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Abstract.  Nonlinear state estimation is a desirable and required technique for many situations in engineering (e.g., 
aircraft/spacecraft tracking, space situational awareness, collision warning, radar tracking, etc.). Due to high standards 
on performance in these applications, in the last few decades, there was an increasing demand for methods that are 
able to provide more accurate results. However, because of the mathematical complexity introduced by the 
nonlinearities of the models, the nonlinear state estimation uses techniques that, in practice, are not so well-
established which, leads to sub-optimal results. It is important to take into account that each method will have 
advantages and limitations when facing specific environments. The main objective of this paper is to provide a 
comprehensive overview and interpretation of the most well-known methods for nonlinear state estimation with 
Gaussian priors. In particular, the Kalman filtering methods: EKF (Extended Kalman Filter), UKF (Unscented 
Kalman Filter), CKF (Cubature Kalman Filter) and EnKF (Ensemble Kalman Filter) with an aerospace perspective. 
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1. Introduction 
 

The state estimation of stochastic systems is one of the basic problems of modern control 

theory and control system engineering, whose solution (an approximate solution) can be found in 

several filtering methods. The framework of these fields includes topics such as inertial navigation, 

aircraft/spacecraft tracking, multi-sensor data fusion, collision warning, space situational 

awareness and radar tracking, where the main problem is to estimate the state vector of an 

aerospace vehicle (e.g., aircraft, satellite, missile, space vehicles, etc.), given redundant and 

imperfect measurements of its position and velocity. In most applications, these measurements are 

based on radar signals that are contaminated with noise and system measurement errors (Bar-

Shalom et al. 2001, Chandra and Gu 2019, Coelho and Bousson 2016, Roa et al. 2017, Tanizaki 

1996). So, a good filtering algorithm should be able to remove the noise from data while retaining 

useful information (Welch and Bishop 2001). However, it is not an easy task, especially when 

facing online estimation with a statistical nature in a highly nonlinear environment. The process of 
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state estimation requires robust filtering methods that can deal not only with the uncertainties of 

the system dynamics but also with the instrumental inaccuracies related to the data acquisition 

system and the environmental disturbances. In addition, it needs to consider that a real-physical 

system may have parameters whose values can be known only with specific accuracy and these 

uncertainties must also be considered since they might be crucial to evaluate the behaviours 

exhibit by the system (Akhlaghi et al. 2017, Ahmed 1998). All state estimations are based on the 

highly accurate information and therefore the development of methods that are able to provide 

such results are extremely important.  

The filtering methods have their root on the Bayesian analysis of time-dependent behaviour, 

which belongs to the field of optimal filtering. (Gordon et al. 1993, Ho and Lee 1964, Jazwinski 

1970, Maybeck 1979, Lee 2005, Bar-Shalom et al. 2001, Yuen et al. 2013, Särkkä and 

Nummenmaa 2009) are some examples of approaching the state estimation problem through a 

Bayesian perspective. The idea of constructing a mathematically optimal recursive estimator was 

initially presented for linear systems due to their mathematical simplicity. The optimal filtering 

history begins with (Wiener 1949 and Kolmogorov et al. 1962), where they solved the least-square 

estimation problem for stochastic systems. Wiener developed the solution for continuous-time and 

Kolmogorov developed the solution for discrete-time. This filter is known as the Wiener filter and 

is still important nowadays however, it is restricted to stationary signals only. Kalman (1960) 

extended Wiener’s research for a more generic nonstationary process resulting in the Kalman filter. 

The main difference between these two filters is that the Wiener filter was developed in the 

frequency domain and is mainly used for signal estimation, whereas, the Kalman filter was 

developed in the time domain and is mainly used for state estimation.     

The success of the Kalman filter (Kalman 1960, Grewal and Andrews 2001) in engineering 

applications is mostly due to the extended Kalman filter, which is based on the assumption that a 

local linearization of the system may be a sufficient description of the nonlinearities, so the 

linearized model is used instead of the original nonlinear function, documented by, (Coelho et al. 

2017, Lefebvre et al. 2004, Mehra 1971, Simon 2006).  

A large number of strategies and variations based on Kalman filters are available in the 

literature and many authors documented the efficiency of the Kalman filters to solve the nonlinear 

state estimation problems in the aerospace field. And some authors proposed improvements to the 

existing methods, for instance, Zhao et al. (2018) proposed a robust iterated extended Kalman 

filter based on the generalized maximum likelihood approach, Coelho et al. (2020) proposed an 

improved extended Kalman Filter with a new Jacobian matrix calculation point and a more 

accurate covariance calculation, Wu and Wang (2014) proposed a constrained unscented Kalman 

filter algorithm to improve the accuracy of numerical substructure modelling in hybrid testing and 

Ashrafifar and Jegarkandi (2020) applied an adaptive robust unscented Kalman filter to the 

problem of model-based fault detection and diagnosis for nonlinear supersonic air vehicles.  

Before proceeding to the review of the nonlinear state estimation techniques, it is convenient to 

discuss some of the real-world applications where the Kalman filter played an important role:   

• In the 1960s, in Apollo Mission (NASA 2019a), where a new approach was needed for 

computing the estimated state from onboard measurements, a way that would not overburden the 

simulation facilities or the onboard computational capability. In this situation, the Kalman filter 

proved to be a practical method for real-time onboard navigation. It was proved that the Kalman 

filter works as predicted and it was capable of solving the Apollo guidance and navigation 

problems. This mission also provided key steps on the development of the so-called Extended 

Kalman Filter.  
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• In the 1970s, the rotorcraft flight research began between NASA and the US Army, where a 

fully automatic digital flight and guidance system that had conventional autopilot capabilities 

(including autoland) was developed. The system used Kalman filtering for extracting aircraft 

position and inertial velocities from multiple ground-based and onboard sensors (NASA 2019b). 

• On the Common Real-Time Debris Footprint (CRTF) Program (NASA 2019c), which 

contains a set of models that estimate the range of free-fall and impact locations of fragments that 

result from a vehicle breakup. In this program, the Kalman filter is applied to the estimation of the 

real-time vehicle state vector and uses tracking data from one or more sources. Each individual 

data source contains measurement error, which is implicit in the composite filter solution and it is 

represented by the filter’s covariance matrix.  

• In 2018, in the GPS Receiver and Orbit Determination Program (by ESA), where the main 

purpose was to develop a sophisticated navigation algorithm that could determine the positioning 

accuracy of a commercial receiver (ESA.int 2019a). The GPS payload encompasses a custom 

navigation computer that hosts an extended Kalman Filter, which uses raw GPS observables and 

an extremely precise orbital mathematical model in order to obtain position fixes with the required 

accuracy.  

• The Advanced Concepts Team of ESA is assessing a novel approach to infer the status of a 

spacecraft and its instruments from reading a few strategically placed thermal sensors, where a 

thermal network model of a spacecraft is used (ESA.int 2019b). To cope with the strong 

nonlinearities of the resulting network the unscented Kalman filter is being used.  

Presenting a survey of a field as diverse as nonlinear filtering is an ambitious task. Perhaps the 

most difficult issue is to discuss all nonlinear filtering methods within a limited amount of space. 

In order to achieve this goal, a conscious decision has been made to focus on the widely used 

classical approaches, such as: 

1. Extended Kalman Filter (Welch and Bishop 2001, Doumiati et al. 2013) 

2. Unscented Kalman Filter (Julier et al. 1995, Xiong et al. 2006, Gyorgy et al. 2014) 

3. Cubature Kalman Filter (Arasaratnam and Haykin 2009, Zhang and Guo 2013) 

4. Ensemble Kalman Filter (Kalnay et al. 2007) 

The main objective of this paper is to provide a comprehensive overview and interpretation of 

these methods. 

The paper is structured as follows section 2 addresses the problem statement, section 3, 4, 5, 6 

and 7 discuss the Kalman filters by the following order: Linear, Extended, Unscented, Cubature 

and Ensemble Kalman filter, then section 8 provides an overview of the advantages and limitations 

of each method; and finally, section 9 provides the discussion and conclusion of this survey. 
 
 

2. Problem statement 
 

The main objective of the nonlinear state estimation problem is to accurately estimate the state 

of a moving target based on a sequence of noisy measurements, where the undesired noise shall be 

eliminated. On this survey, it is used a state-space approach with a discrete-time formulation, 

simply because it is more convenient for real-time application with online-onboard systems 

(Doumiati et al. 2013), which is the case of most aerospace vehicles. 

To address the nonlinear state estimation problem, it is necessary at least two models, based on 

Markov models: 

1. The Nonlinear Dynamic Model, which is responsible for describing the evolution of the 

system states and the time. It is given by: 
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 1 1 1x x ,k k k kf u w   
 

(1) 

where f(.) is the general nonlinear function of the dynamic model;   is the state vector 

at the time-step k, which can be defined as a set of variables that provide the complete status of the 

system at that time; wk is white zero-mean, uncorrelated process noise, whose covariance matrix 

(Qk) is known and defined by: 

wk ~ N(0,Qk) (2) 

T

k j k kE w w Q      
(3) 

where δk is the Kronecker delta function and if k=j then δk=1; if k≠j then δk=0 (Simon 2006).  

2. The Measurement Model, which is responsible for relating the state of the system with the 

measurements. These measurements are imperfect because of the inherent noise and it must be 

eliminated in order to provide the best estimate possible: 

 y xk k kh v 
 

(4) 

where h(.) is the general function of the measurement model; is the measurement vector 

at the time-step k; vk is white zero-mean, uncorrelated noise, whose covariance matrix (Rk) is 

known and defined by: 

vk ~ N(0,Rk)  (5) 

 

 

 

Fig. 1 Illustration of a radar tracking problem 
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T

k j k kE v v R      
(6) 

0T

k jE v w     
(7) 

E is the kth statistical moment of a continuous variable. The functions f(.) and h(.) depend on the 

time step number k, but for notational convenience, this dependence has not been explicitly 

denoted. 

In the case of radar tracking, the state vector is defined as the sequence of the state dynamics of 

the moving target. The measurements are noise-corrupted observations provided by the radar 

(distances and directions/angles), as shown in Fig. 1. In this case, the Eq. (4) can be represented in 

the following form: 

r

k k

k k k

k k

r v

y v

v









  
  

    
       

(8) 

where r is the radial distance between the radar and the aerospace vehicle (target); θ is the angle 

measured from X-axis in XY plane of an inertial rectangular coordinate system to the projection of 

r onto XY plane; ϕ is the angle measured from the projection of r onto XY plane to the vector r.  

A track is a sequence of state estimates up to the current time. False detections and multiple 

target scenarios form an additional level of complexity to the full process. The Kalman filters have 

been one of the most used tools to deal with radar tracking problems. 

 

 

3. Linear Kalman Filter 
 

The Kalman Filter (KF) is one of the most often-used tools to solve stochastic estimation 

problems. It was named after Rudolph E. Kalman, who in 1960 (Kalman 1960) presented an 

online recursive solution to the discrete-data linear filtering problem. The objective was to be able 

to estimate the state of a system based on noise-contaminated observations. The Kalman filter has 

a form of feedback control, which means that the filter estimates the process state at a specific time 

and then obtains feedback in the form of noisy measurements. So, it is represented by two groups 

of equations (also represented in Fig. 2): 

a) Time update equations (prediction step): These set of equations are known as the predictor 

equations and they are responsible for projecting forward in time the current state and error 

covariance estimates, in order to obtain the a priori state estimate for the next time step. 

 (9) 

1

T

k k k kP A P A Q

 
 

(10) 

b) Measurement update equations (correction step): These set of equations are known as the 

corrector equations and they are responsible for the feedback, which means, they are responsible 

for incorporating the new measurements (obtain by sensors, radars or other) into the a priori  
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Fig. 2 A generic representation of Kalman filter equations groups. The Kalman filter estimates the process 

by using a form of feedback control, which means that at some point on time the filter will estimate the 

process state and then it will obtain feedback in form of noisy measurements 

 

 

estimate (calculated on the step before) to obtain an improved a posteriori estimate. 

 
1

T T

k k kK P H HP H R


  
 

(11) 

 
(12) 

 k k kP I K H P 
 

(13) 

 

 

 

4. Extended Kalman Filter 
 

Most of the real-world dynamics and measurements models are described as nonlinear systems 

so, the linear Kalman filter is not appropriate. To solve the nonlinear filtering problems, it was 

developed an extension of the filter: the extended Kalman filter (EKF). This is the most widely 

used method in engineering and a large number of applications can be found in literature, for 

instance, Yang and Zhou (2017) considered the EKF to solve a spacecraft attitude estimation 

problem, Jiang et al. (2014) applied the EKF to estimate the position of Mars rovers and suppress 

the measurement noise, Bishop and Antoulas (1994) study the performance of EKF to solve the 

problem of aircraft tracking and Rigatos and Tzafestas (2007) implemented the EKF algorithm to 

estimate the state vector of the autonomous vehicle by fusing data coming from odometry sensors 

and sonars.   

The EKF model applies the classic Kalman filter to nonlinear systems through a local 

linearization, this means, the EKF has the ability to linearize the current mean and covariance, 

using first-order Taylor series expansion evaluated at the best current estimate of the state. The 
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linearization equations are given by: 

 1 1 1
ˆx x x xk k k k k kA w     

 
(14) 

 y y x xk k k k k kH v   
 

(15) 

where x , yk k  are the actual state and measurement vectors; x , yk k  are the approximate state 

and measurement vectors; x̂k  is the posteriori estimate state at step k; Ak is the Jacobian matrix 

of partial derivatives of f with respect to x and it is defined as: 

 
ˆx=x

x,

x k

k

k

u u

f u
A








 

(16) 

Hk is the Jacobian matrix of partial derivatives of h with respect to x and it is defined: 

 

x=x

x

x
k

k

h
H





 

(17) 

The linearization is a very sensitive and important step. First, because it is too susceptible to 

error and second because allows the filter to get the best benefit from all the available a priori 

information. 

The EKF algorithm can be presented in the following form: 

a) Initialization 

It is assumed that: 
0 0x̂ x and 

0P Pinitial . 

b) Time update equations (prediction step): 
The prediction of the state is given by: 

 
(18) 

The predicted covariance is computed as: 

1 1

T T

k k k k k k kP A P A w Q w

  
 

(19) 

c) Measurement update equations (correction step):  
The filter gain is computed as: 

 
1

T T T

k k k k k k k k kK P H H P H V R V


  
 

(20) 

The state estimation is calculated by: 

 
(21) 

The estimated covariance is given by: 

 k k k kP I K H P 
 

(22) 
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Exploiting the assumption that all transformations are quasi-linear, the EKF simply linearizes 

all nonlinear transformations and substitutes the Jacobian matrices for the linear transformations. 

 

 

5. Unscented Kalman Filter 
 

5.1 Unscented transform 
 

The unscented Kalman filter was initially proposed by Julier and Uhlmann (Julier et al. 1995) 

and it is a numerical method based on the unscented transform (UT), well documented in the 

literature by (Akin et al. 2003, Julier and Uhlmann 1996, Julier et al. 2000, Li and Leung 2004, 

Ning and Fang 2007).  

The UT was developed to address the deficiencies of the linearization by providing a more 

direct and explicit mechanism to transform the mean and covariance, and consequently, to ensure 

higher accuracy. The core idea is to deterministically choose a fixed number of sigma points that 

capture the mean and covariance of the original distribution of x. These sigma points are 

propagated through the nonlinearity and from them, the mean and covariance of the transformed 

variable will be estimated. Although the unscented transform resembles the Monte Carlo 

estimation, these approaches are significantly different, the sigma points are deterministically 

selected in the UT method, while they are randomly selected in the Monte Carlo methods.  

The UT can be applied without the Gaussian assumption however, in this paper, the assumption 

is used only to provide a better comparison between different methods when implemented on the 

same conditions.  

 

 

 

Fig. 3 Geometric representation of sigma points propagation. The mean (represented in red, m) of the state 

vector is the ellipsoid centre and the sigma points (represented in blue) are the extremes of the ellipsoid 

axes 
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The following procedure forms the Gaussian approximation based on the unscented transform. 

Considering the model as: x~N(m,P), y=g(x), where the variable x has dimension n, mean m and 

covariance P.  

- Step 1: A set of (2n+1) sigma points are form by the following mathematical expressions:  

 0
m 

 
(23) 

 
m+ P

i

i
n    

   
(24) 

 
m- P , 1,...,

i n

i
n i n 

    
   

(25) 

where [.]i denotes the ith column of the matrix, λ is a scaling parameter defined in terms of 

algorithm parameters α and κ:  2 n n     . The n is the total number of states to be 

estimated.  

The parameters α determine the spread of the sigma points around the mean, in other words, it 

controls the size of the distribution. Ideally should be a smaller number: 0≤ α ≤1. The parameter κ 

is a secondary scaling parameter which is usually set to 0. It should be κ ≥0 to guarantee the semi-

positive definiteness of the covariance matrix and that is why zero is a good default choice. The 

matrix square root denotes a matrix such that P P P
T

 . Each sigma point represents a vector, 

where one of the sigma vectors is the expected value of the augmented state vector and the 

remaining 2n sigma points are obtained from the columns of the matrix square root: ±λP. 

- Step 2: Propagate the sigma points based on the nonlinear function g(.): 

    g ,   0,...,2
i i

i n  
 

(26) 

which results in the transformed sigma points γ(i).  

- Step 3: Compute the estimate of the mean and covariance of the transformed variable: 

 
(27) 

 
(28) 

where the constant weights Wi
(m) and Wi

(c) are calculated by: 

 m

0W
n






  
and

 

   c 2

0 1W
n


 


   

  
(29) 

 

 
m 1

   , 1,..., 2
2

iW i n
n 

 


 
and

 

 

 
c 1

   , 1,..., 2
2

iW i n
n 

 


 

(30) 

β is an additional parameter used to incorporate the a priori information. For Gaussian 

distribution, the optimum value is β=2 (Chowdhary and Jategaonkar 2006). 
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If the unscented transform is applied to the augmented function     g x x,g x , the result is 

a set of sigma points, where χ(i) and γ(i) are concatenated on the same vector (Wan and Merwe 

2000). 

 

5.2 Unscented Kalman Filter 
 

The unscented Kalman filter (UKF) is an approximate filtering method based on the UT 

algorithm. Although resembles the Monte Carlo method, there is a fundamental difference: the 

samples are not drawn at random but rather according to a specific, determinist algorithm. In this 

case, the problem of a statistical convergence is not an issue and high order information about the 

distribution can be calculated using a very small number of sigma points (Romanenko et al. 2004, 

Wan and Van der Merwe 2000). The UKF was developed with the assumption that approximating 

a (Gaussian) distribution is easier than approximating a nonlinear transformation:  

 
(31) 

where, mk,Pk are the mean and covariance computed by the algorithm.  

The prediction and update steps for the additive form of the UKF are given by the following 

operations, performed at each measurement step k=1,2,3,… (Wan and Merwe 2000): 

- Initialization:  

Initialize with:  

 
(32) 

- Prediction step:  

Calculate the sigma points:  

 0

1 1mk k  
 

(33) 

 
1 1 1m + P

i

k k k
i

n   
  
   

(34) 

 
1 1 1m - P , 1,...,

i n

k k k
i

n i n 


  
   
   

(35) 

where the parameter λ is defined by:  

 2 n n    
 

(36) 

Propagate the sigma points through the dynamic model: 

    1
ˆ f    , 0,...,2

i i

k k i n   
 

(37) 

Compute the predicted mean mk

  and the predicted covariance Pk

 : 

 
(38) 
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- Correction step:  

Calculate the sigma points: 

  0
mk k

 
 , 

  
m + P

i

k k k
i

n 
    

   (39) 

  
m - P , 1,...,

i n

k k k
i

n i n 
      

   
(40) 

Propagate the sigma points through the measurement model:  

     ˆ h    , 0,...,2
i i

k k i n 


 
 

(41) 

Compute the predicted mean μk, the predicted covariance Sk of the measurement, the cross-

variance of the state and the measurement Ck: 

   
2

m

0

ˆ
n

i

k i k

i

W 



 

(42) 

 
(43) 

 

(44) 

Given the measurement Ck, compute the filter gain Kk, the filtered state (the mean mk and the 

covariance Pk):  

1K C Sk k k


 

(45) 

 m m K yk k k k k
  

 
(46) 

P P K S KT

k k k k k

 
 

(47) 

 

 

6. Cubature Kalman Filter 
 

In 2009, Arasaratnam and Haykin proposed the Cubature Kalman filter (CKF), which is based 

on the cubature transform. It applies deterministic samplings to evaluate the demanding integrals 

encountered in filtering problems (Arasaratnam and Haykin 2009, 2010). The CKF is numerically 

more stable and more accurate than the UKF however, some drawbacks in computing the 

spherical-radial cubature rule cannot be ignored (Zhang and Guo 2013). Still, it can have great 

success in solving some nonlinear state estimation problems, for instance Pesonen and Piche 

(2010) applied the CKF in a hybrid navigation application for positioning, Zhao et al. (2018) 
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applied an adaptive CKF in an ultra-tightly coupled navigation system of a hypersonic vehicle and 

Mu (2012) implemented the CKF for a reentry ballistic target tracking problem.  

 The Cubature Kalman filter was developed assuming that the predictive density of the joint 

state-measurement random variable is Gaussian. The idea is to simplify the optimal Bayesian filter 

problem to a problem where the main focus is on how to compute various multi-dimensional 

Gaussian-weighted moment integrals. The solution was found in a third-degree spherical-radial 

cubature rule which entails a set of cubature points scaling linearly with the state-vector 

dimension. The CKF preserve completely the second-order information due to the maximum 

entropy principle.  

It can be described as a derivative-free sequential-state estimator that relies on the integration 

for its operation. It is the closest known approximation to the Bayesian filter that could be 

designed in a nonlinear setting under the Gaussian assumption. The CKF is presented as an 

appealing option for nonlinear state estimation, first because unlike the EKF, it does not require the 

evaluation of Jacobian matrices during the estimation process and second, it does not depend on 

additional tuning parameters as the UKF, where the performance is completely dominated by the 

tuning parameters: α, β, κ. 

The additive form of the cubature Kalman filter (CKF) algorithm is: 

- Prediction step:  

Calculate the sigma points: 

   
1 1 1m + P   , 1,...,2

i i

k k k i n    
 

(48) 

being P= P P
T

where P  is the Cholesky factor of the covariance matrix P or some other 

similar square root of the covariance matrix and 
 1 ,..., ni i

  is an n-dimensional vector with one unit 

sigma point 
 ki  at the element k and in this case, is defined as:  

  e   , 1,...,

e   , 1,..., 2

i i

i n

n i n

n i n n




 
 

    

(49) 

where ei denotes a unit vector in the direction of the coordinate axis i. 

Propagate the sigma points:  

    1
ˆ f    , 1,...,2

i i

k k i n   
 

(50) 

Compute the predicted mean mk


 and the predicted covariance Pk


: 

   
2

m

0

ˆm
n

i

k i k

i

W 




 

(51) 

 

(52) 

- Correction step:  

Calculate the sigma points: 
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    
m + P   , 1,...,2

i i

k k k i n 
   

 
(53) 

where ξ(i) is defined as:  

  e   , 1,...,

e   , 1,..., 2

i i

i n

n i n

n i n n




 
 

    

(54) 

Propagate the sigma points through the measurement model: 

     ˆ h    , 1,...,2
i i

k k i n 


 
 

(55) 

Compute the predicted mean μk, the predicted covariance Sk of the measurements, the cross-

variance of the state and the measurement Ck: 

 
2

1

1
ˆ

2

n
i

k k

in
 



 
 

(56) 

 
(57) 

     
2

 

1

1
ˆC m

2

n T
i i

k k k k k

in
  

 



  
 

(58) 

Given the measurement Ck, compute the filter gain Kk, the filtered state, the mean mk, and the 

covariance Pk:  

1K C Sk k k


 

(59) 

 m m K Ck k k k k
  

 
(60) 

P P K S KT

k k k k k

 
 

(61) 

The presented form is the CKF of Arasatnam and Haykin (2009) obtained when the third-order 

spherical cubature integration rule is applied to the classical Gaussian filter. It is important to note 

that in the CKF literature, the “third-order” characteristic of the cubature integration rule is often 

emphasized, however in the covariance computation, the rule is only exact for the first order 

polynomials. Thus, in that sense, CKF is a first-order method.  
 

 

7. Ensemble Kalman filter 
 

The Ensemble Kalman Filter (EnKF) was initially proposed by Evensen (1994) and is based on 

forecasting the error statistics using the Monte Carlo method, which belongs to a broader category 

of the particle filters. Although the EnKF is being extensively used in the context of weather 

forecasting and it is being recognized for producing accurate and computationally effective 
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estimation on systems with a very high dimension, it is almost unknown by the tracking 

community, except the work of Cui and Zhang (2008). There is some other research on the 

aerospace context using EnKF on topics such as simulated Doppler radar data by Snyder and 

Zhang (2003), simulated data of sounding, satellite and plane by Mitchell et al. (2002), but still a 

very small research number.  

The EnKF was initially proposed as an attempt to improve the error covariance calculation, 

which in the Extended Kalman Filter is difficult to implement, first, because of the computational 

cost of error-covariance calculation in realistic systems with many degrees of freedom, second 

because of the nonlinearities of the systems itself and the poorly characterized error sources. In the 

EnKF, the prediction and analysis error covariances have ensemble representations. These 

ensembles have sizes which limit the number of degrees of freedom, in this way the filter error 

covariance calculations are a lot more practical for modest ensemble sizes. 

The EnKF implementation can be summarized by the following steps: 

1. Generation of the ensemble points of the augmented system. The states of the system are 

augmented when incorporating the measurements.  

2. Propagation of ensemble points through process and measurement equations. Evensen 

(1994) called the step as forecast which is commonly known as predictor step by the engineering 

community. 

3. Updates of ensemble points using Kalman filter scheme with the help of measured data and 

measurement noise statistics. This step is commonly known as analysis by weather scientists, 

whereas system engineers are used to calling it a measurement update. 

The EnKF can be presented as follows: 

- Filter Initialization:  

Assuming a system described by equations (1) and (2), the state vector is augmented with the 

measurements obtained, in order to form the ensemble (Lorentzen and Naevdal 2001). Initially, to 

represent the error statistics in the forecast step, it is assumed that at time k, we have an ensemble 

of N forecasted state estimates with random noise. The ensemble is denoted as  

where, 

 1x ,..., x Nfff

k k kX
 

(62) 

The subscript fi refers to the i-th forecast ensemble member. 

- Prediction Step/Forecast Step:  

Define the ensemble error matrix  around the ensemble mean: 

1

1 1 1 1x x ... x xNfff f f

k k k k kE    
      

(63) 

where, 
1 1

1

1
x x i

N
ff

k k

iN
 



  . It is assumed that the forecast ensemble mean is the best forecast 

estimate of the state and the spread of the ensemble members around the mean are the error 

between the best estimate and the actual state.  

Define the ensemble output error, where: 

1

y y y ... y yN

k

ffa f f

k k k kE       
(64) 
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Approximate f

kP by ˆ f

kP , xyk

fP by 
xy

ˆ
k

fP and yyk

fP by 
yy

ˆ
k

fP : 

 
1ˆ

1

T
f f f

k k kP E E
N


  

(65) 

 xy y

1ˆ
1k k

T
f f f

kP E E
N


  

(66) 

 yy y y

1ˆ
1k k k

T
f f fP E E

N


  
(67) 

The last step of the forecast is to calculate: 

 1 , ui if a i

k k k kx f x w  
 

(68) 

where, 
1

1
x x i

N
aa

k k

iN 

  . 

- Correction Step (corrector step or measurement update):  

Calculate the Kalman gain matrix: 

 
(69) 

Calculate the estimate of the state: 

  ˆx x y xi i ia f f

k k k k kK h  
 

(70) 

On this step, the EnKF performs an ensemble of parallel data assimilation cycles, where 

i=1,…,N. 

In a nonlinear process with a linear measurement system, the ensemble can be formed only 

with the states. In this case, the update equation presented above will need to be modified. Another 

important point is that the ensemble variance is calculated by dividing (N-1) instead of the 

expected N. This happens as a correction to the unknown population mean, known as Bessel’s 

correction, in order to reduce the bias in the estimation of the population variance (Hunt et al. 

2007). 
 

 

8. Advantages and limitations - Overview 
 

Most of the variables of interest (that compose the system’s state) cannot be measured directly. 

So, the idea is to generate precise methods (Kalman filters) that are able to extract this valuable 

information from the noisy signals. In order to obtain an optimal estimate of the desired quantities, 

minimizing the error as possible. Therefore, the filter choice is very important and shall be 

adequate to the characteristics of the system, the desirable (and final) efficiency that we want as 

well as the computational time that will be needed to obtain such results. Because all algorithms 

will have advantages and limitations when applied in specific environments, this section will  
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Fig. 4 Simplified comparison between the EKF and UKF transform 

 

 

nominate some to facilitate future choices.  

Starting with the extended Kalman filter (EKF), the main advantage is the algorithm simplicity, 

because the linearization is a common procedure, i.e., very easy to understand and apply. When 

dealing with systems quasi-linear, it has the ability to maintain the computational efficiency of the 

classic Kalman filter, it presents good performance (the analyses error covariance is updated at 

each time-step). And although the popularity of the EKF, the algorithm presents several 

limitations, especially when dealing with highly nonlinear systems. This happens because the EKF 

is based on local approximations, so when applied to highly nonlinear systems, the estimate suffers 

serious problems, as unstable and quickly divergent behaviours. Also, after the nonlinear 

transformations, the filter acts as an ad hoc estimator that only approximates the optimality of 

Bayes rule by linearization, which may limit the overall performance. The EKF is restricted to 

Gaussian noise systems (it presents better results than non-Gaussian). This Gaussian restriction 

prevents the use of hierarchical models or other models that are described by high non-Gaussian 

distributions. In addition, the EKF requires the measurement and dynamic models functions to be 

differentiable, which may be a limitation in some applications. In some cases, the computation of 

the Jacobian matrix is simply impossible to compute, which renders to impossible the use of the 

EKF. Even when the matrix exists and can be computed, the actual computation and programming 

can be quite error-prone, hard to debug, and time-consuming, a huge limitation for time-critical 

applications (as aircraft tracking and navigation) where the algorithm shall be fast and efficient. 

Regarding the Unscented Kalman filter (UKF), one advantage over the previous EKF is the use 

of sigma points when approximating the nonlinearity (since it applies the unscented transform), so 

it can capture higher-order moments (caused by the nonlinear transformation) better than the 
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Taylor series approximations (EKF, which is based on linear approximation at a single point), as 

Figure 4 shows. Unlike the EKF, the measurement and dynamic model function are not required to 

be differentiable, neither does it needs to compute the Jacobians matrices, which in some cases is 

an advantage. The mean estimate is exact for polynomials up to order 3, which contributes for 

better accuracy however, the covariance computation is only exact for polynomials up to first 

order.  

Another advantage of the UKF is that it does not require the computation of any expected 

valued (in the closed-form), only requires the evaluations of the dynamic and measurement 

models. However, the UKF accuracy cannot be expected to be as good as it could be because, in 

the approximation area, the algorithm uses a fixed number of sigma points (2n+1). It requires 

slightly more computational operations (for example, when compared with the EKF). The UKF 

also requires the update of the covariance matrix at each time step, which contributes to more 

computational load. It is parameter-dependent, which means, the description of the parameters will 

have a direct impact on the final performance.   

The CKF can be compared to UKF in the sense that avoids the linearization by using a set of 

points to predict the state vector and the covariance matrix. However, CKF has a strictly 

theoretical derivation based on Bayesian and spherical-radial cubature principles while UKF does 

not. A CKF advantage is that the set of points are acquired by integration, which leads to equal and 

positive values of all weights, while the UKF weights are easily negative when facing high 

dimensional systems, which reduce the filter accuracy and stability. Also similar to UKF, the CKF 

uses a fixed number of points when calculating the approximation area and updates the covariance 

matrix at each time step (which, can be translated as an increment on the computational 

complexity but also more accuracy). 

Some of the notable advantages of the CKF are: it is derivative-free and it is the closest known 

approximation to the Bayesian filter that could be designed for nonlinear Gaussian filtering 

problem (due to the maximum entropy principle) when given the second-order statistic of the state 

and innovations process. Unfortunately, in most of the cases, the posterior density is intractable 

and this can happen because when the CKF method is applied to multi-dimensional systems, it is 

necessary to compute multi-dimensional integrals and even after they are computed it may be 

difficult to propagate the posterior density through subsequent time steps. Because there is no 

guarantee that the new posterior density will remain closed with finite summary statistic expressed 

in terms of (quasi-) moments. As can be seen, the CKF is committed to digital hardware and due to 

numerical imprecision, it may exhibit a divergent behaviour or even a complete failure. 

Regarding the EnKF, the main advantage is the simplicity of the method, because while the 

EKF requires at each time step the linearization of the state model and measurement model, the 

EnKF uses the nonlinear model directly, so there is no need to linearize or compute the Jacobian 

matrices. Although EnKF does not require the linearization of the model, it still computes the 

perturbations based on the assumption that they evolve linearly, which means there is an 

assumption of Gaussian perturbations, i.e., perturbations completely represented by their mean and 

covariance that remain Gaussian within the assimilation window. This characteristic has a negative 

impact on the EnKF performance with the nonlinear growth of the perturbations because if the 

model is very high-nonlinear or if the analysis time window is too long, the Gaussian assumption 

is no more adequate. An advantage of the EnKF is the dynamic propagation and the ensemble 

members transformation because those are quite easy to implement and computationally 

inexpensive. Furthermore, given an ensemble size, the EnKF has the ability to provide an optimal 

initial ensemble perturbation (it represents the analysis error covariance). The EnKF presents 
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better results than the EKF if the number of ensemble members is larger than the size of the model. 

For most of the dimensional problems, an ensemble size between 50 to 100 is sufficient 

however, the use of a limited number can introduce sampling errors on the background error 

covariance. This limitation is more apparent at long distances. One advantage of the EnKF method 

relative to the other sequential Monte-Carlo methods is the use of shifting instead of reweighting 

the points (update equations), which allows the algorithm to remain stable in high-dimensional 

problems. It is important to have into account that even in a perfect model and because of the 

nonlinearities, the EnKF and also the other methods can drift away from the real solution due to an 

underestimation of the forecast error covariance. Particularly, the EnKF because it is affected 

directly by an underestimated representation of the background error covariance, especially 

outside of the subspace defined by the ensemble forecasts.  

 

 

9. Conclusions 
 

Most of the filtering methods that are presented in this paper have optimal states estimation 

only when the mathematic model is linear and accurately known, and the system and measurement 

noises are white and Gaussian. However, in practical applications, these requirements are not 

easily satisfied, because most of the times, they are inaccurate or incomplete; the covariance 

matrix is often ill-conditioned and the non-linearities in the equations that describe the physical 

system (vehicle dynamics) are imprecise. It is also needed to consider random environmental 

disturbances, that are not easily calculated. Additionally, there are instrumental inaccuracies that 

are also hard to modulate and have a direct impact on the estimation because the system model and 

its associated noise are obtained based on the prior knowledge, which has some errors when 

compared with the true values. The path to achieving better state estimations includes the search 

for more accurate adaptive solutions. Moreover, the adaptative method needs to be able to balance 

precision with computational complexity and processing time because nowadays the methods with 

better precision are also more computationally expensive, which can be translated in more 

processing time and for time-critical applications precise and fast methods are a demand in the 

everyday situation. This survey proposes some solutions to improve the overall performance of 

widely used methods: 

1. EKF method only uses the last estimated state vector to compute an improved linearization.  

If this process is done based on all available data, the results will be more accurate. However, it is 

important to find the right balance between accuracy and computational complexity (which, in 

most cases, is translated as more computational time – characteristic to avoid in time-critical 

aerospace systems). 

2.  Design an algorithm that is part recursive and part non-recursive will allow more flexibility 

in the fundamental trade-off between accuracy and computational complexity. 

3. Prove a generalization of the Pitman-Koopman-Darmois theorem for smooth non-linear 

filtering problems with non-zero process noise, as well as for finite but growing dimensional 

problems and for problems with less smoothness and less regularity.  

The Pitman-Koopman-Darmois theorem says that when we have independent and identically 

distributed (IID) sampling from a statistical model, all distributions in the model have the same 

support which does not depend on the parameter. And if all distributions in the model are 

continuous, then there is a sufficient statistic whose dimension does not depend on the parameter, 

if and only if, the statistical model is an exponential family of distributions. It is important to note 
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that the theorem does not cover discrete cases, and most applications within the exponential family 

theory are discrete. Nowadays, there are some additional theorems that cover discrete distributions, 

but they need extra conditions so the theorem can be proved. 

4. The proposal densities, from the exponential family and exponential sums, should be used 

rather than the Gaussian proposal; 

5.  Some ideas should be borrowed from physics to solve engineering applications, as relating 

to Boltzmann’s entropy and the second law of thermodynamics to the evolution of uncertainty in 

nonlinear filters. Recently, Mitter and Newton (2005) give some steps forward on this topic, but 

still, there is space for more improvements. 

The topic of nonlinear state estimation is still growing, and a better solution may pass by a 

robust adaptive filter. Xia et al. (1994) already formulated an adaptive solution for linear Kalman 

filters, however, a nonlinear formulation is more complex, where the variability of environmental 

disturbances, the uncertainties of the vehicle dynamics and the instrumental inaccuracies has to be 

taken into account and besides all of these, it is necessary to find the right balance between the 

processing time and computational complexity. This way, it is possible to have an optimal filter 

with more accurate and precise results. 
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