Heat and mass transfer processes at the most heat-stressed areas of the surface of the descent module

Oleg A. Pashkov* and Boris A. Garibyan

Moscow Aviation Institute (National Research University), Moscow, Russia

(Received June 17, 2022, Revised July 21, 2022, Accepted November 7, 2022)

Abstract. The study presents the results of the research of heat and heat exchange processes on the heat-stressed elements of the structure of an advanced TsAGI descent vehicle. The studies were carried out using a mathematical model based on solving discrete analogs of continuum mechanics equations. Conclusions were drawn about the correctness of the model and the dependence of the intensity of heat and mass transfer processes on the most heat-stressed sections of the apparatus surface on its geometry and the catalytic activity of the surface.

Keywords: descent aircraft; gas dynamics; heat and mass transfer; mathematical modeling; multicomponent flow

1. Introduction

One of the most important tasks in designing a descent vehicle, the results of which largely determine its flight performance, is the task of determining the parameters of heat exchange on its surface. In this case, the thermal design of the vehicle usually contradicts the requirements of aerodynamic design and in some cases can make significant adjustments to the aerodynamic layout of the vehicle. This is because as a result of aerodynamic heating the temperature of the most thermally stressed elements of the structure can exceed the maximum allowable level and lead to the destruction of the structure. That is, the heating would become catastrophic. Therefore, when creating a descent vehicle it is necessary to determine in advance the parameters of heat and mass transfer on its surface, because in this case already at the design stage it will be possible to optimize its geometric, trajectory, weight, and other characteristics, which largely depend on the parameters of necessary thermal protection of the airframe.

For aircraft-type vehicles, it is especially important to determine the thermal conditions of such most heat-stressed areas of the vehicle surface as the fuselage nose and the leading edges of the wings. The maximum temperatures of the outer and inner surfaces of the applied thermal protection coating must not exceed the permissible values. Thus, the thickness of the thermal protection coating depends on the geometry of the apparatus and the trajectory of its re-entry into the Earth’s atmosphere.

Since the effective experimental study of high-altitude high-speed viscous gas flows under

In the present work, we performed a numerical simulation of the heat-exchange processes of the most heat-stressed surface areas of a promising small-size winged re-entry vehicle with a mass of 9 t, the layout of which was developed at TsAGI (Bobylev et al. 1971). For this purpose, a mathematical model based on solving discrete analogs of the equations of continuum mechanics was used.

2. Task statement

The descent vehicle of TsAGI was chosen as the object of the study (Bobylev et al. 1971). This apparatus (Fig. 1) is designed as a “no-tail” with a low-lying sweep wing.

The apparatus had the following geometrical parameters: length-10.2 m, wingspan-10.3 m, fuselage nose radius $R_0=0.451$ m, a radius of the wing leading edge in the terminal section $R_0=0.078$ m, wingtip angle $\chi_1 = 77^\circ$, wing sweep angle $\chi_2 = 50^\circ$.

For the layout of the small vehicle described above, TsAGI specialists carried out a series of calculations (Bobylev et al. 1971), the purpose of which was to find the optimal trajectory that achieves the maximum lateral range for a given limitation of the maximum temperature on the surface of the vehicle. For this purpose, a technique based on the well-known Fay-Riddell relation for equilibrium flow was used (Fay and Riddell 1958).

For those sections of the trajectory where the maximum thermal load was detected, the authors
Heat and mass transfer processes at the most heat-stressed areas of the surface...

Fig. 1 Exterior view of the TsAGI small-size reentry winged vehicle (Bobylev et al. 1971)

Fig. 2 The trajectory of the descent of the vehicle in the range of heights from 90 km to 20 km
Table 1 Parameters of the incoming flow

<table>
<thead>
<tr>
<th>Point of trajectory</th>
<th>Altitude H, m</th>
<th>Mach number M_∞</th>
<th>Static pressure p_∞, Pa</th>
<th>Static temperature T_∞, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83150</td>
<td>27.80</td>
<td>0.6160</td>
<td>192.5</td>
</tr>
<tr>
<td>2</td>
<td>80425</td>
<td>26.75</td>
<td>0.9804</td>
<td>197.8</td>
</tr>
<tr>
<td>3</td>
<td>77774</td>
<td>25.33</td>
<td>1.523</td>
<td>203.0</td>
</tr>
<tr>
<td>4</td>
<td>73330</td>
<td>22.34</td>
<td>3.114</td>
<td>211.7</td>
</tr>
<tr>
<td>5</td>
<td>62675</td>
<td>16.51</td>
<td>15.19</td>
<td>239.7</td>
</tr>
</tbody>
</table>

performed a series of calculations of the two-dimensional nonequilibrium flow around the heat-stressed elements of the apparatus structure using a mathematical model of the viscous boundary layer (Dorrance 2017, Kovalev 2002). These calculations were performed for the case of zero surface catalytic activity.

Fig. 2 shows the extreme heat stress trajectory of the spacecraft’s entry into dense layers of the atmosphere (Vaganov et al. 2009).

In this study, a series of calculations were performed for five points of the trajectory of descent, located in the region of maximum aerodynamic heating, to compare them with the calculated data of (Bobylev et al. 1971). The parameters of the incoming flow for these five points of the trajectory are presented in Table 1.

Since the actual flow parameters realized in front of the leading edge of the wings after passing through the leading shock wave are unknown, it was assumed that the wings, as well as the nose of the fuselage, are flown by the undisturbed flow. That is, in this formulation, as well as in (Bobylev et al. 1971), the braking of the flow due to passage through the head shock wave was not taken into account. The calculations also did not take into account the possible interference of the head shock wave with the shock wave in front of the wing.

Two limiting cases are considered in the study:

• the absolute catalytic activity of the surface of the descent vehicle: $k_w \to \infty$.

• zero catalytic activity on the surface of the descent vehicle: $k_w \to 0$.

3. Properties of chemical components

Air was considered as a mixture of 11 components: N$_2$, O$_2$, NO, N, O, NO+, N$_2+$, O$_2+$, N+, O+, e.

The density of the mixture was calculated as a function of pressure and temperature as follows. The density of the mixture as a function of pressure and temperature was calculated using the ideal gas formula

$$\rho_{cm} = \frac{P_s}{R_s T \sum_i \frac{C_i}{M_i}},$$

where P_s - local static pressure; $R_s = 8.314$ l/(K·mol) - universal gas constant; T - local static temperature; C_i - mass concentration of the i-th component; M_i - a molar mass of the i-th component.

The specific isobaric heat capacity $c_{p,i}$ of each i-th component was given by the piecewise linear law as a function of temperature (McBride et al. 2002). The average specific heat capacity
Heat and mass transfer processes at the most heat-stressed areas of the surface...

of the gas mixture was calculated using the ratio

\[c_{p\text{,cm}} = \sum_{i=1}^{n} C_i \cdot c_{p,i}. \]

(2)

The thermal conductivity coefficient \(\lambda_i \) of each \(i \)-th component was calculated using the relation from the kinetic theory of gases (McBride et al. 2002) by the formula

\[\lambda_i = \frac{15}{4} \frac{R_{\mu}}{M_i} \cdot \mu_i \left[\frac{4}{15} \frac{c_{p,i} \cdot M_i}{R_{\mu}} + \frac{1}{3} \right], \]

(3)

where \(\mu_i \)-dynamic viscosity of the \(i \)-th component, function \(\mu_i(T) \).

The effective thermal conductivity of the gas mixture was calculated by the formula:

\[\lambda_{\text{cm}} = \sum_{i=1}^{n} C_i \cdot \lambda_i. \]

(4)

The dynamic viscosity of each component was calculated as a function of static temperature according to the well-known Blottner correlation (Millat et al. 1996), and then the dynamic viscosity of the gas mixture was calculated

\[\mu_{\text{cm}} = \sum_{i=1}^{n} C_i \mu_i. \]

(5)

The molar masses of all components, entropy, and enthalpy values under normal conditions \((P = 101325 \text{ Pa}, T = 298.15 \text{ K}) \) are taken from (Vaganov et al. 2009).

4. Chemical kinetics

Taking into account the characteristic timing of chemical processes, the model of nonequilibrium chemistry, consisting of 11 nonequilibrium chemical reactions of dissociation,

<table>
<thead>
<tr>
<th>Number of reaction</th>
<th>Chemical reaction equation</th>
<th>(A_{r,i}), m(^3)/(kmol·s)</th>
<th>(\beta_{r,i})</th>
<th>(E_{r,i}), J/kmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{O}_2+\text{M} \rightarrow 2\text{O}+\text{M})</td>
<td>2.0e+18</td>
<td>-1.5</td>
<td>4.9471e+08</td>
</tr>
<tr>
<td>2</td>
<td>(\text{N}_2+\text{M} \rightarrow 2\text{N}+\text{M})</td>
<td>7.0e+18</td>
<td>-1.6</td>
<td>9.4120e+08</td>
</tr>
<tr>
<td>3</td>
<td>(\text{NO}+\text{M} \rightarrow \text{N}+\text{O}+\text{M})</td>
<td>5.0e+12</td>
<td>0.0</td>
<td>6.2774e+08</td>
</tr>
<tr>
<td>4</td>
<td>(\text{N}_2+\text{O} \rightarrow \text{NO}+\text{N})</td>
<td>6.4e+14</td>
<td>-1.0</td>
<td>3.1928e+08</td>
</tr>
<tr>
<td>5</td>
<td>(\text{NO}+\text{O} \rightarrow \text{O}_2+N)</td>
<td>8.4e+09</td>
<td>0.0</td>
<td>1.6172e+08</td>
</tr>
<tr>
<td>6</td>
<td>(\text{N}_2+e \rightarrow 2\text{N}+e)</td>
<td>3.0e+21</td>
<td>-1.6</td>
<td>9.4120e+08</td>
</tr>
<tr>
<td>7</td>
<td>(\text{N}+e \rightarrow \text{N}^+2e)</td>
<td>2.5e+31</td>
<td>-3.82</td>
<td>1.4018e+09</td>
</tr>
<tr>
<td>8</td>
<td>(\text{O}+e \rightarrow \text{O}^++2e)</td>
<td>3.9e+30</td>
<td>-3.78</td>
<td>1.3178e+09</td>
</tr>
<tr>
<td>9</td>
<td>(\text{N}+\text{O} \rightarrow \text{NO}^++e)</td>
<td>5.3e+09</td>
<td>0.0</td>
<td>2.6523e+08</td>
</tr>
<tr>
<td>10</td>
<td>(2\text{N} \rightarrow \text{N}_2^++e)</td>
<td>2.0e+10</td>
<td>0.0</td>
<td>5.6123e+08</td>
</tr>
<tr>
<td>11</td>
<td>(2\text{O} \rightarrow \text{O}_2^++e)</td>
<td>1.1e+10</td>
<td>0.0</td>
<td>6.7015e+08</td>
</tr>
</tbody>
</table>
recombination, and ionization, three of which are realized with the participation of third bodies (M) (Table 2), was used in modeling. The empirical coefficients of the kinetics of chemical reactions were taken from (Blottner et al. 1971).

For each component of the gas mixture, a separate mass transfer equation was solved in the form

\[
\frac{\partial}{\partial t} (\rho_i C_i) + \nabla \cdot (\rho_i \mathbf{u} C_i) = -\nabla \cdot \mathbf{g}_i + \omega_i,
\]

where \(\mathbf{g}_i \)-diffusion flux of the \(i \)-th component; and \(\omega_i \)-the rate of formation of the \(i \)-th component in chemical reactions, which was calculated by the formula

\[
\omega_i = M_{w,i} \sum_{r=1}^{N_r} \dot{R}_{i,r},
\]

where \(M_{w,i} \)-a molar mass of the \(i \)-th component; \(N_r \)-the number of chemical reactions involved in the process and the calculation; \(\dot{R}_{i,r} \)- is the molar rate of formation (decay) of the \(i \)-th component in reaction \(r \), calculated using the chemical kinetics equation for the rate of formation of the \(i \)-th component during a nonequilibrium chemical reaction. The rate \(\dot{R}_{i,r} \) in the nonequilibrium chemical reaction \(r \) was represented as

\[
\dot{R}_{i,r} = \Gamma \left(v''_{i,j,r} - v'_{i,j,r} \right) \left(k_{f,r} \prod_{j=1}^{N} \left[X_{j,r} \right]^{\eta'_{j,r}} - k_{b,r} \prod_{j=1}^{N} \left[X_{j,r} \right]^{\nu''_{j,r}} \right),
\]

where \(X_{j,r} \)-molar concentration of component \(j \) in reaction \(r \) (Kmol/m^3); \(\eta'_{j,r} \)-degree index for reagent \(j \) in the reaction \(r \); \(v'_{j,r} \)-the stoichiometric coefficient for reagent \(j \) in the reaction \(r \); \(v''_{j,r} \)-the exponent for product \(j \) in reaction \(r \) (always equal to the stoichiometric coefficient of the reaction product); \(\Gamma \)-coefficient taking into account the effect of third bodies on the reaction rate; \(k_{f,r} \)-rate constant of direct reaction; \(k_{b,r} \)-rate constant of the reverse reaction.

The rate constant of each direct reaction \(r \) was calculated using the Arrhenius expression (McBride et al. 2002)

\[
k_{f,r} = A_{f,r} T^{\beta_{f,r}} e^{-E_{f,r}/RT},
\]

where \(A_{f,r} \)-pre-exponential factor; \(\beta_{f,r} \)-temperature index; \(E_{f,r} \)-reaction activation energy.

The rate constant of each reverse reaction \(k_{b,r} \) in Eq. (8) was calculated through the Gibbs free energy change (Landau and Lifshitz 1980).

The efficiencies of each chemical component as the third body (parameter \(\Gamma \) in Eq. (8)), were specified according to (Scalabrin 2007) and presented in Table 3.

5. Calculation grid construction peculiarities

The problem of flow around the surfaces of the fuselage nose and the leading edge of the wing of the investigated apparatus was solved in the three-dimensional formulation.

To save computational resources, the flow around only one-half of the fuselage nose was simulated. In this case, the symmetry boundary condition was set on the OXY plane, which is
Heat and mass transfer processes at the most heat-stressed areas of the surface...

Table 3 The efficiency of third bodies

<table>
<thead>
<tr>
<th>Number of reaction</th>
<th>N₂</th>
<th>O₂</th>
<th>NO</th>
<th>N</th>
<th>O</th>
<th>NO⁺</th>
<th>N₂⁺</th>
<th>O₂⁺</th>
<th>N⁺</th>
<th>O⁺</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.286</td>
<td>4.286</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.286</td>
<td>4.286</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22</td>
<td>22</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3 Calculation grid at the nose of the fuselage

Fig. 4 Calculation grid at the leading edge of the wing (the entrance boundary and the symmetry plane are hidden)
quite acceptable for the glide angle $\beta = 0$. The computational grid for the fuselage nose of 6.6 million cells is shown in Fig. 3, and the grid for the leading edge of the wing of 4.7 million cells is shown in Fig. 4.

6. Calculation results

Fig. 5 shows the temperature dependences of the surface of the fuselage nose and the leading edge of the wing during the flight of the aircraft in the atmosphere along the descent trajectory for the case of absolute catalytic surface activity ($k_w \to \infty$) and the case of zero catalytic surface activity ($k_w \to 0$). The results obtained for the surface with $k_w \to \infty$ were compared with TsAGI calculations (Bobylev et al. 1971) performed using the well-known Fay-Riddell relation (equilibrium model).

For the surface with $k_w \to 0$, the results obtained were compared with calculations by TsAGI (Bobylev et al. 1971) carried out both by the Fay-Riddell formula and by a nonequilibrium mathematical model based on the solution of the full system of viscous boundary layer equations.

The data presented in Fig. 5 show that the catalytic activity of the surface has a strong influence on the temperature levels obtained in the calculations. The temperature of the absolutely catalytically active surface is much higher than the temperature of the surface with zero catalytic activity, especially at the descent altitudes of the apparatus from 90 km to 60 km. This can be explained by the fact that at flight altitudes higher than 60 km, a mostly “frozen” boundary layer
Heat and mass transfer processes at the most heat-stressed areas of the surface...

and a partially nonequilibrium boundary layer are realized on the surface of the apparatus. It also follows from the data presented in Figs. 5 and 6 that the results obtained are in satisfactory agreement with the results of calculations using the Fay-Riddell ratio (Bobylev et al. 1971) (the maximum deviation does not exceed 7%). At the same time, in some parts of the trajectory, both for the fuselage nose and the leading edge of the wing, the obtained temperature was slightly higher than the data of (Bobylev et al. 1971). The reason for this discrepancy is because the Fay-Riddell relation was obtained for an equilibrium chemically active boundary layer and does not take into account the influence of chemical non-equilibrium reactions in the boundary layer on the temperature level of the aircraft surface.

The discrepancy between the data of the present work and the data of calculations using the nonequilibrium mathematical model of TsAGI is obviously due to the difference in the number of nonequilibrium chemical reactions considered. It is known that different formulations of the mechanisms of chemical kinetics can lead to ambiguous results in terms of the apparatus' surface temperature. For example, it was shown in (Landau and Lifshitz 1980) that consideration of chemical nonequilibrium leads to a decrease in the temperature on the surface of the vehicle during flight at an altitude of 22 km in the Mach number range of 6.3÷18.5 compared to the calculation by the Fay-Riddell formula. However, the same work shows that when flying at an altitude of 37 km at a speed corresponding to the Mach number $M_{\infty} = 17.6$, taking into account the chemical non-equilibrium reactions, on the contrary, leads to an overestimation of the surface temperature of the vehicle.

Nevertheless, it should be noted that the results of calculations of the apparatus surface temperature using mathematical models of different authors have a qualitative correspondence. The quantitative discrepancies do not exceed 10%.

Fig. 6 shows the distribution of atomic oxygen concentrations on the surface of the fuselage nose and the surface of the wing leading edge in the end section. The obtained results are compared with the data of (Scalabrin 2007) for the case of zero surface catalytic activity.

Fig. 6 shows that the obtained results are in satisfactory agreement with the data of (Bobylev et
al. 1971), but the concentrations of atomic oxygen at the nose of the fuselage and the leading edge of the wing are somewhat underestimated compared to the TsAGI calculations. The reason for these discrepancies is probably the difference in the rate of chemical reactions occurring in the compressed layer. The reaction rate is known to be determined by the values of the constants in the Arrhenius expression. The fact that the concentrations of atomic oxygen at the fuselage nose and the leading edge of the wing are lower than the concentrations obtained in (Bobylev et al. 1971) partially explains the observed overestimation of the surface temperature. Since the dissociation reactions are endothermic, the understated values of atomic oxygen concentrations indicate that the dissociation reactions of oxygen molecules in the boundary layer proceed less intensely than in the calculations of (Bobylev et al. 1971) and, therefore, less thermal energy is spent on their realization.

7. Conclusions

A study of heat and mass transfer processes on the most heat-stressed elements of the structure of a small-size winged re-entry vehicle: the nose of the fuselage and the leading edges of the wings was carried out.

It is found that the obtained results are in satisfactory agreement with the calculations according to the Fay-Riddell formula and by solving the equations of the viscous boundary layer.

The dependence of heat fluxes to the surface of the aircraft on its geometric parameters and the catalytic activity of the surface is revealed.

References

Bulychev, N.A. (2021e), “Preparation of stable suspensions of ZnO nanoparticles with ultrasonically

Ioni, Y.V. (2020b), “Nanoparticles of noble metals on the surface of graphene flakes”, *Periodico Tche Quimica*, 17(36), 1199-1211.

Kovalev, V.L. (2002), Heterogeneous Catalytic Processes in Aerothermodynamics, Fizmatlit, Moscow, Russia.

EC