
 

 

 

 

 

 

 

Advances in Aircraft and Spacecraft Science, Vol. 9, No. 1 (2022) 1-15 

https://doi.org/10.12989/aas.2022.9.1.001                                                    1 

Copyright ©  2022 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=aas&subpage=7        ISSN: 2287-528X (Print), 2287-5271 (Online) 
 
 
 

 

 
 
 

Calibration of flush air data sensing systems 
for a satellite launch vehicle 

 

R.C. Mehta 
 

Department of Aeronautical Engineering, Noorul Islam Centre for Higher Education, Kumaracoil 629180, India 

 
(Received June 25, 2021, Revised October 23, 2021, Accepted December 10, 2021) 

 
Abstract.  This paper presents calibration of flush air data sensing systems during ascent period of a satellite launch 
vehicle. Aerodynamic results are numerically computed by solving three-dimensional time dependent compressible 
Euler equations over a payload shroud of a satellite launch vehicle. The flush air data system consists of four pressure 
ports flushed on a blunt-cone section of the payload shroud and connected to on board differential pressure 
transducers. The inverse algorithm uses calibration charts which are based on computed and measured data. A 
controlled random search method coupled with neural network technique is employed to estimate pitch and yaw 
angles from measured transient differential pressure history. The algorithm predicts the flow direction stepwise with 
the function of flight Mach numbers and can be termed as an online method. Flow direction of the launch vehicle is 
compared with the reconstructed trajectory data. The estimated values of the flow direction are in good agreement 
with them. 
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1. Introduction 
 

Angle of attack (AoA) of a satellite launch vehicle is important parameters to assess the health, 

aerodynamic performance and behaviour of the launch vehicle during transonic speed and 

maximum dynamic pressure regime. Using angle of attack data, instantaneous structural loads, 

wind and effects of transonic buffeting can be checked and verified with the aerodynamic design 

as well as expansion of the flight envelope. It is proposed here to use an flush air data sensing system 

(FADS) to measure pitch angle and side-slip angle along with other basic aerodynamic parameters 

such as Mach number, dynamic, static and stagnation pressure, throughout transonic to supersonic 

Mach numbers range. The satellite launch vehicle loads are the greatest in the transonic flight 

regime.    

Estimation of AoA is an essential aerodynamic quantity in the post-flight analysis (PFA) 

reconciliation of flight measurement data with ground based wind-tunnel experiments and 

computational fluid dynamics (CFD) simulations. On board inertial measurement units (IMU) are 

used to compute vehicle velocity with respect to a fixed coordinate system in conjunction with 

trajectory of the vehicle. The determination of air data is a technique based on flowfield pressure 

measurement consisting of a number of pressure tapings flush with the vehicle surface, usually in 
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the blunt-nose section of the payload shroud. The measured distribution of the pressure field 

around the nose is then used to infer the air data. A minimum of four pressure ports are required to 

obtain a complete set of air data parameters.  

A method for the determination of air data is a technique based on flowfield pressure 

measurement because FADS is sensitive to pressure port location. Different types of air data 

systems are available such as fuselage body pressure mounting probes and blunt forebody 

attaching with an aerospike. The difference of measured pressure on the wedge or cone surfaces 

(Liepmann et al. 2007) can be related to flow conditions by employing oblique shock relations and 

conical shock charts, respectively. Larson et al. (1990) employed wind tunnel data to study FADS 

performance of vehicles at Mach numbers from 0.7 to 1.4. They evaluated freestream values of 

stagnation pressure, static pressure, Mach number and AoA from FADS. An aerospike is 

employed on the external tank of the space shuttle to measure AoA during the ascent phase of the 

flight (Hillje et al. 1993). In the PFA the measured pressure obtained through the telemetry is used 

to estimate angle of attack and sideslip angle in conjunction with wind tunnel data. 

Aerodynamic characteristics of high speed vehicles are evaluated employing flight data by 

Watanbe et al. (1997). Design and calibration of FADS of the X-33 has been performed by 

Whitmore et al. (1998). Neural networks have been developed (Rohloff et al. 1998) to estimate 

freestream static and dynamic pressures from an array of pressure measurements taken from ports 

located flush on the nose of an aircraft. Cobleigh et al. (1999) calibrated FADS pressure model 

and solution algorithm of a sphere, spherical cones, a Rankine half-body, and the F-14, F/A-18, X-

33, X-34, and X-38 configurations. Johnson et al. (1999) have conducted experimental and 

numerical simulation of flow field over a forebody of HYFLEX vehicle. It has been concluded by 

them that CFD provides a quick and inexpensive way to calibrate the air data system and is 

applicable to a broad range of flight conditions. FADS on a sharped-nosed body for Mach 3 to 8 

has been developed by Davis et al. (2000). Fan et al. (2003) used neural network based calibration 

techniques to evaluate aerodynamics of multi-hole pressure probes. Rohlf et al. (2004) carried out 

vector identification of X-31using FADS. Neural network based flush air data system has been 

applied on a mini air vehicle by Samy et al. (2010). They found that the CFD simulations are 

useful to identify the ideal pressure port locations. Baumann et al. (2010) applied FADS to analyze 

test results of X-43A. Paces et al. (2010) analyzed angle of attack and sideslip angle using twin 

differential sensor modules. FADS have been applied to evaluate the performance of UAV by 

Quindlen et al. (2013). Comparative study on solving various flush air data systems has been 

presented by Liu et al. (2014). Chen et al. (2015) studied the FADS of hypersonic vehicles using 

an algorithm based on neural networks. Srivastava and Meade (2015) carried out a comprehensive 

probabilistic framework to learn air data from surface pressure measurements. Karlguard et al. 

(2017) coupled inertial navigation and FADS algorithm for estimation atmospheric estimation. 

Shevchenko and Shmakov (2017) have evaluated multi-hole probes in wind-tunnel experiments in 

conjunction with FADS. Reis et al. (2019) applied optimization of aerodynamics for airfoil inverse 

design. It shows that a large number of research papers have appeared for analysis of flow using 

FADS in conjunction with neural network algorithms. The calibration requires a large database to 

train a multi-layer neural network to predict the aerodynamic characteristics of a vehicle. 

Correction factors may be obtained from wind-tunnel tests but these may not cover the entire 

flight envelope. Using a validated CFD flow solver to generate a suite of correction factors is an 

attractive option due to its wide range of applicability, low cost, and very high precision. Anderson 

et al. (1986) have used finite volume flux splitting method to solve compressible Euler equations. 

Computed results of inviscid flow field around aerospace vehicles have been compared with  
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Fig. 1 (a) Schematic sketch of a satellite launch vehicle (b) section A-A at x/D=0.77 

 

 

experimental and flight data by An et al. (1993). Literature survey reveals that the three-

dimensional compressible Euler equations are used to compute flowfield over launch vehicles. 

Their prediction of aerodynamic characteristics based on wind-tunnel test results and numerical 

data are employed for Mach numbers from 2 to 14.  

In this paper, a study of inverse analysis using controlled random search (CRS) algorithm in 

conjunction with neural network method is applied to estimate pitch angle , sideslip angle  and 

AoA t for a freestream velocity vector V of a typical satellite launch vehicle as depicted in Fig. 1 

(a). Pressure ports are located x/D=0.77. Locations of pressure ports are shown in Fig. 1(b). The 

three-dimensional Euler equations are used for computation of pressure distribution for freestream 

Mach numbers range 0.5 to 3.0 and at angles of attack ±5o. Measured differential Pressure data 

was converted to the desired air data through a calibration data curve employing CRS method in 

conjunction with neural network technique.  

 

 
2. Numerical analysis  
 

2.1 Governing equations 
 

The normal pressure across the blunt-cone section of the payload fairing is negligible and 

because there is no boundary layer separation in this region. The fluid motion is governed by time 
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dependent three-dimensional compressible inviscid equations for the ideal and perfect gas which 

express the conservation of mass, momentum and energy in the absence of external forces. The 

Cartesian coordinate form of the Euler equations can be expressed as 

                     0=



+




+




+





zyxt

GFEU
                             (1) 

where U is vector of conserved quantities and is written as  

                   Te,w,v,u, =U                                      (2) 

where u, v, and w are the velocities in the x, y, and z directions, respectively. F, G and H are 

Cartesian inviscid flux vectors. The inviscid flux vectors will not be repeated here but can be 

found in the texts by (Bertin 2006). Temperature is related to the perfect gas equation of state. The 

ratio of specific heats was assumed constant and taken equal to 1.4.  

 

2.2 Solution procedure  
 
To simplify the spatial discretization in numerical simulations, Eq. (1) can be written in the 

integral form over a finite computational domain with the boundary as 

( )  =+++  0dd GFEU                          (3) 

Here Ω is a control volume with surface Γ. The contour integration around the boundary of the 

cell is performed in an anticlockwise sense in order to keep flux vectors normal to the boundary of 

the cell. The computational domain has a finite number of non-overlapping hexahedral cells. In a 

cell centred finite volume method, the flux variables are stored at the centroid of the grid cell and 

the control volume is formed by the cell itself. The conservation variables within the 

computational cell are represented by their average values at the cell centre. 

The inviscid fluxes are computed at the cell-centre resulting in flux balance. The summation is 

carried out over the eight edges of the cell. The space discretization scheme shares the 

reconstruction of the conservative variables of cell interfaces but differs in the evaluation of fluxes 

in time stepping. The inviscid fluxes are obtained from Roe’s approximate Reimann solver. The 

numerical scheme is advanced in time with a third order Runge-Kutta method. AUSM+ scheme 

(Liou 2006) is employed here to evaluate the inviscid fluxes by splitting them as convective and 

pressure terms. The spatial discretization described above reduces the integral equation to semi-

discrete ordinary differential equations. The numerical algorithm is second-order accurate in space 

discretization and time integration. The numerical scheme is stable for a Courant number 2. 

Local time steps are used to accelerate to a steady-state solution by setting the time-step at each 

point to the maximum value allowed by the local Courant-Friedrichs-Lewy (CFL) condition. 

 

2.3 Initial and boundary conditions 
 
To solve Eq. (1), one has to have the initial boundary conditions, which defines a particular 

problem. At the inflow, all the flow variables are taken at the freestream values as tabulated 

(Mehta 2017a) including flight trajectory (Mehta 2017b).  

At a solid wall, the velocity tangential to the boundary is applied since the flow is inviscid. At  
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Fig. 2 Computational grid over the satellite launch vehicle 

 

 

transonic freestream Mach number, the computational domain of dependence is unbounded, and 

the implementation of boundary and initial conditions become critical, the known physical 

acceptance of far-field boundary conditions usually limit the flow variables to asymptotic values at 

large distances from the payload fairing. Therefore, suitable coordinate stretching and placement of 

the far-field boundary condition have been considered in numerical simulations. The freestream 

conditions are prescribed on the outer boundary. For supersonic flow, all of the flow variables are 

extrapolated from the vector of conserved variables U. An image cell is imposed to the solved 

variables at the line of symmetry ahead of the vehicle. 

 

2.4 Payload fairing geometry and pressure ports 
 
The maximum diameter of the payload shroud is D=35 mm and the booster diameter is d=8.75 

mm. The spherical cap of the payload fairing is RN=8.75 mm. For the blunt-nosed cone, the 

inclination at the fore body is 20o. The boat tail angle is measured clockwise from the axis with 

reference to the oncoming flow direction and is 15o. The location of the pressure ports are Pα1, Pα2, 

Pβ1 and Pβ2 flush mounted pressure transducers at x=0.77D. Fig. 1 depicts the nomenclature of 

pressure ports.   

 

2.5 Computational grid 
 

The body-oriented grids are generated using a one-to-one and onto method in conjunction with 

finite element method (Mehta 2017c) to obtain stretched and non-overlapping grid in a single 

block of the payload fairing. The stretched grids are generated in an orderly manner. The mesh is  
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Fig. 3 Density contours (a) transonic (b) supersonic Mach numbers 

 

 

exponentially stretched from the wall. The grid-stretching factor is selected as 4, and the outer 

boundary of the computational domain is maintained as 3.5-4.5 times maximum diameter D. In the 

downstream direction, the computational boundary is about 6-9 times the diameter D. The 

computational domain depends on freestream Mach number. The internal grid cells were 

constructed so that all of the nose pressure ports coincide with the centre of a finite volume cell 

face. The computational grid is shown in Fig. 2 and has 110 planes axially, 26 planes 

circumferentially, and 70 planes normal to the body. The grid arrangement is found to yield a 

relative difference of about ±3% in the pressure peak, which is in the same range as the stagnation 

pressure measurement error in the wind-tunnel. The convergence criterion is based on the 

difference in density values at any of the grid points, between two successive iterations 

|ρn+1−ρn|≤10-5 where n is time-step counter. The numerical computations were carried out with 

various grid arrangements in order to meet a grid independency check. The minimum grid size in 

the normal direction of the payload fairing is about 1.70×10-4 of nose radius RN. 

 
2.6 Flowfield characteristics  
 

The three-dimensional Euler code was developed by us and used to simulate flow over the 

payload fairing. The code is second-order time accurate; the flow around the payload fairing is 

instantaneously steady at all points in flight. The assumption is reasonable, since only small 

changes in flow conditions occur over the time required for full development of the flowfield. It is 

important to mention here that the assumption allows the generation of CFD flow solutions at any  
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Fig. 5 Normal load in blunt-cone section of payload fairing 

 

 

point on the trajectory, independent of previous flight conditions. Simulations of the flowfield over 

the payload fairing were performed at various AoA and flight conditions.  

The numerical procedure produced results of comparable accuracy to that obtained by wind 

tunnel data. The wind-tunnel tests were carried out on a 1/120 scale model of the full-size launch 

vehicle at up to angle of attack of 5o with an interval of 1o. The subscale dimension of the scale 

model is selected after considering the blockage and compatibility conditions with the model 

support system of the wind tunnel. 

Numerical simulations are carried out for flight Mach numbers of 0.5 to 3.0 at an increment of 

angle of attack ∆α=0.25o. Fig. 3 shows the density contours at various M∞ at AoA=5o. Fig. 3 

shows the density contours in the plane of symmetry. It can be seen from the density contours that 

the flowfield characteristics depend on flight Mach numbers. The density contours in Fig. 3(a) 

 

Fig. 4 Variation of stagnation pressure coefficient 
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exhibits the transonic flow behaviour of flowfield over the payload fairing. The terminal shock 

moves downstream on the payload fairing for M∞<1. Fig. 3(b) shows formation of bow shock over 

the forebody and presence of weak oblique shocks downstream of the cone-cylinder junction of 

the payload fairing for M∞>1. The difference in the shock shapes significantly affected the surface 

pressure distributions. The expansion and compression on the shoulder points of the payload 

fairing are visible in the density contours. 

The pressure coefficient Cp(0)=[(po-p∞)/q∞] at the stagnation point is shown in Fig. 4 where po 

is the stagnation pressure, p∞ is freestream pressure and q∞ is freestream dynamic pressure. 

Stagnation point pressure coefficient is compared with wind tunnel results. The stagnation 

pressure coefficients can also be obtained using the analytically isentropic equations (Liepmann et 

al. 2007) as 

( ) 1
1
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The comparison shows good agreement between them. It can be seen from Fig. 4 that the 

stagnation point pressure coefficient increases with an increase of M∞.  

 
2.7 Local normal load variations  
 

The probe pressure orifice locations were selected based on local structural load and under no 

flow separation condition in that region. At each station Cp() was integrated circumferentially to 

obtain the aerodynamic load using numerically integrated following relation 

( ) ( )=


















02 dcosCpxr

dx

N
dC

S                       (5) 

where x is the location of the station from nose, r(x) is radius of cone at station x,  is roll angle 

from leeward side. Cp() is a pressure coefficient in circumference direction. CN is normal force 

coefficient and S is reference surface areas based on booster diameter d. Local normal forces are 

computed at various locations using numerically computed circumferential pressure distribution. 

Fig. 5 shows the local normal force at different sections in the conical region. We have selected 

x/D=0.77 for mounting pressure transducers as shown in Fig. 1. This location experiences 

minimum normal pressure load. Fig. 1(b) displays the corresponding flush air data system 

employed in the estimation of angle of attack and sideslip angle, where subscripts α1 and α2 

represent windward and leeward of the pitch plane and β1 and β2 in the yaw plane as shown in Fig. 

1(b).  

   

2.8 Flush air data system calibration  
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Calibration of flush air data sensing systems for a satellite launch vehicle 

 

Fig. 6 Measured pressure coefficients vs Mach number at x=0.77 D 

 

Fig. 6 displays the measured pressure coefficients at different ports (Pα1, Pα2, Pβ1 and Pβ2) at 

x=0.77 D where x is measured from the stagnation point of the payload fairing. These pressure 

measurements are used to validate the location of pressure transducers and construct the 

calibration charts for inverse analysis. In the next section we will describe CRS method in 

conjunction with neural network technique to estimate pitch, yaw and AoA as a function of flight 

Mach number.  

 
 
3. Inverse problem  
 

There is no unique optimization algorithm that solves inverse problem. In dependence on the 

specific task a global optimization technique has to be selected. Since this information about the 

system to be optimized is difficult to obtain by a direct search approach, randomized methods are 

often chosen. 

Calibration parameters are derived using the computed and measured differential pressure with 

small increments of freestream Mach number and AoA. The pitch and yaw angles are calculated 

from the calculated parameters derived from the numerical simulation of the flowfield over the 

payload fairing. The calibration factors span the freestream Mach number range of 0.5 to 3.0 

which covers maximum dynamic pressure and transonic region of the vehicle. The calibration 

factors are validated with wind tunnel results and show good agreement between them. Initial 

results from the ascent air data system are compared with reconstructed trajectory data. The 

differential pressure transducers are in the range of 13.788103 Pa the pitch and yaw plane 

differential pressure are linear with respect to the AoA. 

The differential pressure, pα and pβ, are highly linear with respect to  and β angles, 

respectively. A CRS method in conjunction with neural network technique is applied to estimate 

9



 

 

 

 

 

 

R.C. Mehta 

the AoA from the measured transient differential pressure history during the ascent period of the 

launch vehicle. 

 

3.1 Differential pressure measurement  
    
The digitization of the flight pressure data is in 256 counts for the full scale range resulting in a 

data error of 0.41103 Pa for absolute pressure and 0.1096103 Pa for differential pressure. 

Rosemount model (1984) 1221F2AF of differential pressure transducer of range 17.23-172.36103 

Pa (dif) (2.5-25 psid). The sensitive coefficients k1 and k2 are 0.6-0.4. Telemetry requirement uses 

equipment bay (EB) to ground pressures of about 10 Hz response and two power monitoring Fast 

Fourier Transform (FFT) of pressure data is also needed to filter out unwanted frequencies.   

Roll angle relates the orientation of the vehicle relative to the Earth’s surface, and does not 

directly affect surface pressure or aerodynamics. The calibrated differential pressure in pitch and 

yaw angle are linear functions of AoA. In order to obtain flow direction from these calibration 

factors, the equations are inverted to get =Cp/k1q and =Cp/k2q and t=(2 +2), where 

k1 and k2 are calibration constant and subscript ∞ represent freestream condition.. The flight data 

for the FADS were available from the vehicle telemetry system. Fig. 7 shows the measured 

different pressure versus freestream Mach number. The flight data represents the measured 

differential pressure in pitch p and yaw p planes. The measured differential pressure data was 

recorded 10 samples per second. In estimation of  and , one minimizes   

                   ( ) ( ) ( ) −= .D.DVF MC
                        (6) 

where DC and DM are, respectively, the calculated and measured differential pressure at x= 0.77 D. 

 

 

 

Fig. 7 Measured differential pressure vs Mach number at x=0.77 D 
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Fig. 8 Estimated values of  and  angle with flight Mach number 

 

 

Fig. 9 Topology of multi-layered feed forward neural network 

 
 
3.2 Controlled random search optimization method  

    

The CRS algorithm (Price 2010), an effective tool for global optimization, does not need 

computation of derivatives but depends on function F(V) evaluation alone. It works even when the 

differentiability requirements cannot be assured in the feasible domain of variables. For initiating 

this algorithm no initial guess value, except for an estimate of V, is needed. 

A procedure for solving for  and β unknown air data parameters is now presented. Given that 
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differential pressure observations are available on the payload fairing. The quantity F(V) is the 

surface pressure measured by the sensor, and represents the unknown air data parameters which 

best fit the available set of pressure observations. For differential pressure sensors and solutions 

require the inversion of an over constrained system. 

The CRS algorithm does not need computation of derivatives but depends on function F(V) 

evaluation alone. The function F(V) is the difference between measured and calculated values of 

the differential pressure. It works even when the differentiability requirements cannot be assured 

in the feasible region of the variable. For initiating a CRS algorithm no initial guess value, except 

for an estimate of  and  is required. The algorithm does not depend on the future-pressure 

information. 

The CRS algorithm is implemented in two steps. In the first step, random feasible points 

generated from ,  and F(V) are computed at each point and information stored as a matrix. The 

maximum and minimum values FM(V), FL(V) of F(V) and corresponding points M and L are then 

identified. In the second step, these random points are manipulated iteratively to yield a better 

candidate for global solutions. To this extent at iteration arbitrary distinct points are selected from 

the matrix. 

The CRS version works in two phases as mentioned by Mehta and Tiwari (2007). In the first 

phase, random feasibility points generated from V and F are evaluated at each point and the 

information is stored as matrix A. The maximum and minimum values FM, FL of F and the 

corresponding points M and L are then identified. In the second phase, these random points are 

manipulated iteratively to yield a better candidate for a global solution. To this extent at iteration 

arbitrary distinct points are chosen from matrix A. A new point T=2G-L, G being the centroid of 

these points, is generated and if T is in V, then FT is evaluated. If FT < FM then FM and M in A are 

replaced by FT and T. Otherwise, T is discarded and a new T is generated. Treating any 

replacement as a success and setting the minimum success rate as 0.5, the efficiency of the 

procedure is enhanced by making use of the secondary trial Q=(3G-L)/4. If T or Q is a success, a 

third trial is also made with Y=2.5 (T or Q)−1.5L and the best (with least F value) of T or Q or Y is 

used for replacement. The iteration process is continued till FL falls below the prescribed threshold 

value. The CRS method will be linked with the neural network method in order to get faster 

convergence of Eq. (6). The convergence criteria are mentioned by Mehta (2017c). It is important 

to mention here that the CRS and neural network method does not need gradient of the unknown 

parameters.    

 

3.3 Neural network method 

 

Neural networks (Haykin, 2005), in conjunction with CRS method, is used to estimate angle of 

attack from differential pressure measurements taken from ports located flush on the blunt-nose of 

the payload fairing. Fig. 9 exhibits structure of a multi-layered feed forward neural network. 

Hidden neurons contain weighted connections as input and output. Many input neurons are termed 

as input layer, hidden neurons as hidden layers and output neurons as output layer. The main task 

of a neural network is to map input data into output data and to recognize the underlying pattern 

whereas the data flow is unidirectional from the input layer to the output layer. The mapping from 

input data to output data is achieved by an adaptation of the network weights. The matrix of 

weightings of the connections between the neurons can be denoted as the “knowledge” of the 

network. The error of a neural network may be defined as a least-squares sum between the target 

values of the training data set and the corresponding network output. During the network training  

12



 

 

 

 

 

 

Calibration of flush air data sensing systems for a satellite launch vehicle 

 

Fig. 10 Comparison of AoA with reconstructed trajectory data 

 

 

the weighting matrix is adjusted so that the error is minimized.  

In order to obtain flow direction from these calibration factors, the equations are inverted to get 

α=Cpα and β=Cpβ and αt=(α2+β2). The results are compared with the reconstructed trajectory 

data and found in reasonably good agreement. 

The further details of CRS algorithm are described in the estimation of discharge coefficient of 

payload compartment venting by Mehta (2017b). Comparisons of AoA with reconstructed 

trajectory data are shown in Fig. 10. A good agreement is found between estimated data with 

reconstructed flight trajectory employing PFA including IMU data.   

 

 

4. Conclusions 
 

The principal conclusion of this paper is that it is possible to calibrate a flush air data system 

for a satellite launch vehicle using a computational fluid dynamics approach. Euler calculations 

have been made to obtain the pressure distributions over the payload fairing in Mach number 

range of 0.5-3.0. The code employs a three-dimensional finite volume space discretization to solve 

the integral form of the compressible inviscid equations over the satellite launch vehicle. A CRS 

method coupled with the neural network technique is employed to estimate the angle of attack and 

sideslip angle from the measured transient differential pressure history during the ascent period of 

the launch vehicle. The algorithm predicts the  and  stepwise with the function of Mach number. 

The predicted values of  and  are found to be consistent with the reconstructed telemetry data as 

a function of the flight Mach number and found in reasonably good agreement.   
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