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Abstract.  Nature has provided inspiration for most of the man-made technologies. Scientists believe that 

dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used 

by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this 

paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization 

method based on dolphin’s approach for hunting food and exploration of environment. DEO has already 

been developed for discrete optimization search space and here it is extended to continuous search space. 

DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum 

results and leads to alternative optimality curves suitable for the problem. This algorithm has a few 

parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the 

present work, the efficiency of this approach is demonstrated using standard benchmark problems. 
 

Keywords:  Dolphin Echolocation Optimization; continuous search space; mathematical examples; 

truss structure 

 

 

1. Introduction 
 

Optimization is selection of the best element from some set of available alternatives. 

Mathematical programming and metaheuristic algorithms are two main approaches for 

optimization. Mathematical programming includes a wide range of methods such as linear 

programming, Nonlinear Programming, Stochastic Programming and Dynamic Programming. 

These methods perform local search with higher accuracy in comparison to stochastic methods; 

however they require gradient information and an initial starting point to perform properly. 

Moreover variables and fitness function should be continuous. 

Metaheuristic optimization methods are the recent generation of optimization methods. These 

methods are inspired from natural phenomena and their capabilities in optimal design of structures 

are demonstrated in many research studies. Evolutionary algorithm (EA) proposed by Fogel et al. 

(1966), Koza (1990) and Genetic algorithm (GA) proposed by Holland (1975) and Goldberg 

(1989) is inspired by Darwin’s theory of evolution. Particle Swarm Optimization (PSO) proposed 

by Eberhart and Kennedy (1995) mimics the social interaction behavior of birds flocking and fish 

schooling. Ant colony optimization (ACO) proposed by Dorigo et al. (1996) simulates the  
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foraging behavior of real life ant colonies that can establish a shortest route from food source to 

their nest and vice versa. Harmony Search (HS) method invented by Li and Geem (2004) imitates 

the musical performance process which takes place when a musician searches for a better state of 

harmony. Big Bang-Big Crunch algorithm (BB-BC) proposed by Erol and Eskin (2006) relies on 

the theory of evolution of the universe, Cuckoo Search (CS) by Yang and Deb (2009) is based on 

the obligate brood parasitic behavior of some Cuckoo species, Charged System Search (CSS) 

proposed by Kaveh and Talatahari (2010) utilizes the Newtonian and electrical physics laws. Ray 

Optimization (RO) was developed by Kaveh and Khayatazad (2013) that utilizes the refraction of 

light described by Snell’s law. Colliding Bodies Optimization (CBO) was developed by Kaveh and 

Mahdavai (2014) which is based on the governing laws of one dimensional collision between two 

bodies from the physics that one object collides with other object and they move toward minimum 

energy level. Bat-inspired algorithm presented by Yang (2010, 2011), Teaching-Learning-based 

optimization (TLBO) by Rao et al. (2011), Sadollah et al. (2015) developed Water Cycle, Mine 

Blast and improved mine blast algorithms, Gonçalves et al. (2015) presented Search Group 

Algorithm, and Mirjalili developed the Ant Lion Optimizer (2015). are other metaheuristic 

algorithms which have sources in nature. Some other applications of these algorithms may be 

found in (Kaveh and Zolghadr 2014, Kaveh and Maniat 2015, Kaveh and Ilchi Ghazaan 2015). 

Dolphin Echolocation Optimization is one of the most recent metaheuristic algorithms. This 

method imitates dolphin’s strategies for exploring their environment. DEO in discrete search space 

is developed in the work of Kaveh and Farhoudi (2013). In this study, DEO is extended for 

continuous search space. 

Section 2 presents the real dolphins tactics in searching their environment. Section 3 introduces 

Dolphin Echolocation Optimization for continuous search space. Sections 4 and 5 are devoted to 

the application of DEO in solving some benchmark mathematical and mechanical examples. In 

Section 6 concluding remarks are provided. 

 

 

2. Dolphin echolocation in nature 
 

As early as 1947, Arthur McBride observed attempts to capture dolphins at night in turbid 

waters. He noted that the animals could avoid fine mesh nets and, even at distances beyond visual 

range, could detect openings in the nets. However, it was not until 1960 that Kenneth Norris and 

his colleagues unequivocally demonstrated echolocation in dolphins by covering a dolphin’s eyes 

with rubber suction cups and observing that the animal could avoid obstacles in a maze-all the 

while emitting ultrasonic sounds. Nowadays, acousticians understand that dolphins and bats 

possess a sophisticated biosonar system that allows them not only to detect, discriminate, and 

pursue prey, but also to track the trajectory of prey in order to solve the prey-intercept problem. 

And those feats are typically accomplished in noisy environments often cluttered with background 

targets. In addition to catching prey, dolphins and bats also use biosonar to navigate and avoid 

obstacles (Au 2007). 

A dolphin is able to generate sounds in the form of clicks. Frequency of these clicks is higher 

than that of the sounds used for communication and differs between species. When the sound 

strikes an object, some of the energy of the sound-wave is reflected back towards the dolphin. As 

soon as an echo is received, the dolphin generates another click. This process is depicted in Fig. 1. 

The time lapse between click and echo enables the dolphin to evaluate the distance from the 

object; the varying strength of the signal as it is received on the two sides of the dolphin’s head  
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Dolphin echolocation optimization: Continuous search space 

 
Fig. 1 A real dolphin catching its prey 

 

 

makes it possible for him to evaluate the direction. By continuously emitting clicks and receiving 

echoes in this way, the dolphin can track objects and home in on them, May (1990). The clicks are 

directional and are for echolocation, often occurring in a short series called a click train. The click 

rate increases when approaching an object of interest, Au (2007). 

 

 

3. Dolphin Echolocation Optimization in continuous search space 
 

Dolphin Echolocation Optimization is recently developed for the discrete search space by the 

authors (Kaveh and Farhoudi 2013). Dolphins take advantages of echolocation to discover their 

environment. The problem of finding some variables’ value in a search space is like search of 

dolphins in their environment. In optimization choosing the best answer for a problem is similar to 

dolphin’s attempt to find the best target. Dolphins at the outset, look around the search space to 

find out where the preys are, subsequently they restrict the trace in order to locate the precise 

position. 

The method simulates dolphin echolocation by decreasing size of the random search space 

proportional to the distance to the target. In the proposed method, the user defines a curve on 

which the optimization convergence should be performed. In this way the convergence criteria is 

enforced to the algorithm and also this process makes the algorithm’s convergence less parameter 

dependent. 

There is a unified method for parameter selection in meta-heuristics in discrete search space 

(Kaveh and Farhoudi 2011). The method works by controlling an index of convergence factor. A 

Convergence Factor (CF) is defined as the average probability of the best answer. Here in 

continuous search space because of the inherently continuous characteristic of the variables it is 
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not possible to calculate probability for the best answer as a single point, instead standard 

deviation is chosen to be a criterion for convergence. For variable j, Convergence Factor (CF) is 

defined as follows 

  2/
1

jj

j

j
LLUL

SD
CF


  (1) 

where,
jSD is the standard deviation of the jth location values; ULj is the upper limit of the jth 

variable; and LLj is the lower limit of the jth variable. 

 

3.1 Dolphin Echolocation Optimization algorithm 
 

A curve according to which the convergence factor should change during the optimization 

process should be assigned. Here, the change of CF is considered to be according to the following 

curve 

  1

1
)1()( 11






Power

Power

i
i

NumberLoops

Loop
PPPPLoopPP  (2) 

PP: Predefined probability; PP1: Predefined probability of the first loop. In other words, PP1 is a 

guess for PP in first loop. It should be noted that, it would be better to let the algorithm to start its 

work with a random selection at first loop and calculate CF for this loop, however, as it is not of 

much importance, a value of around 10% may be proper for all cases, then generally there is no 

need to calculate it; Loopi Number of the loop in which optimization process is performing; 

Power: Degree of the curve. As it can be seen, the curve in Eq. (1) is of Power degree. Loops 

Number: Number of loops that algorithm should end its work and give the result. The loops 

number should be chosen by the user according to the computational effort that can be provided 

for the algorithm. 

Fig. 2 shows the variation of PP by the changes of the Power, using the proposed formula, Eq. 

(2). 

 

 

 
Fig. 2 Sample convergence curves, using Eq. (1) for different values for power (Kaveh and Farhoudi 2011) 
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                            Terminating criteria 

 

 
 

                            Stop 

Fig. 3 The flowchart of the DEO algorithm 

 
 
3.1.1 Mathematical formulation of the DEO algorithm 
Steps of the DEO algorithm can be stated as follows: 

1. Initiate NL locations for a dolphin randomly. 

2. Calculate PP of the loop using Eq. (2). 

3. Calculate the fitness of each location. 

Fitness should be defined in a manner that better answers get higher values. In other words the 

optimization goal should be to maximize the fitness. 

4. Create the best fitness matrix (BF), Leading curve (LC) and Smooth Best Fitness curve 

Initiate the definition of the problem and predefined probability 

curve and select the positions of dolphin randomly 

 

Estimate the smooth best fitness curve for each variable. The smooth best 

fitness curve (SBF) of a certain variable shows the best possible fitness can 

be achieved if the other variables be set as their best. 

Yes 

No 

Form normalized best fitness curve (NBF) in order to have maximum value 

equal to unity and the minimum one equal to zero. 

Increase convergence factor (CF) to PP by raising all points of the NBF to 

a power greater than 1.  

Divide all points to the total integral of the curve in order to have 

Normalized Powered Best Fitness (NPBF) curve which has total integral 

equal to 1.  

 Calculate probability as follows: 

Probability=CF * NPBF + (1-CF)*Random probability distribution curve 

Calculate the fitness for each location 

 

Select next loop locations according to the probability curve 
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(SBF) according to dolphin rules as follows: 

4.1. Create the best fitness matrix (BF) and draw the leading curve (LC). 

For j=1 to NV 

 For i=1 to NL 

))),,((),(max()),,(( jjiLBFiFitnessjjiLBF   

 












otherwise

xjxLCiFitnessxR
RjxLC

e

e

0

RR-)),j)L(i,(),(
1

max(
),j)L(i,(

ee
 (3) 

where, NV is number of variables; NL is number of locations; L(i,j) is the jth variable’s value in the 

ith location; BF contains the best ever achieved fitness for each variable. LC(x,j) is the maximum 

value obtained by producing an inverse V-type curve on all locations of this loop by considering y-

axis as fitness and x-axis as available values for the jth variable. Re is the effective radius which 

shows the distance around a selected alternative that its neighbors’ probabilities are affected from 

its fitness. Re is recommended to be not more than 1/4 of the search space; )(iFitness is the 

fitness of the ith location. 

 

3.2 Draw Smooth Best Fitness 
 

Smooth Best Fitness (SBF) is a smooth curve for each variable which shows how each 

alternative is fitted for this variable. It passes through BF points that lay on /over LC curve. This 

can be done by different methods; however, the one used here follows the following steps to draw 

the curve for the jth variable: 

1. For the first alternative, value of SBF is the maximum value of LC and BF for this 

alternative. Or SBF1j=max(LC1j, BF1j);  

Set alternative 1 as FiPo (First Point); 

2. a) Form a group of points of maximum PoNum number X={X1,X2,..XLastPoint}| X1>=FiPo+1 & 

XLastPoint<=ULj (ULj is the upper limit of the jth variable) & LastPoint<=PoNumin which for each Xi

∈X, BFXi,j is greater or equal to LCXi,J.  

* Here it should be noted that for the point like p, if BFp,j is still zero it means that alternative p 

has not been used for jth variable so far, then p cannot be one of the X group members. 

b) For each point of X group like Xi, calculate the slope of a line which connects FiPo to Xi.  

c) Define the point for which the slope is maximized and name it MaxPo. 

d) Draw a line from FiPo to MaxPo and set the value of SBFFiPo+1, j to SBFMaxPo,j to be on the 

line.  

3. If MaxPo is not equal to ULj set FiPo equal to FiPo+1 and repeat Steps 2 and 3. 

5. Normalize the smooth best fitness curve in order to have maximum value equal to unity and 

the minimum one equal to zero. For the jth variable, if maximum and minimum values of SBF be 

considered as Maxj and Minj Normalized SBF or NBF will be equal to 

)min-)/(maxmin-j)SBF(x, (=j)NBF(x, jjj  (4) 

where, x belongs to the jth variable domain.  

6. Normalized best fitness (NBF) curve is going to be used in this step as probability 

distribution curve but before that, its convergence factor should be changed according to the 
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Dolphin echolocation optimization: Continuous search space 

predefined probability curve. An increase in convergence factor occurs when standard deviation 

decreases. Decreasing standard deviation is implemented in algorithm by raising all points of 

normalized best fitness curve to a power greater than 1. The power should changes till CF 

achieved from Eq. (1) be equal to predefined probability (PP). 

7. After that, divide NBF to total area between the curve and x axis in order to have a curve 

with total area enclosed by the curve equal to unity. Name the curve as the Normalized Powered 

Best Fitness curve (NPBF). 

8. Probability distribution curve is the CF * NPBF plus (1-CF)*Random distribution curve 

(Random distribution curve is a curve with constant value of 1/(Domain length). It would be 

obvious that its integral all around the domain will be equal to 1). 

9. Select locations of the next loop according to the probability curve. In order to performing 

selection, for each dimension of a specified location choose a random number between 0 and 1. A 

point to which the integral of probability curve is equal to the random number, should be selected. 

The SBF at the end of algorithm is named optimality curve. Optimality curve of variable j at 

point x shows the best achievable fitness for the problem, if x be selected for the jth variable. 

 
3.3 Graphical description of the algorithm 
 

In this section, steps of the algorithm are demonstrated by some figures. Figs. 4 to 7 

demonstrate various curves of the algorithm for optimizing Allufi-Pentiny function at 1st, 3rd,7th 

and 25th loop, respectively. Definition of the Allufi-Pentiny function is demonstrated in Table 1. 

A typical selection for the steps of the algorithm is as follows: 
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Fig. 4 Graphical demonstration of the DEO curves of Allufi-Pentiny function in the 1st loop of optimization 
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Fig. 5 Graphical demonstration of the DEO curves of Allufi-Pentiny function in the 3rd loop of optimization 
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Fig. 6 Graphical demonstration of the DEO curves of Allufi-Pentiny function in the 7th loop of optimization 
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Table 1 Description of the mathematical benchmarks 

Function name Interval Function 
Global 

minimum 
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1. First, NL points should be selected randomly. 

2. Predefined possibility curve should be selected in this step. A linear change in convergence 

factor is considered and Eq. (2) is used for predefined probability. In this equation, the first loop 

convergence factor should be calculated and used as PP1, but a value of 10% is assumed for 

simplicity. If the algorithm be adjusted to finish its works in the 30th loop (Loops Number=30), 

the predefined probability will be as follows 

130

1
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Fig. 7 Graphical demonstration of the DEO curves of Allufi-Pentiny function in the 25th loop of optimization 

 

 

3. Calculate the fitness of the selected points and locate all red points on both charts as depicted 

in Fig. 4 (In this example, two variables of x1 and x2 are optimized and for each variable there is a 

chart). It is important to note that each chart is drawn independently. 

4. The main goal of this step is to draw a smooth curve which passes through red points. This 

task contains three steps: 

4.1. Create best fitness matrix (BF) and draw Leading curve (LC). 

BF is a matrix including all generated locations and their associated fitness. If a location occurs 

more than once during the optimization process, substitute the fitness value with the greatest one. 

Leading curve is created by passing an inverse V-type curve on each of red points. These 

curves are colored green in Figs. 4 to 7. Base of all these curves are equal to 2*Re. By utilizing 

these inverse V-types all ignorable points are omitted. In each step, V-type curves of only newly 

added points should be added to the existing LC. 

4.2. Draw Smooth Best Fitness (SBF). 

In this step, a smooth curve is constructed over peaks of LC. For having a smooth curve, some 

points should be ignored and some should be utilized. For performing this task, PoNum parameter 

is used to select number of ignorable points. In this step for every PoNum peak points (peak points 

are BF points located on LC curve) a line that is located over all these points is selected. Red 

curves of Figs. 4 to 7 demonstrate SBF curves. 

In the next four steps (5, 6, 7 and 8), the main goal is to form probability curve based on SBF. 

Here, it should be taken into consideration that probability curve should have a convergence factor 

according to the pre-defined probability, then SBF should be changed in order to have CF equal to 

PP. In other words, in each step concentration on better achieved answers should increase. 
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Graphically it will be possible if one gets peak points and raise the curve in order to increase their 

probability and consequently decrease dispersion. In final step some random values will be added 

to the curve for preventing local search and providing a global one. 

5. At this step SBF curve should be normalized in order to have maximum value equal to unity 

and the minimum one equal to zero. It means, the red curve should be sketched in a way that its 

peak be located at 1 and its minimum be located at 0. 

6. All points of curve at this step should be raised to a power greater than unity. After 

performing this task, the best point of the curve which is equal to 1 in the normalized curve, will 

remain 1 while the others will decrease by raising to the power. Then the curve will be compressed 

on the best points. 

7. For making the curve of the previous step suitable to be used as a probability curve, total 

area between the curve and x axis should be equal to 1, then another normalization should be 

performed by dividing all points value to the total area between the curve and x axis. At the end of 

this step, the total integral of the curve will be equal to 1. This curve is named the Normalized 

Powered Best Fitness (NPBF) curve. 

8. Probability distribution curve is the CF*NPBF+(1−CF)*Random distribution curve. This 

curve is colored blue in Figs. 4 to 7. 

9. Select locations of the next loop according to the probability distribution curve. This means 

to locate some points randomly in the area between blue curve and x axis. 

 
3.4 Input parameters  
 

Input parameters for the algorithm are: 

a) Loops number 

For an optimization algorithm it is beneficial for the user to be able to enforce the algorithm to 

work according to the affordable computational cost. The number of loops can be selected by 

sensitivity analysis when high accuracy is required. 

b) Convergence curve formula 

This is another important parameter to be selected for the present algorithm. The curve should 

reach to the final point of 100% smoothly. If the curve satisfies the above mentioned criteria, the 

algorithm will perform the job properly, but it is recommended to start with a linear curve and try 

the curves that spend more time (more loops) in high values of PP. For example, if one is utilizing 

proposed curves of this paper, it is recommended to start with Power=1 which usually gives good 

results and it is better to try some cases of the Power<1 to check if it improves the results. 

c) Effective Radius (Re) 

This parameter should be chosen according to the size of search space and the sensivity of the 

fitness to each variable.  

d) Number of Locations (NL) 

This parameter is the same as the population size in GA or number of ants in ACO. It should be 

chosen in a reasonable way. 

f) Point numbers (PoNum) 

This parameter is used for constructing SBF, which is a smooth curve passing through peaks of 

LC curve. PoNum helps SBF to ignore some points and do not go up and down with every 

changes in LC. For example, when PoNum is equal to 5, the algorithm selects 5 of peaks of LC 

curve and checks how to draw a line which starts from first point and ends to one of points in a 

way that all other points are located below the curve. In this way, for every 5 points, a line will be 
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substituted all ups and downs in LC curve. Selection of this parameter does not have significant 

importance in optimization, but user should avoid large values which decreases accuracy of the 

curve and final result. Usually it would be nice to set this parameter to 5, but user can increase it 

by an increase in Number of Locations. Obviously it cannot be more than Number of Locations. 

 

 

4. Mathematical benchmark functions 
 

In this section DEO is utilized to optimize some mathematical benchmark functions. The 

description of these functions is illustrated in Table 1. The Experimental setup for the functions are 

provided in Table 2 and the results achieved by DEO and some other metaheuristics are provided 

in Table 2. The numbers in Table 3 indicate the average number of function evaluation from 50 

independent runs. The numbers in parenthesis demonstrate the ratio of unsuccessful to successful 

runs. Each run of the algorithm is successful when the results have predefined accuracy, 
4

min 10 finalff . Table 3 illustrates results of DEO in comparison with GA and some of its 

variants derived from Tsoulos (2008), CSS from Kaveh and Talatahari (2010) and MCSS from 

Kaveh et al. (2013). It can be seen from Table 3 that DEO reaches to the final point for all 

functions in 4239 iterations, while CSS and MCSS do the same work in 6943 and 14132 iterations, 

respectively and GA perform it in more than 20000 iterations.  

Optimality curves of some benchmark functions are demonstrated in Figs. 8 to 11. In all these 

figures the real values of the optimality curves are calculated from exact methods and are drawn as 

dashed lines. It can be seen that DEO can guess optimality curve with a reasonable accuracy. 

 

 
Table 2 Experimental setup for the functions 

Function Nloc LoopNumber 

Aluffi-Pentiny 10 20 

Bohachevsky 1 20 20 

Bohachevsky 2 20 20 

Becher and Lago 10 10 

Branin 10 20 

Camel 10 20 

Cb3 10 15 

CM 20 20 

Dejoung 10 20 

Exp2 10 8 

Exp4 10 15 

Exp8 20 25 

GP 20 20 

Griewank 20 50 

Hartman 3 10 25 

Rastrigin 10 30 

For all functions, the Power is equal to 1, and the PoNum is taken as 5 
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A 200-bar planar truss 

A 200-bar truss shown in Fig. 12 is another problem to be optimized by DEO. All members are 

made of steel: the material density and modulus of elasticity are 0.283 lb/in3 (7933.410 kg/m3) and 

30,000 ksi (206,000 MPa), respectively. The truss is subjected to stress limitations of ±10 ksi 

(68.95 MPa) only. Three loading condition is considered: (1) 1.0 kip (4.45 kN) acting in the 

positive x-direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71. (2) 10 kips (44.5 kN) acting  

 

 
Table 3 Performance comparison for the benchmark problems 

Function GEN GEN-S GEN-S-M GEN-S-M-LS CSS MCSS DEO 

AP 1,360 (0.99) 1,360 1,277 1,253 804 316 134 

Bf1 3,992 3,356 1,640 1,615 1,187 464 315 

Bf2 20,234 3,373 1,676 1,636 742 425 328 

BL 19,596 2,412 2,439 1,436 423 361 100 

Branin 1,442 1,418 1,404 1,257 852 332 182 

Camel 1,358 1,358 1,336 1,300 575 342 156 

Cb3 9,771 2,045 1,163 1,118 436 267 119 

CM 2,105 2,105 1,743 1,539 1,563 421 301 

Dejoung 9,900 3,040 1,462 1,281 630 334 160 

Exp2 938 936 817 807 132 146 59 

Exp4 3,237 3,237 2,054 1,496 867 284 140 

Exp8 3,237 3,237 2,054 1,496 1,426 553 460 

GP 1,478 1,478 1,408 1,325 682 358 337 

Griewank 18838 (0.91) 3,111 (0.91) 1,764 1,652 (0.99) 1,551 976 952 

Hartman 3 1,350 1,350 1,332 1,274 860 322 222 

Rastrigin 1,533 (0.97) 1,523 (0.97) 1,392 1,381 1,402 1,042 277 

Total 112,311 (96.7) 41,640 (96.7) 29,166 (98.16) 25,193 (98.16) 17,367 6,943 4,239 
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Fig. 8 Bohachevsky 2 function real curve, leading curve and optimality curve for x1 
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Fig. 9 Bohachevsky 2 function real curve, leading curve and optimality curve for x2 
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Fig. 10 Becker and Lago function real curve, leading curve and optimality curve for x1 
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Fig. 11 Becker and Lago function Semi real, real curve, leading curve and optimality curve for x2 
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in the negative y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, …, 

71, 72, 73, 74 and 75; and (3) Conditions (1) and (2) acting together. The 200 members of this 

truss are divided into 29 groups, as shown in Table 4. The minimum cross-sectional area of all 

members is 0.1 in2 (0.6452 cm2) and the maximum cross-sectional area is 20 in2 (129.03 cm2). 

Table 4 illustrates the results of the DEO in comparison with those of the PSO and some of its 

variants derived from Kaveh and Talatahari (2009) and Ray optimization from Kaveh and 

Khayatazad (2013). Results are presented in Table 4. It can be seen from this table that DEO 

achieves better results compared to PSO, PSOPC, HPACO and Ray optimization algorithm. 

Optimality curves of 5th, 15th and 29th member groups are demonstrated in Figs. 13 to 15. In these 

figures it can be seen that optimum answer is on top of a curve and slope of the left side is more 

than the right one. In left side of optimum point, fitness decreases by an increase in penalties and 

in the right side, it decreases by an increase in size of members and consequently weight of the 

structure. In addition changes in fitness during the optimization are depicted in Fig. 16. 

Fig. 17 illustrates the optimization process and convergence of DEO in comparison to CSS and 

MCSS. It can be seen that DEO has higher convergence rate and also it can reach to the global 

minimum in all mathematical functions. It should be added that in each iteration, the number of 

function evaluations is equal to number of locations or NL. 

 

 
Table 4 Optimum design comparison for the 200-bar planar truss 
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Fig. 12 The schematic of a 200-bar planar truss 
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Fig. 13 Optimality curve of the 5th group members 
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Fig. 14 Optimality curve of the 15th group members 
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Fig. 15 Optimality curve of the 29th group members 

 

 
Fig. 16 Chnages in the fitness during the optimization of 200-bar truss 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Fig. 17 Comparison of the convergance rate of optimizing mathematical benchmarks; (a) AP, (b) Bf1, (c) 

Bf2, (d) BL, (e) Branin, (f) Camel, (g) Cb3, (h) CM, (i) Dejoung, (j) Exp2, (k) Exp4, (l) Exp8, (m) Goldstein 

and price, (n) Griewank, (o) Hartman3, (p) Rastrigin 
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(k) (l) 

  
(m) (n) 

  
(o) (p) 

Fig. 17 Continued 

 

 

5. Conclusions 
 

In this study, Dolphin Echolocation Optimization algorithm (DEO) is presented for 

optimization in continuous search space. The most important feature of present algorithm is its 

ability in developing optimality curves which can be used as a guide for designers. In these curves, 

not only the optimum choice for each variable is depicted but also change in the fitness function 

due to changes in each variable is demonstrated. 

Another ability of the presented method is that it is adjustable for a pre-determined 

computational cost. It is also self adaptive and it has only a few parameters to be set. Perhaps the 

most important feature of the present algorithm is its ability in obtaining optimality curves.  

In this study, DEO is utilized for optimization of mathematical and engineering problems.  

Results show that DEO often achieves better results with higher convergence rates compared to 

some existing meta-heuristic algorithms previously applied to these problems. 
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