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Abstract. Non-linear energy sink (NES) is an emerging passive absorber able to mitigate
the dynamic response of structures without any external energy supply, resonating with
all the modes of the primary structure to control. However, its inherent non-linearities
hinder its large-scale use and leads to complicated design procedures. For this purpose, an
approximate design approach is herein proposed in a stochastic framework. Since loads are
random in nature, the stochastic analysis of non-linear systems may be performed by means
of computational intensive techniques such as Monte Carlo simulations (MCS). Alternatively,
the Stochastic Linearisation (SL) technique has proven to be an effective tool to investigate
the performance of different passive control systems under random loads. Since controlled
systems are generally non-classically damped and most of SL algorithms operate recursively,
the computational burden required is still large for those problems that make intensive
use of SL technique, as optimal design procedures. Herein, a procedure to speed up the
Stochastic Linearisation technique is proposed by avoiding or strongly reducing numerical
evaluations of response statistics. The ability of the proposed procedure to effectively reduce
the computational effort and to reliably design the NES is showed through an application
on a well-known case study related to the vibrations mitigation of an aircraft wing.

Keywords: Non-linear Energy Sink; stochastic linearisation; spectral moments

1. Introduction

In the last decades, the constant advances in manufacturing and materials technologies
have led to design structures increasingly flexible and lightweight that, however, turn out to
be vulnerable to dynamic load and consequently can exhibit excessive vibration responses.
In aerospace engineering, the instabilities are often produced by aeroelastic flutters, i.e. self-
oscillating phenomena resulting from the interaction between a structure and the surrounding
flow, but also by non-linearities in the system leading undesirable limit-cycle oscillations
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(LCOs) (Hubbard et al. 2010). Since both phenomena in severe cases may lead to failure,
great attention has been given to developing strategies able to mitigate or avoid them.

In order to reduce the dynamic response of structural flexible systems subjected to ran-
dom loads, passive control absorbers are often used. These devices are the most extensively
researched and widely used across the world because of their capacity to enhance energy
dissipation in the controlled structures without any external supply to trigger the damping
process. However, the classical absorbers, such as tuned mass dampers, have a limited con-
trol capacity since they are generally tuned to a single structural natural frequency, being
effective within a narrow frequency band and very sensitive to the detuning problem. Re-
cently, Non-linear Energy Sinks (NESs) have attracted the attention of researchers because
of their capability to passively absorb a significant amount of energy over a wide range of
frequencies, thus overcoming the limitations of the classical absorbers (Vakakis et al. 2009).

Basically, a NES is prefigured as small mass coupled to the main structure with an es-
sentially non-linear spring, which enables the NES to resonate with any mode of the primary
system, and a linear viscous damping element, which dissipates the vibrational energy trans-
ferred through resonant modal interactions. An additional feature is its ability to passively
and irreversibly absorb from the primary structure a significant amount of energy, that re-
mains confined in the NES and locally dissipated in its damper. This phenomenon is known
as passive Targeted Energy Transfer (TET) and it is realised mainly via a p:k resonance
capture. The TET has been widely investigated both analytically (Gendelman et al. 2001,
Vakakis 2001, Gendelman 2001, Kerschen et al. 2005, Lee et al. 2005, Vakakis et al. 2009)
and experimentally (Nucera et al. 2007, 2008, McFarland et al. 2005, Kerschen et al. 2007,
Gourdon et al. 2007, Wang et al. 2015a) in different fields of application, such as aerospace,
civil and mechanical engineering (Lee et al. 2008a).

Application of TET for suppressing LCOs in the van der Pol oscillator is reported in Lee
et al. (2006), whereas the capacity of single as well as multiple NESs to prevent aeroelastic
instabilities occurring in in-flow wings is investigated both theoretically and experimentally in
Lee et al. (2007a, b, 2008b). It has been demonstrated that a series of transient or sustained
resonance captures between the NESs and aeroelastic modes (i.e. pitch and heave modes)
suppresses the triggering mechanism that allows LCOs to occur, thus assuring instability-free
dynamics.

In (Bergeot et al. 2016) the Ground Resonance phenomenon, a dynamic instability in-
volving the coupling of the blades motion in the rotational plane and the helicopter fuselage
motion, has been studied and mitigated in a helicopter by using a NES.

In Hubbard et al. (2010), the effectiveness of a NES to quickly and efficiently absorb
energy from one or more wing modes is investigated. A series of ground-vibration tests have
been performed on a system consisting of a uniform-thickness swept wing coupled with a
compact NES located at the mid-chord of the wingtip. It has been shown that a NES can
be designed to target a specific mode of the wing and to induce strong non-linearity in the
specific frequency range of interest.

Due to the non-linear nature of the NES, its design is not an easy task and, consequently,
its real scale use is limited. In this paper, an approximate approach to design NESs is pro-
posed in a stochastic framework by using an Efficient Stochastic Linearisation. In the case
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of linear systems, the stochastic analysis allows for a straightforward probabilistic charac-
terization of the structural response. Indeed, when referring to non-linear systems, this type
of analysis is not directly applicable and is often performed via Monte Carlo simulations,
involving a great computational effort. Therefore, taking advantage of the stochastic analy-
sis, it is common to replace the non-linear equations of motion of a controlled system with
linear equivalent ones by using well-established procedures as Stochastic Linearisation (SL)
techniques (Roberts and Spanos 2003, Atalik and Utku 1976, Elishakoff 2000). However, de-
pending on the parameters of the linear equivalent system implicitly on response statistics,
most SL algorithms operate recursively and the computational burden may still large, even
if drastically reduced with reference to Monte Carlo simulations. Moreover, calculations are
very often carried out only numerically, since analytical closed-form solutions for response
statistics are available just for a limited class of problems (Artale et al. 2017).

In this work, a procedure to further reduce the computational time of SL techniques is
proposed. It can be applied for both classically and not-classically damped systems, and
allows for the evaluation of the response spectral moments by avoiding intensive use of
numerical calculations. Spectral moments have well-known physical meanings (Vanmarcke
1972, Di Paola and Muscolino 1986): zero-order and second-order spectral moments are the
variances of the response and of its time derivatives, respectively; other quantities, namely
central frequency and bandwidth parameter, as well as approximate solutions for the first-
passage problem can be evaluated in terms of the first spectral moments (Vanmarcke 1975,
Der Kiureghian 1980). The proposed procedure essentially consists of following three steps:

1. Evaluation of few first direct spectral moments of modal oscillators. This evaluation
may be carried out analytically for certain classes of input Power Spectral Density
(PSD) functions (Barone et al. 2019);

2. Computation of the cross spectral moments in modal decoupled space (Di Paola and
Muscolino 1988);

3. Analytical evaluation of first spectral moments of a set of response quantities of interest,
obtained as linear combinations of the selected degrees-of-freedom (Igusa et al. 1984).

In the following, the equations of motion and the application of SL technique to the case
of Multi-Degree-of-Freedom (MDOF) systems controlled by several NES devices are firstly
presented. Then, the Efficient Linearisation Technique is explained in detail. Finally, the
last section is devoted to the design of a NES device attached to the tip of an aircraft wing
by making use of the proposed method.

2. Mathematical formulation of the NES

2.1 Governing equations

Among the several configurations of NES proposed in literature (Sapsis et al. 2012, Gen-
delman et al. 2011, Nucera et al. 2007, Gendelman 2008, Gendelman et al. 2012, Sigalov
et al. 2012, Wang et al. 2015b), in the following the so-called type-I NES is considered. It
consists of a small mass coupled to the main structure through an essentially non-linear
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Fig. 1 Schematic representation of a structure controlled by a NES

spring with a cubic stiffness and a linear viscous damping element. The non-linear spring
enables the device to resonate with any mode of the primary system, whereas the damping
element dissipates the vibrational energy.

Figure 1 shows a schematic representation of the simplest possible case, i.e. a linear
SDOF oscillator, representing the structure or its fundamental mode of vibration, coupled
to a single type-I NES, whose equations of motion are given as:{
m1ẍ1 (t) + c1ẋ1 (t) + k1x1 (t) + cNES (ẋ1 (t)− ẋNES (t)) + kNES (x1 (t)− xNES (t))3 = 0

mNES ẍNES (t) + cNES (ẋNES (t)− ẋ1 (t)) + kNES (xNES (t)− x1 (t))3 = 0

(1)
in which m1, c1, k1 are mass, viscous damping and stiffness coefficients of the primary struc-
ture and mNES , cNES , kNES are mass, viscous damping and non-linear stiffness coefficients
of the NES, respectively; x1 and xNES are the displacements of the primary structure and
the NES, respectively; overdots indicate derivative with respect to time. The assumption of
lightweight NES occurs for small values of the mass of the NES (i.e. ε = mNES/m1 << 1)
and it is necessary not only to trigger the passive TET but also for practical issues related
to the costs and realisation of the system.

Now consider a MDOF linear system connected to s-NESs through pure cubic stiffness
and linear viscous dampers. In this case, the governing equations of motion of the system in
its uncontrolled configuration (i.e. with no NESs attached) are:

MÜ (t) + CU̇ (t) + KU (t) = f (t) (2)

where U (t), U̇ (t), Ü (t) are the r-dimensional generalised displacement vector and its deriva-
tives, respectively; M, C and K are the mass, damping and linear stiffness matrices of the
primary system, respectively; f (t) is the vector of input forces.

When the MDOF structure is equipped with s-NESs, for each of them an additional
degree of freedom is added to the controlled system and the equations of motion become:

M̂Ẍ (t) + ĈẊ (t) + K̂X (t) + FNES (t) = f̂ (t) (3)

in which:

X =

[
U

XNES

]
(4)
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is the n-dimensional generalised displacement vector, being n = r+ s the degrees of freedom
of the combined system and XNES the s-dimensional NESs displacement vector. M̂, Ĉ and
K̂ are the mass, damping and linear stiffness matrices of the controlled system, respectively,
and are given as:

M̂ =

[
M 0
0 mNES

]
Ĉ =

[
C 0
0 0

]
+ RcNESRT K̂ =

[
K 0
0 0

]
(5)

where mNES and cNES are (s× s) diagonal matrices containing the individual masses and
damping of the NESs devices, respectively. In Equation (5), the matrix R is the (n× s)
linear transformation matrix returning the s-ranked vector of relative displacements Y (t)
between the mass of each NES and the degree of freedom of the system to which each device
is connected:

Y (t) = RX (t) (6)

Finally, FNES is the vector collecting all the non-linear forces, that can be expressed, in
general, as:

FNES (t) = RTfNES(Y (t)) (7)

where the i-th term of the s-dimensional vector fNES(Y (t)) is defined as:

fNES,i (Yi (t)) = k̂NES,iYi (t)3 (8)

with k̂NES,i the non-linear cubic stiffness of the i-th NES.

2.2 Stochastic linearisation

Among other approximated methods for analysing non-linear random-vibrations prob-
lems (e.g. perturbation approaches), the Stochastic Linearisation (SL) is relatively easy to
implement, computationally efficient and it has a large range of applicability. This technique
has become popular to analyse the performance of non-linear passive control systems to re-
duce the structural response under random loads, such as Tuned Liquid Column Dampers
(Socha 2005, Di Matteo et al. 2014) and Fluid Viscous Damper (Guo et al. 2002, Di Paola
and Navarra 2009). In Oliva et al. (2017), an approximate design approach based on the use
of the SL technique is proposed for the case of SDOF structures controlled by single NESs
and subjected to white noise excitations.

Basically, the SL consists in replacing the non-linear system considered with an equiva-
lent linear one, where the coefficients of the latter system are calibrated by minimising the
difference between the two systems in statistical sense (Atalik and Utku 1976). Applying the
method to the case at hands, the initial non-linear system in Equation (3) can be replaced
with the following:

M̂(e)Ẍ (t) + Ĉ(e)Ẋ (t) + K̂(e)X (t) = f̂ (t) (9)

When the primary system is controlled by single or multiple NESs, the equivalent linear
mass and damping matrices coincide with those of the nonlinear system , i.e. M̂(e) = M̂ and
Ĉ(e) = Ĉ, thus Equation (9) can be rewritten as:

M̂Ẍ (t) + ĈẊ (t) + K̂(e)X (t) = f̂ (t) (10)



410 G. Navarra, F. Lo Iacono, M. Oliva and A. Esposito

Assigned Load

Input PSD

Equivalent linear system

Numerical evaluation of response statistics in geometric space

iterate until convergence

Uncontrolled system

Input PSD

Generalised modal analysis

Equivalent linear system

Modal spectral moments

Modal combination coefficients

Spectral moments in geometric space

iterate until convergence

Uncontrolled system
Assigned Load

Caso generale in Times New Roman

Fig. 2 Flowchart for Statistical Linearisation technique by using the numerical approach.

in which the stiffness matrix K(e) is defined as:

K̂(e) = K̂ + RTDNESR (11)

In Equation (11), DNES is the (s× s) diagonal matrix, whose elements are defined as
(Oliva et al. 2017):

DNES,ij = E

[
∂fN,i

∂Yj

]
= 3k̂NES,iσ

2
Yj
δij , (i, j = 1, 2, . . . , s) (12)

where σ2Yj
is the variance of the j-th relative displacement between the i-th NES and the

structural node to which it is attached, δij is the Kronecker delta and E [·] stands for ensemble
average.

Since the relative displacement Yj is still unknown, an iterative procedure is required to
achieve the solution, as shown in the flowchart reported in Figure 2. In particular, it can be
assumed that DNES (t) is equal to zero at the first iteration of the SL, whereas, at successive
iterations, the estimates of equivalent linear matrices K̂(e) evaluated at the previous iteration
are considered. The iterative procedure ends when the differences in estimating K̂(e) between
two subsequent iterations are smaller than a prescribed tolerance.

At each iteration, the variances of relative displacements σ2Yi
or, equivalently, the zero-

order spectral moments of the response processes Yi (t) have to be calculated. Normally,
this is done by performing several numerical integrations in the geometric space. 1The m-th
order spectral moment matrix can be written as:

λm,Y = R

(∫ ∞
0

ωmGXX (ω) dω

)
RT (13)

in which GXX (ω) is the one-sided PSD matrix of the response, i.e.:

GXX (ω) = H∗ (ω) Gff (ω) HT (ω) (14)
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In Equation (14), Gff (ω) is the input PSD matrix, whereas H (ω) is the transfer functions
matrix, defined for the case of the equivalent linear system as:

H (ω) =
[
−ω2M̂ + iωĈ + K̂(e)

]−1
(15)

Numerical integration of Equation (13) needs large computational efforts and may lead
to inaccurate estimations of spectral moments in the case of low damping values, since very
sharp functions are involved. Therefore, depending on the problem under consideration, this
approach could be time consuming due to the many numerical integrations to perform, even
if it is drastically reduced with reference to Monte Carlo simulations.

3. Efficient stochastic linearisation

In this section, a more efficient procedure to evaluate the spectral moments of the response
of classically as well as non-classically damped systems is proposed. This approach allows
to avoid most of the burdensome numerical integrations, thus reducing the calculation time.

As well known, the spectral moments are directly related to statistics of stochastic pro-
cesses, e.g. λ0,X and λ2,X are respectively the variances of the response process X (t) and
of its time derivative. Other quantities, such as central frequency, bandwidth parameter or
approximate solutions for the first-passage problem, can be evaluated in terms of the first
few spectral moments (Vanmarcke 1972, 1975, Der Kiureghian 1980, Di Paola and Muscolino
1986).

The proposed approach, as shown in Figure 3, consists of the following main steps: a)
execution of the generalised modal analysis; b) analytic evaluation of the first direct spectral
moments of modal oscillators, once the Power Spectral Density (PSD) functions of the input
are known; c) computation of the cross spectral moments in modal decoupled space; d)
evaluation in the geometric space of spectral moments of a set of response quantities of
interest, obtained as linear combinations of the selected degrees-of-freedom.

In general, the presence of passive control devices makes the equivalent linear system
non-classically damped and a generalised modal analysis is required. As customary, the
equations of motion of the equivalent system (Eq. (10)) can be reformulated into a set of 2n
first-order differential equations:

Ż (t) = D(e)Z (t) + V (t) (16)

where the state-variables vector Z (t), the system matrix D(e) and the load vector V (t) are
respectively defined as:

Z (t) =

[
X

Ẋ

]
; D(e) =

[
0 In

−M̂−1K̂(e) −M̂−1Ĉ

]
; V (t) =

[
0

f (t)

]
(17)

being In the (n× n) identity matrix. The eigenvalues γi and the eigenvectors ψi of D(e)

occur in conjugate pairs and they are collected to have γi = γ∗i+n and ψi = ψ∗i+n, denoting



412 G. Navarra, F. Lo Iacono, M. Oliva and A. Esposito

Input PSD

Generalised modal analysis

Equivalent linear system

Modal spectral moments

Modal combination coefficients

Spectral moments in geometric space

iterate until convergence

Uncontrolled system

Fig. 3 Flowchart for Statistical Linearisation technique by using the proposed procedure.

with the asterisk the complex conjugate. Due to the structure of the state-variables vector,
the i-th eigenvector and the modal matrix are given as:

ψi =

[
φi

γiφi

]
, Ψ =

[
ψ1 ψ2 · · · ψ2r

]
=

[
Φ Φ∗

ΓΦ Γ∗Φ∗

]
(18)

in which Γ = diag{ γ1, γ2, · · · , γn} is the diagonal matrix of the first n eigenvalues and
Φ =

[
φ1, φ2, · · · , φn

]
is the reduced modal matrix in terms of only displacements.

The projections of load vector into the modal space are given by p (t) = Ψ−1V (t).
Moreover, the i-th eigenvalue can be written with the following notation:

γi = −ζi ω0i ± i ωDi (19)

in which:

ω0i = |γi| , ζi = −Re [γi]

|γi|
, ωDi = ωi

√
1− ζ2i (20)

have the meaning of natural frequency, modal damping and damped frequency of the i-th
modal oscillators, respectively.

There is a class of input PSD functions for which it is possible to obtain closed-form
evaluations of direct spectral moments in the modal space, without resorting to numerical
integrations (Artale et al. 2017). For instance, assuming that the input excitation can be
approximated by a mono-correlated random process f (t) = τW (t), being τ the location
vector and W (t) a Gaussian and stationary white noise random process having strength
G0, the first direct modal spectral moments of the i-th modal oscillator Qi can be easily
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evaluated by means of the well-known expressions:

λm,Qi =
πG0

4 ζiω
3−m
0i

; m = 0, 2

λ1,Qi =
πG0

4ζiω2
0i

2

πβi
tan−1

βi
ζi

; m = 1

λ3,Qi =
πG0

4ζi

2
(
1− 2ζ2i

)
πβi

tan−1
βi
ζi

; m = 3

(21)

where βi =
√

1− ζ2i .

Di Paola and Muscolino (1988) have demonstrated that the cross-spectral moments of
any order λm,Qj ,Qk

, if they exist for a given input PSD, can be obtained recursively as linear
combinations of only the first four order (from 0 to 3) direct spectral moments. In particular,
real and imaginary parts of even-order cross-spectral moments can be determined as:

Re
[
λm,Qj ,Qk

]
=

(−1)m/2

2

(
λ0,Qjγm,k,jω

2
0j + λ2,Qjδm,k,j + λ0,Qk

γm,j,kω
2
0k + λ2,Qk

δm,j,k

)
Im
[
λm,Qj ,Qk

]
=

(−1)m/2

2

(
λ1,Qjεm,k,j − λ1,Qk

εm,j,k + λ3,Qjαm,j,k − λ3,Qk
αm,k,j

)
(22)

whereas for the odd-order cross-spectral moments:

Re
[
λm,Qj ,Qk

]
=

(−1)(m+1)/2

2

(
λ1,Qjεm,k,j + λ1,Qk

εm,j,k + λ3,Qjαm,k,j + λ3,Qk
αm,j,k

)
Im
[
λm,Qj ,Qk

]
=

(−1)(m−1)/2

2

(
λ0,Qjγm,k,jω

2
0j + λ2,Qjδm,k,j − λ0,Qk

γm,j,kω
2
0k − λ2,Qk

δm,j,k

)
(23)

In Equations (22) and (23), the following positions have been made:

αm,j,k = αm−1,j,k + ωDkβm−1,j,k;

βm,j,k = −ζk ω0k βm−1,j,k − ωDkαm−1,j,k;

γm,j,k = ζkω0kαm,j,k + ωDkβm,j,k;

δm,j,k = ζkω0kαm,j,k − ωDkβm,j,k;

εm,j,k = 2ζkωkωDkβm,j,k + αm,j,k

(
ω2
0k − 2ω2

Dk

)
;

(24)

being:

α0,j,k = 4 (ζjωj + ζkωk) /Kjk

β0,j,k = 2
(
ω2
0j − ω2

0k + 2ζjζkω0jω0k + 2ζ2kω
2
0k

)
/ (ωDkKjk)

Kjk =
(
ω2
0j − ω2

0k

)2
+ 4ζjζk

(
ω2
0j + ω2

0k

)
ω0jω0k + 4

(
ζ2j + ζ2k

)
ω2
0jω

2
0k

(25)
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Once the cross-spectral moments of the modal oscillators are determined, the spectral
moments of the r-th element of the set of quantities of interest in the geometric space defined
by the vector Y can be computed as (Igusa et al. 1984):

λm,Yr =

n̂∑
j=1

n̂∑
k=1

(
Cr,jkRe

[
λm,Qj ,Qk

]
−Dr,jkIm

[
λm+1,Qj ,Qk

]
+ Er,jkRe

[
λm+2,Qj ,Qk

])
(26)

where the modal combination coefficients Cr,jk, Dr,jk and Er,jk can be obtained as:

Cr,jk = arjark; Dr,jk = arjcrk − arkcrj ; Er,jk = crjcrk (27)

being arj and crj the entries of the following matrices:

a = −2Re [bΓ∗] ; c = −2Re [b] ; b = RΦPn̂ (28)

with Pn̂ = diag{ P1, P2, · · · , Pn̂} .
The proposed method is easy to implement in actual computing programs and allows to

speed up procedures that make intense use of the stochastic analyses, such as SL approaches
and optimisation problems. In order to show its benefits, numerical applications are reported
in the following section.

4. Numerical application

Although there are several studies focused on the NES, the design of the latter is still
challenging because of its complex dynamic behaviour and its sensitivity to loading pertur-
bations. Closed-form solutions to determine the optimal nonlinear stiffness of the NES have
been derived mainly for deterministic loads (Starosvetsky and Gendelman 2008, Nguyen and
Pernot 2012). Conversely, in presence of random excitations the design of the NES has been
carried out by means of burdensome Monte carlo simulations (Oliva et al. 2017). Herein, the
proposed efficient linearisation technique is applied as alternative method for evaluating the
NES parameters (i.e. nonlinear stiffness and linear damping) and its ability to mitigate the
structural response of a flexible wing, allowing for a significant reduction of the computation
time.

A case study provided by Hubbard et al. (2010) has been selected as numerical applica-
tion. It consists of a uniform-thickness, 6061-T6 aluminium alloy model wing with attached
a NES located in the mid-chord of the wingtip. The dimensions of the wing, the clumped
boundary conditions and the NES locations are reported in Figure 4-a.

The equations of motion of the wing in its uncontrolled (i.e. without NES) and controlled
(i.e. with NES) configurations are given respectively by Equations (2) and (3), in which
stiffness and mass matrices of the wing, M and K, have been obtained by means of the FE
method. In particular, the wing has been discretized by using 4-nodes linear shell elements
with a 8 × 32 mesh and a total of 297 nodes and 891 degrees of freedom. Figure 4-b
depicts a representation of the FE model. The load is modelled as a transversal mono-
correlated white noise equally acting on all the model nodes having a PSD amplitude equal
to G0 = 2 · 10−6 N2s/rad, which corresponds to a total transversal force whose peak value is
about 7 kN.
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NES locations

a) b)
fixed nodes

A
#1

B

#3
#2

Fig. 4 Wing model from Hubbard et al. (2010); a) dimensions, boundary conditions and NES location
(red dot); b) mesh used in FE model, fixed nodes (black dots) and NES location (red dot).

4.1 Validation in terms of accuracy and computational time

Since the proposed procedure differs from classical SL mainly in the way the response
statistics are computed, it is worth to emphasize the differences between the two methods
in terms of both accuracy and computational time. In the present case, the input load is
modelled as a Gaussian white noise with assigned PSD amplitude, and the response statistics
of each modal oscillator are known in closed exact form (Equation (21)). Consequently, the
proposed procedure leads to exact values of the system response statistics. On the other
hand, the numerical integration of Equation (13) is needed in classical SL procedures. In
this case, the evaluation of response statistics will depend on the frequency discretization
interval and when it is too large, it leads to inaccurate estimations of the spectral moments
specially in the case of low damped systems whose elements of the transfer functions matrix
H (ω) are very sharp.

Table 1 reports the response statistics in terms of variance of the rightmost point of the
wingtip (point A in Figure 4), with reference to the wing model in its uncontrolled state,
for the proposed method and for the classic numeric stochastic analysis. Analyses have been
carried out for three different frequency ranges, namely [0÷ 2500] rad/s, [0÷ 1250] rad/s
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Table 1 Computational times and relative errors for application of numerical and analytical proce-
dures.

∆ω Computational time [s] σ2A,U relative error

[0÷ 2500] rad/s [0÷ 1250] rad/s [0÷ 500] rad/s [cm2] [%]

2.000 11.088 5.688 2.186 0.3410 -38.18
1.250 17.843 9.050 3.563 0.6926 25.55
1.000 21.590 11.679 4.463 0.5720 3.69
0.800 27.802 13.650 5.504 0.5136 -6.90
0.625 34.823 17.493 7.229 0.5652 2.46
0.500 43.597 21.707 8.834 0.5474 -0.77
0.400 55.302 27.346 11.071 0.5531 0.26
0.3125 69.891 34.843 14.118 0.5518 0.02
0.250 87.521 44.087 17.480 0.5517 0.00

Analytical 0.556 0.5516

and [0÷ 500] rad/s and for several frequency discretization steps. These frequency ranges
have been selected in order to include the contributions of the first 18, 11 and 5 modes,
respectively, established that the cumulative modal mass participating ratios are 90.2%,
88.2% and 83.8%, respectively.

It resulted that, in the present case, the accuracy mainly depends on the discretization
step and very close results have been obtained by varying the frequency range.

Moreover, it is worth to stress that in order to achieve a good approximation (with
negligible errors) of the response statistics for the case under examination, it is necessary to
choose a discretization of frequency ∆ω = 0.25 rad/s or lower, thus resulting in increased
computational efforts.

The performance of the proposed procedure in terms of computational time has been also
investigated. All numerical procedure have been implemented in MATLAB environment and
executed on a personal computer with Intel i7-6700HQ quad core processor @2.60GHz and
16 GB DDR-4 RAM. In Table 1, the computational times are reported for each analysis and
it is worth to note that, by using the proposed analytical procedure, the computational time
can be tremendously reduced with respect to the classical numerical procedures.

Moreover, when the input is not a white Gaussian process and the response statistics of
the modal oscillators are not known in closed form, the proposed procedure allows a drastic
reduction of the computational time. In fact, assuming that a modal truncation is applied
and the first n̂ < n modal contributions are retained, only 4n̂ numerical integrations in the
modal space are needed with respect to n×n numerical integrations in the geometric space.

Obviously, when performing a complete SL, both proposed method and classic numeric
stochastic analysis need the same number of iterations to converge (Navarra et al. 2020b, a)
and the overall computational time will increase proportionally. Furthermore, when dealing
with optimal design procedures, both computational time and memory demand can become
a serious issue that, in the case of the classical SL procedures, could compromise the success
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of the analysis.

4.2 Optimal design of a NES device

In order to design a NES able to suppress wing vibrations and evaluate its performance,
the non-linear system in Equation (3) has been replaced with the equivalent linear equation
(10) and the proposed method has been used at each iteration of the optimisation procedure.

In this regard, the NES location #1 in Figure 4 has been selected and two performance
indices have been defined as the percentage ratio of standard deviations of the controlled and
uncontrolled systems. In particular, the index η1 is related to the transversal displacements
at the rightmost point of the wingtip (point A in Figure 4-b) and takes into account of the
flexural behaviour of the wing model, whereas the index η2 considers the torsional rotation
measured from the differential transversal displacements of the points A and B in Figure
4-b. The analytic expressions of the performance indices are:

η1 = 100 ·
σA,C

σA,U
; η2 = 100 ·

σϕ,C
σϕ,U

(29)

in which the subscripts C and U stand for controlled and uncontrolled configurations, re-
spectively, and:

ϕS =
wA,S − wB,S

ct
(S = C,U) (30)

is the tosional rotation, being w the transversal displacements and ct the wingtip chord
length (Figure 4-a).

The minimisation procedure has been carried out by using the routine fminsearch in
MATLAB environment that uses the simplex search method developed by Lagarias et al.
(1998). This is a direct search method that does not use numerical or analytic gradients.

Figure 5 shows a contour plot of the index η1 against the design parameters of the NES,
k̂NES and cNES , for a given input strength G0 = 2 · 10−6 N2s/rad and by assuming a NES
mass ratio ε = 0.02. This figure reports also the optimal search path and the numerical
values of the optimal NES parameters. Since the performance factor η1 is defined so that the
lower its value the higher the effectiveness of the NES, it is possible to affirm that the NES
designed by using the proposed method allows for a considerable reduction of the standard
deviation of the displacements of the wingtip, which stands of about 60%.

Figure 5 shows also that the use of the NESs as vibration absorbers leads to a robust
control. In fact, for a given input strength, the performance index function presents a very
large flat zone in the neighbourhood of the optimal point, thus meaning that the control is
assured even if large deviations from the NES device optimal parameters occur.

Unlike linear vibration absorbers, the efficiency of the NES is strongly dependent on the
intensity of the load to which the structure is subject. Hence, a sensitivity analysis has been
performed, in which the optimal non-linear stiffness k̂NES,opt has been recalculated for any
change of the white noise PSD amplitude G0, ranging from 5 · 10−7 to 10−4 N2s/rad.

Figure 6 reports the effects of the variation of the amplitude of the white noise load
on the optimal cubic stiffness k̂NES,opt for different values of the mass ratio ε of the NES
device. Values of ε less than 10% have been considered in order to respect the assumption of
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lightweight NES. The results of the several numerical optimisations show that the optimal
non-linear stiffness increases increasing the mass ratio, whereas it decreases increasing the
amplitude of G0. Conversely, the optimal values of NES damping and the corresponding
performance index, as reported in Table 2, depend only on the mass ratio. This seems to
confirm what has been already demonstrated by Oliva et al. (2017). In their work, that is
related to the response of civil structures equipped with NESs to base loadings, it has been
proven that the optimal non-linear stiffness is inversely proportional to the amplitude of the
PSD function of the white noise both using an approach based on the SL technique as well
as an approach based on the numerical results of a MCSs campaign.

The last numerical application is devoted to compute the performance of the NES when

Table 2 Optimal damping and performance index for varying NES mass ratio.

ε cNES,opt [Ns/m] ηopt

1% 0.447 50.69%
2% 1.192 43.82%
5% 4.005 35.56%
10% 9.096 30.02%
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its location is varied and its optimal design is carried out by minimising the two performance
indices η1 and η2. In particular, the three NES locations reported in Figure 4-b have been
investigated for two different values of mass ratio ε = 0.01 and ε = 0.02 and the results are
collected in Table 3.

Since the dynamic behaviour of the wing model is dominated by the first mode, the best
control performance is achieved when NES is the location #1 and no significant differences
are noticed when using the two performance indices. Theses result also confirm that the
larger the value of the mass ratio, the greater the reduction in the controlled response.

5. Conclusions

Given the strong dependence of the cubic stiffness of NES on loading conditions and
its complex non-linear behaviour, its design is complicated and often requires the use of
very time-consuming techniques (e.g. Monte Carlo simulations). In this paper, an easy-
to-implement and efficient method for the optimal design of the non-linear passive control
device NES has been proposed into a probabilistic framework.

Firstly, a general Stochastic Linearisation approach for MDOF structural systems con-
trolled by multi NES devices has been introduced. It consists in replacing the non-linear
governing equations of the combined system with an equivalent linear one. However, de-
pending on the problem under consideration, the SL could be time consuming due to the
many numerical integrations required to obtain the solution, even if the computational effort
is drastically reduced with reference to Monte Carlo simulations.
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Table 3 Comparison among optimal design of NES in different locations and for different performance
indices.

ε = 0.01 ε = 0.02

k̂NES,opt cNES,opt ηopt k̂NES,opt cNES,opt ηopt

NES location #1
η1 115687 0.447 50.69% 519926 1.190 43.82%
η2 114194 0.452 51.79% 508481 1.186 44.86%

NES location #2
η1 571557 0.704 85.13% 1070393 1.108 73.49%
η2 621164 0.721 85.79% 1066587 1.104 73.72%

NES location #3
η1 400869 0.649 80.26% 765511 0.992 67.17%
η2 444751 0.694 81.69% 779294 0.960 68.38%

The proposed methodology, instead, leads to the following advantages:

• At each iteration step of the SL, the first spectral moments of the response in the
geometric space can be quickly evaluated without resorting or, in general, strongly
reducing the use of numerical integrations;

• it applies for both classically and not-classically damped systems and can be easily
implemented into a standard stochastic analysis program routine;

• it leads to drastic reduction of the computational burden with respect to the classic
stochastic analysis. If used inside a SL algorithm, the reduction in computational time
is proportional to the number of required iterations.

The applicability of the proposed approach has been shown through numerical applica-
tions on the design of a NES able to mitigate the vibrations of a flexible wing, modelled as
mono-correlated white noise processes. The following conclusions can be drawn:

• NESs can be used as passive control devices since they allow for a large reduction of
wing vibrations. Moreover, a robust control is assured even if large deviations from
the NES device optimal parameters occur;

• by means of a numerical optimization procedure the optimal NES parameters have been
obtained for three assumed NES locations and for two different objective functions,
related to flexural and torsional behaviour of the wing. It has been confirmed that the
NES located at the wingtip is the most effective in reducing the out-of-plane vibrations.

• A parametric analysis have been performed by varying the input strength and the
NES mass ratio. The results confirmed that optimal values of the non-linear stiffness
increase when the device mass increases and decrease when the input strength increases,
whereas the optimal NES damping depends only on the device mass.
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