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Abstract.  Modeling the properties of complex alloys such as nickel superalloys is an extremely challenging 
scientific and engineering task. The model should take into account a large number of uncorrelated factors, for many 
of which information may be missing or vague. The individual contribution of one or another chemical element out 
of a dozen possible ligants cannot be determined by traditional methods. Moreover, there are no general analytical 
models describing the influence of elements on the characteristics of alloys. Artificial neural networks are one of the 
few statistical modeling tools that can account for many implicit correlations and establish correspondences that 
cannot be identified by other more familiar mathematical methods. However, such networks require careful tuning to 
achieve high performance, which is time-consuming. Data preprocessing can make model training much easier and 
faster. This article focuses on combining physics-based deep network configuration and input data engineering to 
simulate the solvus temperature of nickel superalloys. The used deep artificial neural network shows good simulation 
results. Thus, this method of numerical simulation can be easily applied to such problems. 
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1. Introduction 
 

Nickel-based superalloys are complex alloyed metallic materials with unique properties such as 
high temperature resistance, corrosion resistance, high strength, etc. Alloying serves to achieve 
high resistance to mechanical and chemical degradation at high loads with prolonged exposure. 
Products made of these alloys operate at temperatures up to 1300°C and overcome a wide range of 

effects: thermal stress, corrosive media, contact stresses, strains from centrifugal forces, vibration 
bending stresses and torsional gas flow.  

The major service properties of the alloys are heat resistance and structural thermal stability. 
Heat resistance is the ability of material to resist the load at elevated temperatures, without 
undergoing permanent deformation or fracture. To quantify the heat resistance, mechanical tests 
are carried out, the main of which is the test for long-term tensile strength, i.e., the greatest 
mechanical stress that the material could resist without breaking at a given temperature, exposure 
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time and working atmosphere. The test temperatures range from 50 to 1200°C, the time of 

isothermal exposure varies from 50 to 10000 hours. Thermal stability is the ability of a material to 

retain properties during a period of prolonged isothermal exposures (Pollock 2006, Reed 2006). 

The current level of heat resistance is achieved due to the optimization of the chemical 

composition, as well as the application of the most advanced technology of single crystal casting. 

These methods allow to enhance the temperature of the gases entering the turbine to 1580°C, 

which multiply the engine thrust by 15 ... 20% and its life by 1,5...2 times (Kuznetsov 2004). 

However, the desire to increase the characteristics of the gas turbines has led to a significant 

increase in their cost, especially due to alloying with expensive elements. 

The main contribution to the strength properties of superalloys is made by γ' and γ'' precipitates. 

The γ'-phase constitutes the precipitate used to strengthen the alloy. It is an intermetallic phase 

based on Ni3(Ti,Al) which have an ordered fcc structure. The γ'-phase is coherent with the matrix 

of the superalloy having a lattice parameter that varies by around 0.5%. This phase solvus 

temperature highly correlates with the mechanical properties of the superalloys (Caron 2000). 

Along with direct modeling of the mechanical properties of superalloys, an indirect assessment is 

possible, which is useful if a direct model cannot be built for some reason. That is why the 

simulation of solvus temperature is an important task both from a physics and engineering point of 

view. However, there are certain difficulties. Although the data on the mechanical properties of 

nickel superalloys are fragmentary, in total they form a rather impressive sample that allows 

building various models. In contrast, information on the solvus temperatures of these materials is 

rather poor, which undoubtedly complicates the construction of traditional models. 

Each of the several hundred developed alloys may contain up to two dozen chemical elements 

and even more. All this significantly complicates the modeling and simulation of the properties of 

these materials by traditional analytical methods, since the influence of each chemical element is 

so nonlinear that no unambiguous analytical dependences have been established so far. The more 

complex the composition of the alloy, the more difficult it is to determine the effect of each 

constituent element on one of the many mechanical and physical properties. The situation with 

nickel-based superalloys is exacerbated by the lack of sufficient mechanical test data and the 

variety of smelting technologies that can be accommodated in the models. In particular, the 

compositions of wrought, polycrystalline, directed crystallization and single-crystal alloys 

manifest themselves in completely different ways (Das 2010). During casting, small particles are 

dispersed in a nickel matrix, forming a kind of framework and acting as a barrier to the movement 

of dislocations (Zhou et al. 2012, Detrois et al. 2017). Paired, ternary, etc. compositions of 

superalloys are discussed in (Donachie and Donachie 2002, Pelleg 2013), however, with more 

complex alloying, the model cannot be created, yet. 

Since the alloys are tested in fairly narrow time and temperature ranges, the lack of missing 

data is of great interest to practitioners who cannot independently conduct a series of demanding 

tests. Computer-aided experimental methods make it possible to extrapolate the results of tests for 

long-term strengths without the implementation of expensive and long-term full-scale 

experiments, by analogy with the vibration and acoustic tests supplemented and improved by 

computational methods (Olympio 2018, Biedermann 2019). 

The researchers were helped by an alternative computational paradigm of artificial neural 

networks (ANN), which opened up new perspectives in solving problems characterized by high 

nonlinearity, fuzzy and implicit correlations. Neural network modeling made it possible to describe 

dependencies that were previously considered indescribable (Haykin 2009). This, of course, 

touched upon the issues of simulating the properties of superalloys. Nevertheless, since the 
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network itself is not able to build a good correlation, the success of its operation depends on the 

correctly chosen configuration, method and technology of training, and the appropriate format of 

the input and output data. 

Previously, artificial neural networks were already used to analyze nickel-based alloys (Yoo et 

al. 2004, Nurgayanova, et al. 2006), however, the goal of these works was to synthesize new 

chemical compositions of heat-resistant alloys (Nurgayanova and Ganeev 2007), in modeling the 

change in the coefficient of thermal expansion (Bano et al. 2008, Bano and Nganbe 2013), in 

modeling energy hysteresis (Bano and Nganbe 2012), in the prediction of low-cycle fatigue energy 

(Bano et al. 2010a), in modeling the development of fatigue cracks (Bano et al. 2010b), in 

predicting the occurrence of material defects (Feng et al. 2019), in modeling the time to failure 

(Hasan et al. 2014). Moreover, it has done mainly about the same grade of alloy. The works 

devoted to the prediction of the solvus temperature on the basis of establishing the relationship 

between the chemical composition and experimentally obtained values of the alloys properties 

were not detected. 

In this work, we apply the already tested deep artificial neural network and special data 

engineering taking into account physics and the known influence of elements to simulate such an 

important physical parameter as the solvus temperature of nickel-based superalloys based on 

information about their chemical composition. 

 

 

2. Physical model and data preprocessing 
 

The most important result of using ANNs is that they made it possible to extrapolate the results 

of tests without performing expensive and lengthy physical experiments. ANNs were previously 

used to simulate the properties of various superalloys, however, the main attention in these works 

was paid to the synthesis of new compositions. Only in some works ANNs were applied to 

establish the relationship between composition and properties (Hasan et al. 2014, Jones and 

MacKay 1996, Conduit et al. 2017). Earlier, we also worked in this direction and tried several 

variations of the networks (Tyagunov et al. 2019a, 2019b). The deep learning artificial neural 

networks have shown the best performance with simultaneously high speed. The programming and 

training of such models is initially rather complicated, however, for each specific task, significant 

optimization of these procedures is possible, based on the physics of the described process or 

object.  

The main problem we faced from the very beginning of our attempts was the different scales of 

input and output data. We consider the use of mass percent (wt.%) when indicating the content of 

alloying elements to be a systemic problem in a huge number of studies. Each alloying element 

manifests itself in a different way, i.e., can impart both “positive” and “negative” characteristics to 

the alloy. Arguing about the stoichiometric composition of this or that phase included in the alloy, 

we naturally pass to the level of operating with atomic percentages. We have taken a similar 

approach here. However, it was developed so that we not only use the atomic percentages of the 

ligands, but also normalize them to the nickel content in order to remove the nickel itself from the 

model and thereby reduce the amount of input data.  

It is convenient to explain the data preparation scheme using the example of the well-known 

superalloy CMSX-4. The composition of the alloy is given according to (Donachie and Donachie 

2002), and the sequence of stages of transformation of the composition as it is applied for all 

alloys during simulation is shown in Table 1. 
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Table 1 The stages of alloying composition transformation from wt.% to atomic fractions for CMSX-4 

# Parameter Ni Cr Co Mo Al Ti Ta W Re Hf 

1 wt.% 61.70 6.50 9.00 0.60 5.60 1.00 6.50 6.00 3.00 0.10 

2 Atom. mass 58.60 52.00 58.90 95.96 27.00 47.90 180.90 183.80 186.21 178.49 

3 (#1)/(#2) 1.0529 0.1250 0.1528 0.0063 0.2074 0.0209 0.0359 0.0326 0.0161 0.0006 

4 Atom. fr. 0.6375 0.0758 0.0926 0.0038 0.1259 0.0127 0.0218 0.0198 0.0098 0.0003 

5 Atom. fr./ Ni - 0.1189 0.1453 0.0060 0.1974 0.0199 0.0342 0.0311 0.0153 0.0005 

Line #1 - the nominal alloy composition according to the referenced source.  

Line #2 - the reference data on the relative atomic mass of the alloying elements involved.  

Line #3 - the result of dividing the data in row #1 by the data in row #2.  

Line #4 - the atomic fractions of the alloying elements.  

Line #5 - the fraction of the atoms of the given alloying element to the atoms of the nickel matrix.  

 

 

Thus, in terms of 100 atoms of the nickel matrix, the CMSX-4 alloy contains approximately 12 

Cr atoms, 14 Co atoms, 6 Mo atoms, etc. Thus, the variables characterizing the alloy composition 

are naturally normalized in such a way that their numerical values are automatically located in the 

range (0, 1) and this is a great advantage for simulation as it is believed (Haykin 2009, 4.6) that 

such a normalization favorably affects the operation of the error backpropagation algorithm during 

the network training. Thus, we came to the uniform scale in the model. 

 

 

3. Framework 
 

As noted, we have previously simulated the mechanical properties of superalloys based on their 

chemical composition. Initially, we used a conventional backpropagating multilayer perceptron 

network, however, then we had to develop a more complex model that expands the capabilities of 

the basic model and takes into account the difficulties associated with the contribution of a single 

element (Tyagunov et al. 2019c). A complicated network with Bayesian regularization gave 

encouraging results, however, an individual account of the contribution of each element can be 

carried out, it seems to us, only by a deep learning network (DLANN), in which each of the layers 

is responsible for a certain block of the studied characteristics. It is such a network that we 

simulate in this work. 

Nevertheless, before starting building a neural network, one may use some steps to optimize the 

input information. This is intended to improve the training environment, make it easier for the 

network to find correlations, and increase the accuracy and speed of modeling. The performed 

normalization of the input variables makes it possible to effectively build practically any network 

architecture. We will use this, as well as, the known physical laws about the influence of certain 

elements on the parameters of the superalloys. This is nothing more than embedding a priori 

information into the model (Haykin 2009). 

It is known that the addition of various elements to the alloy pursues different goals, while the 

compositions of the influencing elements intersect (Donachie and Donachie 2002, Pelleg 2013). 

So, for example, Al, Ti, Nb, Ta, Hf determine the precipitation hardening of the alloy by 

intermetallic phases of the Ni3Al type, and Al and Ti, in addition, form a γ'-phase. Multilayer 

feedforward networks actually receive a differentiated signal at each successive layer, so it seems 
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reasonable to use this feature in conjunction with taking into account the influence of the elements. 

We form a deep network of the multilayer perceptron type, in which each introduced layer reflects 

some empirically discovered pattern and, in addition, we add an addition hidden differentiating 

layer transmitting a differentiated signal to the next layer of neurons combining it with a direct 

signal. 

The advantage of a deep network built on the above principle over a multilayer fully connected 

perceptron is incomparably higher learning speed and, as expected, higher simulation accuracy. 

We now describe the new information added to the model about the specific role of alloying 

elements in superalloys. We use the data from (Donachie and Donachie 2002) to account for the 

role of each element, which is presented in Table 2. We combine the information about the role of 

the elements in a “matrix of relationships” that reflects how each chemical element affects the 

properties of the alloy. This matrix is introduced into the deep learning model as a control element 

(“trigger”). The framework of the model is shown in Fig. 1. Actually, we build two models to 

compare. The first network has a differential layer, while the second does not. Each network uses 

concentrations of chemical elements in form of 16 groups according to Table 2 as the input data 

and (simulates) predicts the solvus temperature. Two input bias neurons with a preset opposite 

shift are used to increase the stability of the model and speed up its learning. This is a common 

practice in machine learning. 

For the training, the input dataset is formed by the data (chemical composition and solvus 

temperature) on 79 nickel-based superalloys. The training method is a common error 

backpropagation with the Bayesian regularization. 

In order to avoid the network overtraining, the fairly mild conditions (the target goal mean 

squared error, MSE (1) and the gradient) are empirically determined and set. In our case, yi means  

 

 
Table 2 Roles of alloying elements in superalloys 

Group No Effect Alloying elements 

1 Solid solution strengtheners Co, Cr, Fe, Mo, W, Ta, Re 

2 Carbide form MC W, Ta, Ti, Mo, Nb, Hf 

3 Carbide form M7C3 Cr 

4 Carbide form M23C6 Cr, Mo, W 

5 Carbide form M6C Mo, W, Nb 

6 Carbonitrides M(CN) C, N 

7 Forms γ’ Ni3(Al, Ti) Al, Ti 

8 Raises solvus temperature of γ’ Co 

9 Hardening precipitates and/or intermetallides Al, Ti, Nb 

10 Oxidation resistance Al, Cr, Y, La, Ce 

11 Improve hot corrosion resistance La, Th 

12 Sulfidation resistance Cr, Co, Si 

13 Improves creep properties B, Ta 

14 Increases rupture strength 
B, if present in large amounts, borides are 

formed 

15 Grain-boundary refiners B, C, Zr, Hf 

16 Retards coarsening Re, Ru 
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Fig. 1 The deep learning framework 

 

 

the model output values or solvus temperatures. In the models, ypredicted are the values obtained 

during the network prediction, yfact are the known factual values of solvus temperature used in the 

network training. 

𝑀𝑆𝐸 =
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑖−𝑦𝑓𝑎𝑐𝑡_𝑖)

2𝑛
𝑖=1

𝑛
                                                 (1) 

The training process is repeated several times until the condition MSE.test≤1.3×MSE.training is 

met. Here, MSE.training is the target function (1) value obtained at the training data set, MSE.test 

is the same regarding to the test data set. The initial data set is divided into training (75%) and test 

(25%) sub-sets randomly during the training procedure. For each new training repetition, the 

division is refreshed. The final model prediction ability is evaluated by the absolute value of the 

relative error (RE) between the model predictions and the real data from the verification sample 

(2). 

 𝑅𝐸𝑖 =
|𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑖−𝑦𝑓𝑎𝑐𝑡_𝑖|

𝑦𝑓𝑎𝑐𝑡_𝑖
                                                       (2) 

As an independent verification sample, we engage 15 alloys, which do not take part in the 

training. Data on the solvus temperature of these alloys we compare with the network predictions. 

 

 

4. Results and discussion 
 

In the experiment, we train and test two different deep artificial neural networks. Their only 

difference is the presence of a hidden differential layer in the first one. The comparison of the 

results obtained might be done evaluating graphs in Fig. 2 where the predictions of the solvus  

372



 

 

 

 

 

 

Deep learning in nickel-based superalloys solvus temperature simulation 

 

Fig. 2 Real solvus temperature vs ANN simulation (for two networks) 

 
Table 3 Statistics of the related errors of predictions by two networks 

Statistics DLANN with differential layer Simple DLANN 

Mean 0.06 0.08 

Median 0.04 0.05 

SD 0.07 0.11 

 

 

temperature vs real values for 15 superalloys from the verification set are shown. Obviously, a 

network with a differential layer shows a more “heap” result, although a simple deep network also 

performs well enough. For a more accurate assessment of the results, we turn to descriptive 

statistics. The statistics of the related errors are shown in Table 3. 

Analyzing Table 3, we may deduce that the network with differential layer predicts better. 

Spending comparable time and computational resources on training, a deep network with a 

differential layer gives a standard deviation of at least one and a half times less. From a practical 

point of view, a prediction deviation of 7% is comparable to experimental methods (such as DTA), 

which achieve an accuracy of a few percent. An increase in the training sample and further 

optimization of the network configuration will further improve the forecast accuracy. 

In addition, it is necessary to pay attention to a couple of “falling out” points in the temperature 

range of 920-940°C. Both models in this case seem to show not too convincing results. The fact is 

that among the alloys of the verification sample there were two alloys (In-901 and Nimonic 263), 

which, although they are considered nickel, should be more classified as iron/cobalt, since the 

nickel content in them is less than 50%. Naturally, these alloys demonstrate a different dependence 

of the solvus temperature on the chemical composition, which we observe on the graph. 
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5. Conclusions 
 

In our work, we approve the possibility to simulate a physical feature of a nickel-based 

superalloy by a deep learning artificial neural network. The data preprocessing and a specially 

developed framework improves the accuracy. We may further improve the model by expanding the 

training dataset. 

The overall evaluation of our work is follow: 

• Our approach: simulating the solvus temperature of the complexly alloyed nickel-based 

superalloys using a specially developed deep learning artificial neural network with a 

differentiating layer. The choice of the network type and the preprocessing of the input data are 

based on physics of the alloys. 

• In all respects a deep network is superior even to such an advanced feed-forward network as 

Bayesian. The differential layer improves a standard deviation of at least one and a half times. 

• Adding a priori knowledge to the network about the individual influence of the elements on 

the alloy parameters give a positive effect on the modeling accuracy. 

• We have achieved a high forecast accuracy (SD=7%). 

• The forecast variance is small, which indicates the stability of the model. 
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