constraint shown in Eq. (6). The 
function H(f1) has a value zero when f1<0 and has a value 1 when f1>0. 

At first, we generate a set of n1 sample points using ],...,,[ 21 nxxxx   the random sampling 
algorithm described in the previous subsection. After that, we evaluate fmod at all the sample points. 
We define the set y={y1,y2,..,yn1}, where yi is the value of fmod at the ith sample point. Next, we 
develop an ANN residual kriging model considering the pair of xz and yz as the training set. Now, 
we find the sample point that has the minimum value of y. Let us denote this value as ymin. Next, 
we generate N1(N1>>n1) set of new sample points. According to Jones (2001), the probability of 
fmod having a value (ymin-I) at any of these new sample points x  is given by 

 2

min

2

y ( )1
( ) exp

2 ( )2 ( )

I y x
P I

s xs x

  
  
 
 

                       (8) 

Here, I is a variable which can have a real positive value. We call it the probability of x  
having an improvement by a value I over yhmin. By integrating P(I) as given in Eq. (8) in the range 
I≡[0, ∞], we get the expected value of improvement E at x . In this way, we determine E at all of 
these new sample points and arrange them in descending order. We sort out n2 points having the 
higher values E and update the sets x and y. We fit an ANN residual kriging model using this 
updated sets x and y and find out ymin. Again, we generate a new set of N1 sample points and sort 
out n2 points having the higher values E and update the sets x and y. We continue this iteration 
unless the difference of ymin at two consecutive iterations is below a tolerance value ɛ. The value of 
ymin at the last iteration is the minimum values of y. The corresponding value of f0 is the minimum 
value of the objective function. 

 
8.3 Shape optimization 
 
As mentioned before, for shape optimization at each iteration, we keep the size variables fixed. 

We denote the range of the ith shape variable as dhi≡[dhi1,dhi2] (i=1,…,Nh), where Nh is the number 
of shape variables. At the first iterative step dhi1=0, and dhi2=1. At the jth iterative step (j>1), 

hihihi εxd  ˆ1  and hihihi εxd  ˆ2 . Here hix̂  is the optimum value of the ith shape variable obtained 
in the previous iteration, and ɛhi<<1 is a user defined value used to define the range of the design 
variables in each iterative step. We use ɛhi (i=1,..,Nh)=0.1. 

Based on some observations, we impose a few constraints on the shape variables. It was 
observed that when the end points of two stiffeners are very close, the Nastran based FEA fails. To 
avoid such failures, we considered only the design points where the distance between any two 
stiffener end points along the edges is more than 0.02 m. 

According to the discussion in Section 3, design variables xh4(i-1)+1, xh4(i-1)+2, xh4(i-1)+3, xh4i define 
the profile of the ith stiffener. Variables xh4(i-1)+1 and xh4i denote the two ends of the stiffeners. So, if 
we interchange the values of the two end points we get the same stiffener. So, we reduced the 
design space by putting the following constraint  

xh4(i-1)+1<xh4(i-1)+1; where i≤Nst. 

It can also be observed that if the profiles of any two stiffeners are interchanged, the structure 
of the panel remains the same. Based on this observation, we added the following constraint 

xh4(i-1)+1<xh4i, where i≤Nst-1 
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We also added a few constraints based on the symmetry of the panel. Here, we consider the 
symmetry in terms of the geometry, material properties, boundary condition and loads. If the panel 
is symmetric with respect to the X axis, but not symmetric with respect to the Y axis, we can add 
the following constraint 

1
2

2( )

y
x

x y

L
L

x
L L





 

If the panel is symmetric with respect to the Y axis, but not symmetric with respect to the X 
axis, we can add the following constraint 
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If the panel has symmetry with respect to both the X and Y axis, we can add the following 
constraint 
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At first, we generate a set of nh1 sample points ][ 121 hhnhhh x,...,x,xx   using a random sampling 
algorithm. The sample algorithm is described in the Sub-Section A of Section VIII. 

Afterwords, we evaluate the samples using EBF3PanelOpt. We define the set 
][

121 hhnhhh y,...,y,yy  , where yhi is the buckling parameter obtained using EBF3PanelOpt at the ith 
sample point. Now, we fit an ANN residual kriging model considering the pair of xh and yh as the 
training set. Now, we find the sample point that has the minimum value of buckling factor. Let us 
denote this value as yhmin. We find out of the expectation (Eh) of improvement over yhmin at all the 
sample points using the same procedure described in the previous subsection. We sort out first nh2 
sample points and add to the set xh. By running EBF3PanelOpt, we obtain the response of the 
structure at these new sample points and add the values of the buckling parameters to the set yh. 
Then we fit an ANN residual kriging model using this updated sets xh and yh and find out yhmin. 
Again, we generate a new set of Nh1 sample points and sort out nh2 points having the higher values 
Eh and update the sets xh and yh. We continue this iteration unless the difference of yhmin at two 
consecutive iteration steps is below the tolerance value ɛh. The value of yhmin at the last iteration is 
the minimum values of the buckling parameter and the values of the corresponding shape variables 
give the optimum shape. 
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8.4 Size optimization 
 
In each iteration, we fix the values of the shape variables at their optimum values obtained in 

the shape optimization step and find the optimum values of the size variable that minimize the 
mass keeping the buckling parameter, crippling parameter and von Mises stress parameter in the 
permissible range. 

We denote the range of the ith shape variable by dzi≡[dzi1,dzi2] (i=1,..,Nsz), where Nsz is the 
number of size variables. At the first iterative step, dzi1=Ai+2Nst, and dzi2=Bi+2Nst. At the jth 
iterative step (j>1), szizizi εxd  ˆ1 , szizizi εxd  ˆ2 . Here zix̂  is the optimum values of the ith size 
variable obtained in the previous iteration, and ɛszi<<1 is a user-defined value used to define the 
range of the design variables in each iterative step. We use ɛszi(i=1,..,Nsz)=0.03. 

The size optimization step involves a constrained optimization where the objective function is 
mass and the constraints are the buckling parameter, the crippling parameter and the von Mises 
stress parameter. At first, we convert this constrained optimization problem into an unconstrained 
optimization problem. We define a new objective function for size optimization as 

mod 0 1 1 1 2 2 2 3 3 3H( ) H( ) H( )f f w f f w f f w f f                         (9) 

Here, H(f) is function which is zero when f<1 and has a value 1 when f≥1, wi(i=1,..,3) are 
weights. The values of wi(i=1,..,3) is determined by the user. Here we use wi=1.5 (i=1,..,3). A close 
look at Eq. (9) shows that by solving an unconstrained minimization problem, by considering yz as 
the design variables one can minimize mass keeping the buckling parameter, the crippling 
parameter and the von Mises stress parameter in the range [0,1]. 

We follow the same optimization procedure described in this section to minimize yz. At first, 
we generate a set of nz1 sample points 11 2[ , ,..., ]

zz z z znx x x x using the random sampling algorithm 
described in Sub-Section A of Section VII. After that, we evaluate the responses using 
EBF3PanelOpt and calculate fmod at all the sample points. We define the set yz={yz1,yz2,..,yzn}, 
where yzi is the value of fmod at the ith sample point. Next, we fit an ANN residual kriging model 
considering the pair of xz and yz as the training set. Now, we find the sample point that has the 
minimum value of yz. Let us denote this value as yzmin. Next, we generate Nz1 set of sample points 
and following the procedure we find out of the expectation (Ez) of improvement over yzmin at all the 
sample points. We sort out nz2 points having the higher values Ez and update the sets xz and yz. We 
fit an ANN residual kriging model using this updated sets xz and yz and find out yzmin. Again, we 
generate a new set of Nz1 sample points and sort out nz2 points having the higher values Ez and 
update the sets xz and yz. We continue this iteration unless the difference of yzmin at two consecutive 
iteration is below a tolerance value ɛz. The value of yzmin at the last iteration is the minimum values 
of yz at that iteration. The corresponding value of mass is the minimum value of mass at that 
iteration. 

 
 

9. Results and discussion 
 
9.1 Modified Rosenbrock’s function 
 
We optimized the modified Rosenbrock’s function assuming N=2 using both traditional GA 

based approach and our proposed surrogate model based approach. The surrogate model based 
optimization scheme had to evaluate the objective function 3983 times and found the value of the 
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objective function f0 to be 0.021. Using the GA, the objective function had to be evaluated 38098 
times and the value of the objective function was found to be 0.022. 

 
9.2 Rectangular panel with two stiffeners 
 
We considered the design optimization problem of a rectangular panel with two curvilinear 

stiffeners. The baseline panel configuration was provided by our industrial partner Lockheed 
Martin. The panel is a typical aircraft section panel. Generally these panel loads are non-uniform, 
but for the design purpose, these loads are averaged. The dimension of the baseline panel and the 
loads at the four edges are shown in Fig. 5. The panel was considered to be simply supported at the 
four edges. 

At first, we solved the optimization problem described in section 3 for this panel using our 
proposed two step optimization procedure that uses an ANN residual kriging based surrogate 
model. The values of the parameters ɛh, ɛz, and ɛm were taken to be 0.08, 0.04, and 0.02. To 
complete this optimization procedure the EBF3PanelOpt had to be run 2846 times. The mass 
obtained was 1.9962 kg. Now, the same optimization problem is solved using genetic algorithm. 
The genetic algorithm based optimization process also uses the two step approach described in 
section VII and uses the same constraints. However, the shape and size optimizations at iteration 
are performed using the genetic algorithm. For the surrogate model based optimization, we 
converted the constrained optimization problem into an unconstrained one for size optimization. 
While using the genetic algorithm, we solved it as a constrained optimization problem that 
considers mass as the objective function and buckling parameter, crippling parameter, and von 
Mises stress parameter as the constraints. We used the same values of ɛh, ɛz and ɛm for genetic 
algorithm based optimization. For this genetic algorithm based optimization, EBF3PanelOpt 
needed to be run 5381 times. The optimal mass obtained was 2.0137 kg. 

Next, we changed the values of ɛh, ɛz, and ɛm to 0.004, 0.004, and 0.004 and optimized the panel 
using the two approaches. Using the surrogate model based approach, we obtained a design having 
mass equal to 1.9237 kg by running the EBF3PanelOpt 3895 times. For the GA based approach, 
EBF3PanelOpt was run 7149 times. The optimum mass obtained was 1.9507 kg. Table 1 shows 
the designs obtained using the surrogate model based approach and the GA based approach. From 
these results, it can be observed that the surrogate model approach is giving a better design with 
less computational effort. 

 
 

Fig. 5 Baseline panel considered in example problem 1 
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Mass = 1.9237 Kg 

Buckling Parameter = 1.000955 

Von Mises Stress Parameter = 0.373 

Crippling Stess Parameter = 0.56 

 
Mass = 1.9507 Kg 

Buckling Parameter = 1.00759 

Von Mises Stress Parameter = 0.391 

Crippling Stess Parameter = 0.538 
(a) Design obtained by our surrogate model based 

optimization 
(b) Design obtained by GA based optimization 

Fig. 6 Designs obtained using the surrogate model and GA based approaches for example problem 1 
 

 
Fig. 7 Baseline panel considered in example problem 2 

 
 
After that, we changed the loading condition on the panel as shown in Fig. 7 and optimized the 

panel using our surrogate model based approach and the traditional genetic algorithm based 
approach. With the surrogate model we had to run the EBF3PanelOpt 3573 times and got an 
optimum mass of 0.89685 kg. The traditional genetic algorithm based approach had to run the 
EBF3PanelOpt 6382 times. The optimum mass obtained was 0.9529 kg. 
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Mass = 0.89685 Kg 

Buckling Parameter = 1.00484 

Von Mises Stress Parameter = 0.30117 

Crippling Stess Parameter = 0.641306 
Fig. 8 Design obtained using the surrogate model approach for example problem 2 

 
 

10. Conclusions 
 
A surrogate model based optimization technique using an ANN residual kriging model has 

been proposed for the design optimization of stiffened plate with curvilinear stiffeners. The 
optimization is performed in an iterative way. Each iteration involves shape optimization followed 
by size optimization using the proposed ANN residual kriging model. Two example problems 
involving the mass minimization of the stiffened panel with curvilinear stiffeners have been solved 
using the proposed surrogate model based optimization procedure and the results have been 
compared with the use genetic algorithm but without the use of any surrogate model. Comparison 
of the results show that this proposed optimization procedure give better design with less 
computational effort as compared to the traditional genetic algorithm approach without using any 
surrogate model. We see the surrogate model approach to be even more efficient than the GA 
based approach for optimizing the Modified Rosenbrock’s function. 
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