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Abstract.  The effect of multiple process parameters on a set of continuous response variables is, especially in 
experimental designs, difficult and intricate to determine. Due to the complexity in aeroacoustic and vibroacoustic 
studies, the often-performed simple one-factor-at-a-time method turns out to be the least effective approach. In 
contrast, the statistical Design of Experiments is a technique used with the objective to maximize the obtained 
information while keeping the experimental effort at a minimum. The presented work aims at giving insights on 
Design of Experiments applied to aeroacoustic and vibroacoustic problems while comparing different experimental 
designs and approximation models. For this purpose, an experimental rig of a ducted low-pressure fan is developed 
that allows gathering data of both, aerodynamic and aeroacoustic nature while analysing three independent process 
parameters. The experimental designs used to sample the design space are a Central Composite design and a Box-
Behnken design, both used to model a response surface regression, and Latin Hypercube sampling to model an 
Artificial Neural network. The results indicate that Latin Hypercube sampling extracts information that is more 
diverse and, in combination with an Artificial Neural network, outperforms the quadratic response surface 
regressions. It is shown that the Latin Hypercube sampling, initially developed for computer-aided experiments, can 
also be used as an experimental design. To further increase the benefit of the presented approach, spectral information 
of every experimental test point is extracted and Artificial Neural networks are chosen for modelling the spectral 
information since they show to be the most universal approximators. 
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1. Introduction 
 

The acoustic signature of axial fans and blowers is known to be highly affected by the specific 

inflow conditions (Zenger et al. 2016, Amiet 1977, Daroukh et al. 2017). At smooth inflow 

conditions, the acoustic signature of a fan is mainly limited to noise radiation from the rotor 

trailing edges, struts as well as rotor speed-dependent effects like the blade passing frequency and 

rotor stator interaction. At given inflow condition of elevated turbulence intensity, however, a 

significant portion of leading edge noise of broadband character is added. This tends to dominate 

the acoustic signature of a fan in the low-to-intermediate frequency region, plus the occurrence of 

possible additional effects within the rotor, as for example the altering of flow separation 

phenomena. Recent research focussed on the establishment and evaluation of passive noise 

reduction mechanisms to significantly reduce the turbulence-induced leading edge noise 

(Biedermann et al. 2018, Biedermann et al. 2017). 

As it is a commonly reported problem in aeroacoustic optimisation, opposing trends arise for 

the targets of low-noise-design while keeping the aerodynamic efficiency at a high level. 

Motivated by the described defiance, the question arose on how to best describe a multi-parameter 

system by taking into account target values of aerodynamic and aeroacoustic nature. Common 

statistical-empirical modelling approaches such as the Design of Experiments (DoE) methodology 

(Siebertz et al. 2010, Adam 2012) are limited to models of second order. These approaches are 

expected not to sufficiently describe systems of high complexity at the desired prediction accuracy, 

as is also concluded by this paper. Thus, these modelling approaches are compared to more 

advanced Artificial Neural networks (ANN), which are unlimited in terms of functional 

complexity and are generated by the use of a Latin Hypercube sampling. All three described 

approaches are used to model both, the aerodynamic and aeroacoustic performance of an axial fan 

by varying three continuous parameters, namely the fan speed, the throttling state as well as the 

level of incoming turbulence.  

In recent research, experimental designs are adapted for numerical approaches (Alam et al. 

2004) such as the Design of Experiments methodology. However, for the current analysis, the 

Latin Hypercube sampling (LHS) is applied to a complex problem of experimental character, even 

though it was initially designed for numerical machine learning processes (McKay et al. 1979, 

Reich et al. 2017). The results show that the artificial neural networks (ANN) based on the LHS 

are outperforming the more established Design of Experiments methods, in particular, when it 

comes to the highly non-linear target values of aeroacoustic and vibroacoustic nature. After 

identifying the ANNs in combination with the LHS as the most feasible approach to describe the 

experimental space with high accuracy, the next step inevitably leads towards a modelling of the 

not yet incorporated spectral composition of the aeroacoustic signals. Therefore, in a second step, 

the complex spectral information by means of the 1/3rd octave bands are extracted for each 

measurement point of the data pool and are implemented in the current model to be approximated 

using Artificial Neural networks. The obtained additional networks provide deep insights into the 

spectral composition of the radiated noise, which might be essential for up-to-date low-noise 

design approaches. 
 

 

2. Statistical approach 
 

So-called experimental designs are commonly used for obtaining maximum information on a 

system while keeping the experimental effort at a minimum. A design consists of a different 
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combination of factor settings, so-called factor level combinations. However, the available 

approaches to sample the space of interest, which is defined by the maximum and minimum values 

of the parameters, show a large variety and must be defined prior to any experimental study.  

For this study, three different experimental designs are used and compared by means of the 

number of necessary experiments and the resulting accuracy on evenly distributed test data. The 

first experimental design is the Circumscribed Central Composite design (C-CCD). The C-CCD 

consists of a two-level factorial design that samples information equidistantly on the inside of the 

design space as well as so-called star points that lie at the borders of the design space. Numerous 

centre points are sampled to establish predefined statistical properties, which are for this case 

orthogonality and rotatability. Orthogonality allows for a non-commingled estimation of factor 

effects in the successive modelling, while rotatability allows for the assumption that the variance 

of the predicted response is only a function of distance to the centre point. Consequently, the C-

CCD consists of five different settings for each factor as can be seen in Fig. 1a, where the green 

rectangles represent the factorial design and the orange circles represent the star points. A 

compressed reading on Central Composite designs can be found in the engineering statistical 

handbook of NIST/SEMATECH (NIST/SEMATECH, 2003). The second experimental design is 

the Box Behnken design (BBD) (Box and Behnken 1960), which is a fractional three level design, 

exhibiting orthogonal statistical properties (see Fig. 1b and Appendix A). The BBD uses factor 

level combinations at the surfaces of the design space. Both, the C-CCD and the BBD, are used to 

model a quadratic response surface regression. 

In contrast to the latter designs, the Latin Hypercube sampling (LHS) was developed for 

computer-aided experiments (McKay et al. 1979). One of its attributes is, that the number of 

settings for every factor (recall: three for BBD and five for C-CCD) equals the total number of 

factor level combinations (Fig. 1c and Appendix A). Consequently, every factor level combination 

is a unique setting. As a result, the LHS allows extracting more diverse information from the 

design space compared to the C-CCD and the BBD but leading to more cumbersome experiments, 

especially if a factor requires manufacturing effort. The creation of an LHS is of stochastic nature, 

which is the reason designs of more advantageous or disadvantageous nature can be created. To 

assess different designs, one or more criteria need to be used. For this case study, the MaxiMin 

criterion, evaluating the maximum-to-minimum Euclidean distance between the factor level 

combinations, and the pairwise correlation criterion, evaluating the order of commingled factors 

effects, are used to rate 15.000 randomly created designs. For further reading on LHS and possible 

optimisation criteria see for example (Viana 2013) or (Joseph and Hung 2016). To obtain 

additional information in the corners of the design space, a fractional two-level design is added to 

the LHS. The so created design can be seen in Fig. 1c and Appendix A. Instead of modelling a 

quadratic response surface regression, as if for the C-CCD and the BBD, the information sampled 

with the LHS are used to train an Artificial Neural network (ANN, for further details on ANNs see 

(Samarasinghe 2016)). To prevent the ANN from overfitting the data, it is split into samples for 

training (= adapting the parameters of the ANN) and validation (= assessing predictive capabilities 

on unused/ independent data).  

To test the three generated models against independent data, ten additional measurements are 

conducted, where six measurements of this set cover uniformly distributed locations within the 

design space. The remaining four measurements, however, are located at the outer corners of the 

experimental space, which are traditionally hard to approximate by any model. This set of data 

serves, in addition to the models' coefficient of determination R², as quality characteristic for the 

single chosen approaches. 
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(a) Central Composite design C-CCD, 24 factor 

level combinations, orange circles = star points, 

green rectangles = full factorial two level design 

(b) Box Behnken design BBD, 15 factor level 

combinations, orange rectangle = central point 

  

(c) Latin Hypercube sampling LHS, 28 unique 

factor level combinations 

(d) Independent test samples, 10 unique factor level 

combinations 

Fig. 1 Approaches to sample the experimental design space and additional test data for validation. All 

designs are presented in Appendix A in tabular form 

 

 

3. Experimental setup 
 

3.1 Test rig and rotor design 
 
According to DIN ISO 5136 (ISO 5136) a test rig (Fig. 2), enabling the simultaneous 

measurement of the aerodynamic and aeroacoustic performance, is utilised to analyse a self-

designed rotor, following the single aerofoil design technique (Carolus and Starzmann 2011). The 

rotor consists of six equidistantly distributed blades of C = 0.075 m chord and S = 0.1 m span 

where the blades follow the NACA65(12)-10 high-lift aerofoil profile (Fig. 3). Since a low 

complexity of the fan design is desired, no sweep, dihedral or shroud of the blades is applied to 

focus on the main aeroacoustic noise sources and to avoid possible masking and superimposing 

effects. The rotor is placed in a duct of D = 0.4 m in diameter, where the mounting takes place via 

eight struts downstream of the rotor, which itself are vibroacoustically decoupled from the duct to 

block the occurrence and propagation of solid-borne sound. 
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Fig. 2 Test rig according to DIN ISO 5136. 

 

  
(a) Grid-Fan-Strut assembly (b) Prototype of investigated rotor 

Fig. 3 Details of the test rig, more details are given in (Biedermann et al. 2018) 

 

 

3.2 Measurement technique 
 

On the suction and the discharge side of the fan, the rig is equipped with three ¼ -inch 

condenser microphones each, distributed equidistantly in the circumferential direction (Fig. 2). 

The microphones are used flush-mounted, where a side vented pressure field design allows for 

correct equalisation of the atmospheric pressure. Additionally, a ½ -inch condenser microphone 

with a slitted tube (turbulence screen) is mounted on the discharge side to gather aeroacoustic 

information for validation purposes. At a sampling rate of 44.1 kHz and a blocksize of 32768, 

spectral data of up to 17 kHz could be analysed at a frequency resolution Δf = 1.3 Hz. Applying 

Hanning windows with an overlap of 66%, the blocks are averaged 300 times, yielding a total 

measurement duration of 74 seconds. The rotor speed is monitored via a triaxial acceleration 

sensor (Δf = 0.25 Hz), mounted on the hub-support. In terms of aerodynamics, a pitot tube, located 

at the inlet nozzle, is used to measure the flow rate Q̇ where the rise of static pressure ΔpFan is 

obtained via two rings of pressure-tabbing points on the suction and the discharge side of the fan, 

resulting in a circumferentially averaged pressure of high accuracy. The power PElec of the pulse-

width-modulated e-motor is obtained by use of a measuring calliper, leading to the systems' 

efficiency ηSystem (Eq. 1) of the fan. The aerodynamic data acquisition took place by applying a 

number of 20 averages. 

ηSystem =
Q̇ ∙ ΔpFan

PElec
 (1) 
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Table 1 Limits of the experimental space for the three analysed factors 

Type Unit Min Max 

Δz/D [--] 0.25 1.25 

δThrottle [%] 0 100 

n [min-1] 1000 2000 

 
Table 2 Response variables of the analysed system 

Classification Aerodynamic Aeroacoustics Vibroacoustics 

Type Pressure Flow rate Efficiency Pressure Pressure Pressure Acceleration 

Abbreviation ΔpFan Q̇ ηSystem pSuction pDischarge pST aHub 

Unit [Pa] [m³s-1] [%] [Pa RMS] [Pa RMS] [Pa RMS] [ms-2] 

 

 

Upstream of the fan (Fig. 3), a biplane square grid (Fig. 3(a)) is used to generate elevated 

turbulent inflow level, where a ratio of five between grid bar diameter and mesh width proved to 

result in turbulence level of good isotropic character (Laws and Livesey 1978) at a sufficient 

distance from the grid. The distance between the grid and the rotor inside the duct is altered in 

order to generate continuously adjustable levels of incoming turbulence, which are analysed in 

more detail in  

Section 4. 

 

3.3 Test matrix and response variables 
 

The chosen experimental space is of three dimensions, defined by the distance between grid 

and rotor Δz/D (normalized by the fan diameter), the throttling state δThrottle and the fan speed n. 

The throttling state δThrottle defines the normalised flow rate of the system according to Eq. (2), 

independent of the fan speed, where 0% indicates an unrestricted system and vice versa. 

δThrottle = 1 −
Q̇

Q̇Max.

 (2) 

The variation of these parameters is expected to provide sufficient information on the systems' 

performance, that can be described by response variables still to be defined. For the statistical 

approaches by means of the Design of Experiments methodology, the influencing parameters need 

to be varied on three levels for the Box Behnken design and on five levels for the Central 

Composite design to satisfy the model complexity condition of order two. For the Latin Hypercube 

sampling, required for the Artificial Neural network, however, a number of variations in 

accordance with the amount of model data is needed. Despite the differences in the modelling 

approaches, the outer limits of each factor are fixed as Table 1 indicates. For the training of the 

chosen modelling approaches, however, the factor levels are all normalised in a range of  

Level = ∈ (-1..1). The detailed run conditions for each sample are listed in Appendix A. 

The definition of appropriate response variables turns out to be the crucial part of evaluating a 

given system as these variables are required to describe the systems characteristic performance 

with the necessary accuracy. Moreover, they need to be describable by means of the chosen 

influencing parameters. As it is already mentioned in Section 1, the response variables are of 
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aerodynamic and aeroacoustic/ vibroacoustic nature and are listed in Table 2. Aerodynamic 

parameters are the pressure rise ΔpFan between suction and discharge side of the fan as well as the 

corresponding flow rate Q̇. The systems' efficiency ηSystem, according to Eq. 1, defines the third 

response variable.  

In terms of acoustics, the linear acoustic pressures of the suction side pSuction and the discharge 

side pDischarge, including the acoustic signature of the slitted tube measurements pST, are decided to 

be implemented in the model. No sound pressure level is defined since the logarithmic scaling 

would distort the observed statistical effects. The acoustic pressure of both, the suction and 

discharge side is obtained by integrating the spectral energies in a bandpass of  

100 Hz ≤ f ≤ 10 kHz, where the lower frequency is chosen due to limitations in the measurement 

environment. Vibroacoustic effects are incorporated in form of the acceleration aHub on the fan 

hub-support at frequencies of 0 Hz ≤ f ≤ 5 kHz.  
 

 

4. Preliminary investigations 
 

For further analysis and accurate modelling of the fan performance, it is essential that 

aerodynamic similarity laws are valid. With this purpose, the dimensional analysis helps to 

compare the fan performance at various operating conditions and to draw conclusions on the 

stability of the system within the covered experimental space. The non-dimensional pressure and 

flow values (Eq. (3)-(4)) lead to the elimination of the influence of the fan speed, reducing the 

throttling curves to a single curve as shown in Fig. 4a. On this basis, the percentage throttling state 

(Fig. 4(b)), independent of the fan speed, is defined using a function of 6th order, where a 

coefficient of determination of R² = 0.9987 is reached according to Eq. 5, where yi is the observed 

response of the ith sample, �̂�𝑖 is the predicted response of the ith sample, �̅� is the mean of the 

observed responses and 𝑛𝑅² is the number of samples. This coefficient is a statistic used to 

describe the quality of an approximation by means of the variance, where R² = 1 indicates a 

perfect fit.   

𝜓 =

Δ𝑝𝐹𝑎𝑛
𝜌⁄

𝑈0
2

2
⁄

 (3) 

𝜙 =
�̇�

𝑈0 ∙ 𝐴
 (4) 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2

𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

 𝑤𝑖𝑡ℎ 𝑖 = 1. . 𝑛𝑅² (5) 

To obtain information on both, the local velocity distribution and the distribution of the grid-

generated turbulence along the duct radius, 1-D hot wire measurements are conducted by use of a 

rotating channel, where the hot wire probe is traversed in the circumferential direction. Since no 

measurements are possible right in the rotor plane, a distance between grid and measurement plane 

is chosen, representing the distance to the later installed rotor but also neglecting possible 

distortion effects by the rotor in the upstream direction. 
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(a) Fan performance curve (b) Throttling curve 

Fig. 4 Non-Dimensional fan characteristic curves at varying fan speed 1000 min-1 ≤ n ≤ 2000 min-1 

 

  
(a) Turbulence intensity Tu [--] (b) Longitudinal velocity U0 [ms-1] 

Fig. 5 Profiles of turbulence intensity and axial velocity with turbulence grid at intermediate distance of 

Δz/D = 0.75 upstream the measurement plane, n = 2400 min-1, �̇�/�̇�Max = 1 
 

  

(a) Circumferentially averaged Tu and U0 (b) Trend of the mean turbulence intensity as a 

function of the grid distance 

Fig. 6 Averaged turbulence properties of the inflow 
 

 

Fig. 5 shows the results with an increment of 10 deg or 53690 averaged samples per step, 

respectively. Turbulence intensity and velocity are inversely proportional, thus leading to low Tu 

level at high mean velocities and vice versa. Overall, the centre region (RDuct = ± 0.1 m) and the 
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outer region (-0.2 m ≤ RDuct ≤ 0.2 m) of the duct show an adequate homogeneity in circumferential 

direction, where the radial trend shows a region of increased velocity (U0 = 12.5 ms-1) in the centre 

and reduced velocity (U0 = 9 ms-1) in the outer region. Averaging velocity and turbulence intensity 

over a radius of RDuct = 0.15 m, to avoid the influence of the wall boundary layer, yields a mean 

velocity of U0, Mean = 11.8 ms-1 and a turbulence intensity of TuMean = 7.8 % (Fig. 6a). 

Increasing the grid distance to the rotor (Fig. 6b), however, leads to a continuous reduction of 

the turbulence intensity and thus also to a reduction of the primary noise source strength for the 

rotors' leading edges. Incorporating the average values of the previously reported hot wire 

measurements, the trend of the turbulence intensity right at the rotor leading edge is derived by an 

analytical model (ANSYS Inc. 2010) as a function of the grid location. Based on the initial 

turbulence intensity Tuini, the Tu at a given distance is determined according to Eq. (6), where ρ is 

the density of air, U0 the free stream velocity, Δz/D the normalized grid distance, β and β* are 

model constants, μ is the dynamic fluid viscosity and μt the eddy viscosity. The results are shown 

in Fig. 6 (right) for the varied grid distance of 0.25 ≤ Δz/D ≤ 1.25. 

𝑇𝑢 = √(𝑇𝑢𝑖𝑛𝑖
2 [1 +

3 ∙ 𝜌 ∙ 𝑈0 ∙ 𝛥𝑧 ∙ 𝛽 ∙ 𝑇𝑢𝑖𝑛𝑖
2

2 ∙ 𝜇(
𝜇𝑡

𝜇⁄ )
]

−𝛽∗

𝛽⁄

) (6) 

 

 

5. Results 
 

5.1 Effect of parameters 
 

Based on the trained Artificial Neural networks, various contour plots are generated, describing 

the influence of the analysed parameters on the response variables. Fig. 7 shows key-aerodynamic 

plots, whereas Fig. 8 shows trends on how single parameters affect the aeroacoustic response 

variables. The pressure rise of the fan clearly exhibits a dependency on both, fan speed n and 

throttling state δThrottle, where maximum pressures are reached at maximum speed and throttling 

(Fig. 7(a)). In terms of the flow rate 𝑄 ̇ (Fig. 7(b)), the dominant parameter is the throttling state, 

only fractionally influenced by the fan speed. In contrast to the previously described trends of 

approximately quadratic nature, the systems' efficiency of the analysed fan is much more complex 

with a maximum at high speeds but low to intermediate throttling states and a minimum at low fan 

speed but high throttling states (Fig. 7(c)). The grid location, however, is not found to affect the 

pressure rise, the flow rate or the efficiency to high degrees.  

Yet, moving the focus towards aeroacoustics (Fig. 8), the location of the turbulence grid does 

play an important role, especially at low throttling states or high flow rates, respectively. Small 

distances between grid and rotor lead to eddies of high energy (see also Fig. 6) impinging on the 

rotor leading edges and causing broadband leading edge noise. According to the energy cascade 

theory, larger grid distances lead, based on eddy dissipation effects, to decreasing turbulence 

intensities and thus to potential noise sources of lower energy. This pattern is confirmed by the 

contour plots for both, suction side noise (Fig. 8(a)) and discharge side noise (Fig. 8(b)), even 

though a local maximum occurs at maximum distances for the suction side, which might be caused 

by model uncertainties. At high throttling states, however, no (Fig. 8(a)) or only little (Fig. 8(b)) 

influences of the grid distances is visible.  
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(a) ΔpFan [Pa] (b) �̇� [m³s-1] (c) ηSystem [%] 

Fig. 7 Contour plots of aerodynamic response variables by varying normalised parameters. Contour shows 

results of Artificial Neural network, based on the LHS, where black stars indicate locations of the 

underlying measurement data pool 

 

   
(a) pSuction [Pa RMS] (b) pDisch [Pa RMS] (c) aAcc [ms-²] 

Fig. 8 Contour plots of aeroacoustic/ vibroacoustic response variables by varying normalised parameters. 

Contour shows results of Artificial Neural network, based on the LHS, where black stars indicate 

locations of the underlying measurement data pool 
 

 

This is considered meaningful, since at high throttling states only low axial velocities are 

present, leading to a sharp decrease of the turbulence generated by the grid. During the 

measurement campaign, a clear tonal effect occurred at a fan speed of n = 1500 min-1 which is 

found to match the duct length resonance. Accordingly, as it is shown by the contour plot of the 

acceleration signal (Fig. 8(c)), a maximum in terms of acceleration is reached at the fan hub-

support, turning out to be independent of the throttling state. 
 

5.2 Comparison of models 
 

Three experimental designs are adopted and applied to a given system with the aim to describe 

it with the highest possible accuracy while varying three parameters of interest. The Box Behnken 

design and the Central Composite design are used to define a model of second order, while Latin 

Hypercube sampling is used for the training of an Artificial Neural network. All generated models 

are rated by the coefficient of determination R², which is determined according to Eq. 5. The 

coefficient of determination allows assessing how well the observed values of a systems' response 

can be approximated by the output of a model. A value close to one means that the unexplained 

variance of the model is relatively small compared to the total variance of the data, thus 

representing a good approximation.  
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(a) pSuction [Pa RMS] (b) pDisch [Pa RMS] (c) pDisch. [Pa RMS] 

Fig. 9 Box-Behnken design: Observation/ prediction plots for different target values, indicating the fit of 

the employed models. Blue stars indicate model-independent test data, black circles indicate data used to 

model the response surface regression 

 

   
(a) ηSystem [%] (b) pSuction [Pa RMS] (c) pDisch. [Pa RMS] 

Fig. 10 Central Composite design: Observation/ prediction plots, indicating the fit of the employed 

models. Blue stars indicate model-independent test data, green rectangles indicate data used to model the 

response surface regression 
 

 

Figs. 9-11 show the observation/ prediction-plots for the most challenging response variables, 
namely the systems’ efficiency as well as the acoustic noise radiation on the suction and on the 
discharge side of the fan. 

It is seen that the fit of the model itself shows high values for all chosen approaches, albeit the 
Box-Behnken design’s response surface regression (Fig. 9) shows the highest values for the 
systems’ efficiency and the Artificial Neural network, based on the Latin Hypercube sampling 
(Fig. 11) fits best for the acoustic response variables. Analysing the fit of the test data, however, 
shows a dramatic decrease of the performance for the quadratic models but high performance for 
the Artificial Neural network, even though there is still space to further improve it. The 
performance for all response variables and approaches is summarised in Table 3. As it is already 
indicated by the contour plots in Figs. 7 and 8, the aerodynamic trends of 𝛥𝑝𝐹𝑎𝑛 and �̇� are 
properly describable by a quadratic model, what matches the fluid mechanics' theory. On the 
contrary, the mapping of the systems' efficiency tends to be more challenging and even collapsing 
when it comes to aeroacoustics, requiring a more complex modelling approach. Despite that the 
experimental effort of the LHS increases by 17% (24  28 runs) for the C-CCD or 87% for the 
BBD (15  28 runs), respectively, the performance in form of the coefficient of determination R² 
with regard to the test data for pSuction increases by 65% (79% pDischarge) compared to the C-CCD 
approach and 59% (75% pDischarge) compared to the BBD approach. 
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(a) ηSystem [%] (b) pSuction [Pa RMS] (c) pDisch. [Pa RMS] 

Fig. 11 Latin Hypercube sampling: Observation/ prediction plots, indicating the fit of the employed 

models. Blue stars indicate model-independent test data, red triangles indicate data used to model the 

response surface regression 

 
Table 3 Coefficients of determination R2 for model data and independent test data, comparing different 

approaches 

  No. Samples ΔpFan �̇� ηSystem pSuction pDischarge pST aHub 

BBD 
Model Data 15 0.999 0.995 0.998 0.887 0.889 0.879 1.000 

Test Data 10 0.993 0.991 0.831 0.614 0.555 0.555 0.648 

CCD 
Model Data 24 0.973 0.957 0.727 0.934 0.918 0.930 0.614 

Test Data 10 0.969 0.937 0.696 0.593 0.543 0.507 0.504 

LHS 
Model Data 28 0.997 0.997 0.951 0.986 0.972 0.967 0.974 

Test Data 10 0.995 0.994 0.966 0.978 0.973 0.975 0.947 

 

 

Fig. 12 Pareto optimal solutions (Pareto front). Minimising the acoustic pressure while maximising the 

systems’ efficiency ηSystem 

 

 

5.3 Multi-objective optimisation 
 

It is often the case that two or more objectives are conflicting. This is especially true for 

aeroacoustics, where the dilemma of opposing trends in terms of aerodynamics and aeroacoustics 
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is a common challenge. This means that the ideal solution for one objective can lead to a 

disadvantageous solution for another objective. Computational expensive unbiased multi-objective 

optimisation is able to compute Pareto optimal solutions, visualised by the so-called Pareto front, 

which separates non-efficient from unrealizable solutions. The Pareto front also helps to indicate 

solutions that may be of beneficial character compared to others. Using ANNs with good accuracy 

to approximate the Pareto front is a powerful and fast way of optimising the underlying system. 

Fig. 12 shows the Pareto front for the optimum of the systems' efficiency ηSystem and the acoustic 

radiation on the suction pSuction and discharge pDischarge side, where minimum acoustic pressures are 

desired while keeping the efficiency on high values. Figure 12 indicates that e.g. a small reduction 

in efficiency of ΔηSystem = 0.1 % (ηSystem ≈ 32.5% → ηSystem ≈ 32.4%) can lead to a tremendous 

reduction in acoustic radiation of ΔOASPL ≈ 9.5 dB (pDischarge ≈ 4.5 Pa → pDischarge ≈ 1.5 Pa) on the 

discharge side of the fan. 

Physically speaking, the condition of maximum efficiency is reached at the highest fan speed  

(n = +1) and at an intermediate throttling state (-0.5 ≤ δThrottle ≤ 0.1). The grid position Δz/D, 

however, does only play a minor role. Acoustically, reaching optimum flow conditions at  

δThrottle ≈ -0.5, including blade congruent inflow for the rotor blades, a minimum of noise is 

radiated at high aerodynamic efficiency. With further throttling δThrottle > -0.5, however, a gradual 

stall is induced for the blade tip region on the suction sides of single blades, which does not yet 

affect the global aerodynamic efficiency. On the contrary, even a slight increase in efficiency is 

observed since a higher static pressure rise is generated. But, in contrast to the aerodynamic 

performance, the regions with separated flow do represent noise sources of significant strength, 

resulting in a sharp increase of the radiated noise. In result, it is arguable whether the fan is already 

operating at (aerodynamic) on or off-design conditions since for the specifically tested rotor the 

design condition is very close to the instability region. Nonetheless, in either case, the Pareto front 

helps to indicate such unfortunate operating conditions by providing multi-objective information 

on both, aerodynamic efficiency and noise radiation. 

 
 

6. Spectral application 
 

As it is shown in the previous section, the use of Artificial Neural networks (combined with 

LHS) allows for a precise and accurate prediction of all the target values as well as a good 

approximation of the investigated experimental space. However, especially in aeroacoustics and 

vibroacoustics, information on the spectral shape is of essential value for providing additional 

information on the underlying noise generation mechanisms of e.g., fans. Moreover, accounting 

for the human perception of noise by means of the relative loudness (e.g., A-weighting) requires a 

frequency analysis as well, since it takes place solely in the frequency domain.  

Therefore, the drawn conclusions on the superiority of the ANNs vs. the classic modelling 

approaches are directly adopted for the purpose of processing the already available experimental 

data towards a spectral model. For this case study, a training algorithm according to Bayesian 

learning (Dan Foresee and Hagan 1997) is used since no splitting into training and validation data 

is needed. Due to the fact that only ANNs are regarded and all gained information shall be used, 

the full experimental data basis, including data points from the LHS, the C-CCD, the BBD as well 

as data points from the test design (excluding one for actually testing), can be used for a proof-of-

concept with regard to spectral approximation. The resulting ANNs do not directly provide 

information of the systematic relation and influence of parameters on the target values. However, 
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performing parametric studies based on the ANNs by varying single influencing parameters solves 

this dilemma and offers similar benefits than the models based on the Design of Experiments 

methodology. 

In order to maximise the spectral information while keeping the amount of data on a reasonable 

level, 1/3rd octave band in a mid-frequency range of 16 Hz ≤ f ≤ 10 kHz are analysed. This results, 

in addition to the already described target values, in 58 extra target values, each one representing a 

fully independent ANN, describing the sound pressure of just one 1/3rd octave band. 
 

6.1 Model fit 
 

The training of the ANNs is performed by use of the complete measurement data pool but for 

one data point, which is used for independent testing. During the training with the above-

mentioned algorithm, the maximum relative deviation is used to evaluate different networks. The 

performance is measured by using the training data and calculating the relative deviation in 

comparison to the observation of every approximated 1/3rd octave band for every data point.  

Table 4 shows the maximum, the mean as well as the median of the deviations, in both, the 

decibel-scale and the (linear) Pascal-scale, separated for the suction side and the discharge side. 

Especially in the field of aeroacoustics, it is important to note that solely the uncertainty related to 

the Pascal-scale shows a physically interpretable fit of the model, while the dB-scale is more 

related to the human perception of sound. Thus, the deviation in the dB-scale highly depends on 

the referenced underlying mean level since it scales logarithmically. 

For the analysed data, the median and the mean deviation show a reasonably good fit of the 

model with variations smaller than 5% in the Pa-scale where the discharge side outperforms the 

suction side. This is assigned to a slightly better aeroacoustic treatment of the discharge side by the 

anechoic ending, showing an improved ability to suppress back reflections at the duct exit due to 

impedance differences. The maximum deviation, though, is significantly higher and indicates the 

need for further validation and a possibly increased data pool to decrease the experimental noise. 

For gaining a slight insight into the ability to generalise, one independent data point, that is not 

part of the training data, is used for a prediction of the spectral information. The comparison 

between the prediction and the gathered experimental data is presented in Fig. 13 for the suction 

side (Fig. 13a) and the discharge side (Fig. 13b). Qualitatively, the trend of the SPL with the 

frequency is considered to be well-approximated. The same applies to the quantitative nature of 

the prediction, even though single frequencies exhibit a lack of fit, affecting the total accuracy of 

the modelled experimental space.  

 

 
Table 4 Averaged fit of 29 1/3rd octave bands at mid-frequencies 16 Hz ≤ f ≤ 10 kHz 

 Suction Side Discharge Side 

 dB–scale Pa–scale dB–scale Pa–scale 

Median Deviation in % 0.30 2.70 0.26 2.25 

Mean Deviation in % 0.53 4.93 0.46 4.15 

Maximum Deviation in % 4.58 46.12 6.21 65.01 
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(a) Predicted/ observed suction side noise (b) Predicted/ observed discharge side noise 

Fig. 13 Spectral content by means of 1/3rd octave bands. Comparison to independent test data at Δz/D = 

1.005, n = 1061 min-1, δ = 63.4% 

 

 

6.2 Parametric study 
 

One of the main benefits having developed a spectral model is the possibility to obtain 

structured information on the effect of single influencing parameters with regard to the noise 

radiation at the different analysed 1/3rd octave bands. Fig. 14 shows a continuous variation of the 

factor level in 30 equidistant steps for all three investigated factors. The wavy shape of the low-to-

intermediate frequency region for all the shown plots is linked to the presence of tonal effects at 

the fundamental frequency and at the integer multiples or harmonics, respectively. Increasing the 

rotational speed (Fig. 14a) shows a predominant effect of increasing intermediate-frequency noise, 

which becomes more and more significant for the overall sound pressure level. Meanwhile, at low 

frequencies, still a noise increase takes place but of attenuated effect.  

 

 

    
(a) Rotational speed (b) Grid distance (c) Throttling state 

Fig. 14 Spectral sound pressure level (discharge side), showing the main effects of the analysed 

parameters. Variation of one parameter in 30 equidistant steps while the other parameters remain on an 

intermediate level 
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Fig. 15 Interdependent effect of rotational speed and throttling state on the noise radiation within the  

1 kHz octave band (averaged 800 Hz, 1000 Hz and 1250Hz 1/3rd octave bands) 

 

 

Fig. 16 Exemplarily filtered measurement result using a first order median filter of 30 samples. Filtered 

broadband signal (black) and extracted speed-dependent tonal components (orange) 
 

 

This staircase-shaped pattern from low to high frequencies is due to a speed-dependent shift of 

the tonal components which scale with the fundamental frequency. High frequencies show only 

little increase of the radiated level. Varying the grid distance (Fig. 14(b)) shows no effect 

comparable in significance to the influence of the rotational speed or the throttling state. 

Nevertheless, the results are still considered meaningful, since the influence of Δz/D only becomes 

significant at sufficiently high mean velocities as it is the case for low throttling states δThrottle ≤ 0 

(also confirmed by trends in Fig. 8(a)-8(b)). The isolated effect of the throttling state in Fig. 14c 

shows significant noise radiation in the low-to-intermediate frequency region. Increasing the 

throttling state from 0% to 100% or decreasing the flow rate from maximum towards zero, 

respectively, shows a strong increase of the radiated noise at δThrottle ≈ 25%, indicating the 

aerodynamic instability region, where flow separation occurs (see Fig. 4(a)). At δThrottle ≈ 50%, the 

fan performs on a secondary characteristic, leading to a local reduction of the SPL before large 

scale separation occurs at throttling states δThrottle ≥ 75% and low-frequency noise become 

dominant. 

With respect to the human perception of noise, the 1 kHz octave band, which is the only octave 

band not affected by any weighting functions, is extracted from the three associated 1/3rd octave 

bands according to Eq. (7), covering a frequency range of 710 Hz ≤ f ≤ 1420 Hz. This limitation to 
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a single frequency band enables to investigate the interdependent effect of throttling state and 

rotational speed on the noise radiation as shown in Fig. 15.  

 10/10/10/

1,
12501000800 101010lg10 HzHzHz SPLSPLSPL

kHzOctSPL 
 

(7) 

As discussed before, the noise radiation increases with the rotational speed where Fig. 15 

shows an amplified effect at higher speeds as more dominant harmonics of the blade passing 

frequency tend to affect the 1 kHz octave band. With regard to the throttling state, no strong 

change in the radiated pattern as a function of the rotational speed is observed, indicating only 

weak interdependencies between the two analysed parameters. Nevertheless, a distinct effect of the 

throttling state on the SPL is present, following the aerodynamic fan curve with increased noise 

radiation in the instability region (25% ≤ δThrottle ≤ 50%) and reduced radiation at primary and 

secondary characteristics δThrottle ≤ 25% or δThrottle ≥ 50%, respectively. 
 

6.3 Discussion 
 

One of the main benefits but also one of the main restrictions of the chosen modelling approach 

is the independent nature of the ANNs for each 1/3rd octave band that hinders a cross-transfer of 

spectral information. Thus, slight variations such as for example in the rotational speed might lead 

to a shift of the tonal components or the BPF from one 1/3rd octave band into the neighbouring 

one, leading to a strong increase of the complexity of the experimental space and/ or the 

requirements for the modelling approach. These effects are also suspected to be a significant 

contributor to the observed (in)accuracy of the presented spectral model (see Section 6.1). Aiming 

at enabling a more coherent modelling of the aeroacoustic fan characteristics, an alternative 

approach might be to extend the current approach by an additional separation of the tonal from the 

broadband components of the underlying spectra. This can be achieved by the use of median 

filtering of the experimental data basis as shown exemplarily for one measurement point in  

Fig. 16, where the spectral content is separated in broadband and tonal portions. In this regard, the 

broadband components of each frequency band can still be modelled independently but avoiding 

the disturbing effects of shifting significant tonal components between the single octave bands or 

the influence of possibly occurring duct modes. The separately modelled speed-dependent tonal 

fraction is added at a later stage. 
 

 

7. Conclusions 
 

Detailed experiments are conducted to analyse the aerodynamic and aeroacoustic performance 

of an axial fan as a benchmark case. Three different approaches are analysed in terms of required 

experimental effort and modelling accuracy. The circumscribed Central Composite design  

(C-CCD) and the Box Behnken design (BBD) approaches are limited to models of second order 

whereas for the Latin Hypercube sampling (LHS), in combination with an Artificial Neural 

network, no such restriction in model complexity is predetermined. The results obtained allow the 

current paper to reach the following conclusions: 

The Latin Hypercube sampling in combination with an Artificial Neural network yields, based 

on the test data, improved average performance of 44% compared to the Central Composite design 

and 32% compared to the Box-Behnken design. Especially the system efficiency ηSystem and the 

aeroacoustic/ vibroacoustic parameters (pSuction, pDischarge, aHub) turned out to be highly non-linear, 
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hence preventing an acceptable approximation accuracy by the classic BBD or C-CCD 

approaches. The obtained results by the ANNs reproduce the trends of the individually tested 

parameters with high quality. Even validated against independent test data at extreme parameter 

settings, which are naturally hard to approximate, the LHD shows a good performance. On the 

other hand, the good approximation quality comes at the cost of an increased number of model 

samples for the LHS which is +17% for the C-CCD and +87% for the BBD, respectively. 

Subsequent processing of the obtained ANNs towards an unbiased multi-objective optimisation 

in form of Pareto optimal solutions uncovered disadvantageous parameter combinations for the 

aerodynamic efficiency and the associated noise radiation. At comparable aerodynamic efficiency 

(ΔηSystem = 0.1%), remarkable differences in the radiated overall noise level are predicted 

(ΔOASPL = 9.5 dB), being in line with the underlying physical mechanisms. The multi-objective 

analysis of several target values is considered to be a helpful tool for future low-noise design 

purposes. 

Encouraged by the high accuracy of the generated approximation model, the ANNs are further 

developed by implementing spectral information on the aeroacoustic performance. The 

approximated 1/3rd octave band spectra show a reasonably good fit, being impaired by influences 

of supposedly shifting tonal components and high experimental noise, corrupting the accuracy. 

With the implemented spectral composition not only the overall sound pressure level is predictable 

for each parameter combination within the bounds of the experimental space, but also accounting 

for the human perception of noise (A-weighting in the frequency domain) becomes possible. 

Eventually, inspired by the underlying physical noise generation mechanisms, a modification of 

the used approach is suggested in form of an isolated prediction of the tonal and the broadband 

components for each 1/3rd octave band. This is considered meaningful to further improve the 

spectral prediction accuracy for the ANNs. 
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LHS Latin Hypercube sampling 

BPF blade passing frequency 

A rotor area [m²] 

aHub acceleration [m·s-2] 

C blade chord [mm] 

D rotor diameter [mm] 

n fan speed [s-1] 

𝑛𝑅² number of samples [--] 

PElec electric power [W] 

pST acoustic pressure of slitted tube [Pa RMS] 

pSuction acoustic pressure at suction side [Pa RMS] 

pDischarge acoustic pressure at discharge side [Pa RMS] 

�̇� flow rate [m³·s-1] 

RDuct duct radius [mm] 

R² Coefficient of determination [--] 

S blade span [mm] 

SPL  (local) Sound Pressure Level [dB] 

Tu turbulence intensity [--] 

U circumferential velocity [m·s-1] 

U0 free stream velocity [m·s-1] 

x throttling position [m] 

𝑦𝑖  observed response value [diverse] 

�̂�𝑖 predicted response value [diverse] 

�̅� mean of observed response [diverse] 

β, β* model constants [kg·(ms)-1] 
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δThrottle throttling state [--] 

Δf frequency resolution [Hz] 

ΔOASPL Overall Sound Pressure Level [dB] 

Δp  static pressure rise [Pa] 

Δz/D grid distance [--] 

ηSystem system efficiency [--] 

μ fluid viscosity [kg·(ms)-1] 

μt eddy viscosity [kg·(ms)-1] 

μt/μ eddy viscosity ratio [--] 

ρ air density [kg·m-3] 

φ flow value [--] 

ψ pressure value [--] 
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Appendix A 
 

Table 5 Experimental run conditions for the individual tested statistical approaches, normalized by the 

parameter limits of grid distance Δz/D, fan speed n and throttling state δThrottle 

 Latin Hypercube Central Composite Box Behnken Test Data 

No. Δz/D n δThrottle Δz/D n δThrottle Δz/D n δThrottle Δz/D n δThrottle 

1 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.00 -1.00 -1.00 -1.00 

2 -1.00 1.00 -1.00 -1.00 -1.00 1.00 -1.00 1.00 0.00 1.00 1.00 -1.00 

3 -1.00 -1.00 1.00 -1.00 1.00 -1.00 1.00 -1.00 0.00 1.00 -1.00 1.00 

4 1.00 1.00 1.00 -1.00 1.00 1.00 1.00 1.00 0.00 -1.00 1.00 1.00 

5 0.47 -0.65 0.45 1.00 -1.00 -1.00 -1.00 0.00 -1.00 -0.48 -0.40 -0.86 

6 0.32 -0.21 -0.84 1.00 -1.00 1.00 -1.00 0.00 1.00 0.77 0.29 -0.25 

7 -0.30 0.25 0.98 1.00 1.00 -1.00 1.00 0.00 -1.00 0.21 0.52 0.93 

8 -0.61 -0.91 -0.38 1.00 1.00 1.00 1.00 0.00 1.00 -0.29 0.74 -0.60 

9 0.81 0.80 0.14 -1.68 0.00 0.00 0.00 -1.00 -1.00 -0.73 -0.07 0.40 

10 -0.85 0.39 -0.22 1.68 0.00 0.00 0.00 -1.00 1.00 0.51 -0.88 0.27 

11 0.36 -0.55 -0.31 0.00 -1.68 0.00 0.00 1.00 -1.00    

12 0.95 0.13 0.89 0.00 1.68 0.00 0.00 1.00 1.00    

13 -0.17 -0.99 0.61 0.00 0.00 -1.67 0.00 0.00 0.00    

14 0.27 0.92 -0.46 0.00 0.00 1.67 0.00 0.00 0.00    

15 -0.86 -0.30 -0.95 0.00 0.00 0.00 0.00 0.00 0.00    

16 -0.64 0.45 0.22 0.00 0.00 0.00       

17 -0.67 -0.31 0.62 0.00 0.00 0.00       

18 -0.66 0.79 -0.14 0.00 0.00 0.00       

19 0.30 0.57 -0.83 0.00 0.00 0.00       

20 -0.24 -0.85 -0.65 0.00 0.00 0.00       

21 0.60 0.28 0.91 0.00 0.00 0.00       

22 0.88 -0.66 0.03 0.00 0.00 0.00       

23 0.84 -0.17 0.49 0.00 0.00 0.00       

24 0.36 0.89 -0.23 0.00 0.00 0.00       

25 -0.56 0.26 -0.85          

26 -0.18 0.61 0.91          

27 -0.88 -0.43 0.18          

28 0.09 -0.83 -0.65          
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