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Abstract. This work is concerned with the motion of propeller driven airplanes, flying at constant velocity on 
ascending or descending rectilinear trajectories. Its purpose is to provide important features of rectilinear flights that 
are required for airplane trajectory planning but that cannot be found already published. It presents a method for 
calculating the amount of fuel used, the restrictions on the trajectory parameters, as inclination and speed, which 
result from the load factor, the lift coefficient, the positivity and upper boundedness of the power available. It presents 
a complete discussion of both ascending and descending flights, including gliding. Some original remarks are made 
about the parameters of gliding. It shows how to construct tables of parameters allowing to identify rapidly flyable 
trajectories. Sample calculations are shown for the Cessna 182 and a Silver Fox like unmanned aerial vehicle. 
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1. Introduction 
 

This study is motivated by the need to provide automatic trajectory planning for rendering 

unmanned aerial vehicles (UAVs) autonomous. UAVs, flying in a cluttered environment or 

mountainous terrain, are required to calculate new flyable trajectories when there happens 

unforeseen obstacles or changes in the environment or in the mission. Essential tools for 

performing this task are formulas or tables that indicate what trajectories are flyable by the 

airplane in question. The determination of the flyability of trajectories has to take into account the 

particular dynamics of the airplane and provide basic information such as the amount of fuel 

required, the time of flight, etc. The results obtained in this study are actually quite general and 

constitute important tools not only for UAV trajectory planning, but also for the analysis of the 

motion of all propeller driven airplanes. 

An efficient technique for constructing trajectories was proposed by Frazzoli et al. (2005). It 

consists in concatenating elementary trajectory segments, called motion primitives, taken from a 

finite library. The primitives most often considered are rectilinear, circular and helical segments. 

Their properties could be calculated in advance and stored in the memory of the airplane 

computing device. The main advantage of this approach is the minimization of the calculations 
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required since then only the connection between the segments have to be calculated. A somewhat 

similar, often used, approach consists in firstly building a skeleton trajectory made up of connected 

rectilinear segments and then smoothing out the connections because the velocity is necessarily 

continuous. This smoothing can be done with splines, as described in, among others, Judd (2001), 

Zheng et al. (2003), Nikolos et al. (2003), Yang and Sukkarieh (2010), Jiabo et al. (2012), Wang et 

al. (2017). However, splines are not readily analyzable for flyability, whether they constitute 

connection segments or even the whole trajectory as in Holub et al. (2012), Neto et al. (2013), 

Askari et al. (2015). 

A more manageable method is often preferred for connecting rectilinear segments: it is done 

with arcs of circles or helices. This approach was initiated by Dubins (1957) and further developed 

by Chandler et al. (2000), Jia and Vagners (2004), Chitsaz and LaValle (2007), Hwangbo et al. 

(2007), Allaire et al. (2009), Li Xia et al. (2009), Ambrosino et al. (2009), Babaei and Mortazavi 

(2010), Hota and Ghose (2010, 2014), Roberge et al. (2012), Niendorf et al. (2013), Xian-Zhong 

et al. (2013), Weiwei et al. (2014), Zhu Wang et al. (2014), Rudnick-Cohen et al. (2015), Ramana 

et al. (2016), Kok and Rajendran (2016).  

Essentially all studies on airplane trajectory planning, except for Roberge et al. (2012) are done 

with a version of the Dubins (1957) airplane model that incorporates, at best, oversimplified 

constraints on the speed, on the angle of climb and on the turning radius of the airplane, which are 

considered constant everywhere on the trajectory. In reality, however, all these parameters depend 

very strongly on the altitude and on the inclination of the trajectory and this fact has to be taken 

into account. For example, from Labonté (2016), one can calculate that for a Silver Fox UAV, that 

flies on a circular trajectory, inclined at 10° with the horizon, at the speed of 20 m/s, the minimum 

turning radius is 13.9 m, while, if its speed is 35 m/s, its turning radius is 39.3 m. When it flies on 

a horizontal circular trajectory at a speed of 20 m/s, its minimum turning radius at sea level is 13.1 

m, while at an altitude of 3000 m, it is 18.5 m. The possible speeds at which an airplane can fly 

evidently depend on the altitude and the inclination of the trajectory. To obtain a realistic trajectory 

planner, it is necessary to take into account all the constraints imposed by the airplane dynamics. 

This is done in the present work, which is based on the realistic airplane model described in 

Anderson (2000). We note that we also use the same nomenclature as in Anderson (2000). 

We note that, even after the smoothing process of the trajectory is performed, most of it still 

consists of rectilinear segments. When the terrain is uneven or there are many obstacles and the 

UAV must fly as low as possible, there will be many climbing and descending rectilinear 

segments, together with some horizontal segments. It is therefore of outmost importance to be able 

to determine all the features of these important pieces of trajectory. The motion of airplanes on 

horizontal rectilinear trajectories is discussed in most books on airplane dynamics; see for example 

Hale (1984), Anderson (2000), Eshelby (2000), Yechout et al. (2003), Stengel (2004) and 

Filippone (2006). Climbing flights are also most of the time discussed. However, in our survey of 

many classical airplane dynamics books, we did not find any that provides a complete solution to 

the climbing flight equations. The discussions usually only deal with instantaneous aspects of the 

climbing flight, never with the entire flight. For example, Yechout et al. (2003) simply define the 

local climbing rate and, Torenbeek (1976), Hale (1984), Anderson (2000), Eshelby (2000), Stengel 

(2004) and Filippone (2006) all derive conditions for the instantaneous climbing angle or climbing 

rate to be maximum. These conditions are obtained by calculating the derivative of some 

expression with respect to the speed or the lift coefficient, while considering as constant all the 

other variables such as the air density, the temperature and the airplane weight. This process yields 

formulas that cannot be satisfied for the entire trajectory, as the values of these parameters change 
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in time. Thus, airplane dynamics books provide no global solution for the time evolution of the lift, 

the power and the fuel required when an airplane travels an entire climbing or descending 

trajectory. The inadequacy of this approach is recognized in Section 2.6 of Stengel (2004) and in 

Section 8.6 of Filippone (2006), who mention that such steady state models cannot be correct 

because the climbing rate and the optimal climbing conditions change with changing altitude so 

that the airplane in fact accelerates. Furthermore, in all the airplane dynamics books that we have 

examined, the climbing and descending flights are always considered to make an inclination angle 

θ, with the horizontal, that is small so that cos(θ)  1. This may be justified for most commercial 

propeller-driven airplanes, for which θ is at most about 10°-15°, but it is not true for fighter 

airplanes and UAVs. The latter airplanes can fly much bolder manoeuvres than inhabited propeller 

airplanes. In the present study, we do not make this approximation of small angles; all the formulas 

we derive are applicable for any angle of climb and descent. 

Exact formulas and very accurate approximation formulas for the amount of fuel used for 

inclined rectilinear trajectories were first presented in Labonté (2012, 2015). These studies 

concentrated on that particular aspect of the flight and did not analyse the constraints on the 

trajectories that are imposed by the dynamical abilities of the airplane. The purpose of the present 

article is to complement these results by determining all these constraints. The dynamical 

parameters considered are the airplane load factor, its lift coefficient, its available power and the 

discussion takes into account the influence of altitude.  

We recall from Chapter 9 of Anderson (2000) that the power PR that is required for the motion 

of a propeller driven airplane is derived from the power PP produced by its engine as PR = η PP in 

which η is the propeller efficiency. The rate of fuel burning is given by 

RP P
η

c
Pc

dt

dW
−=−=

 
(1) 

in which W is the weight of the airplane and c is the specific fuel consumption. We shall consider 

that the thrust produced by the propeller TR is along the direction of the airplane motion, so that PR 

= V∞TR. It is important to take into account that the power produced by a combustion engine varies 

with the altitude; that is 

s
PP ρ

ρ(h)
)0(P(h)P =

 
(2) 

For simplicity, in the present study, we consider only flights below 11 km, so that a1, the rate of 

variation of the temperature with the altitude, is constant, with 

T(h) = Ts - a1 h,  with a1 = 6.5  10-3 

The results we obtain can be readily generalized to flights at higher altitudes by solving the 

equations of motion inside each traversed zone of the atmosphere, in which the temperature 

gradients differ and then matching continuously the solutions at the zone boundaries.  

The article is organized as follows. It begins by recalling the concepts of power available and 

power required and the formula for the fuel consumption. It then presents a description of constant 

velocity rectilinear trajectories and recalls the Newton equation of motion for an airplane of 

varying mass on such a trajectory. Expressions are obtained for the load factor, the lift coefficient 

and the limits on the trajectory parameters that result from their being bounded are derived. The 

non-linear differential equation for the airplane weight is recalled, together with a method for 
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calculating its solution. Conditions are derived to ensure the non-negativity and the sufficiency of 

the power required for the motion. Ascending trajectories are examined and a method is obtained 

to ascertain their flyability. Non-ascending trajectories are then examined along the same lines. It 

is shown how tables of parameters can be constructed to sum up results that may be rapidly needed 

in a mission. Some remarks are made about gliding, which is a particularly important type of 

descending trajectory. The application of the formulas derived is illustrated with airplanes that 

have similar properties as the following well known two different airplanes: 

o the Cessna 182 Skylane, which has a reciprocating engine with a constant speed propeller 

o a Silver Fox like unmanned aerial vehicle (UAV) which has a reciprocating engine with a 

fixed pitch propeller 

The required characteristics of these airplanes are listed in Appendix A. There may be small 

differences between the values we use and the actual values for a particular model of these 

airplanes. We used values that were readily available on the internet and those that were not, were 

estimated from the values for similar airplanes. This is adequate for our purpose which is to 

illustrate the calculations involved in the formulas we derive.  
 

 

2. Description of constant velocity rectilinear trajectories 
 

Rectilinear segments are the most important constituents of automatically constructed airplane 

trajectories. These segments link an initial position xi to a final position xf. Their flyability has to 

be assessed and if it is flyable, the weight of fuel required to fly it has to be calculated. The 

airplane is considered to fly at the constant velocity v, with ||v|| = V on this segment. In order to 

simplify the notation, we select the coordinate system such that the rectilinear segment lies in the 

x-z plane, with xi at the origin of the x-z plane, at the altitude hi. We shall consider that xf > xi. The 

position of the center of mass of the airplane is then described by 

   ( ) 0,0, cos( ), 0,sin( )it h V t = +x  

in which θ is the angle that the trajectory makes with a horizontal plane. If the trajectory is 

ascending, θ > 0 and if it is non-ascending, θ ≤ 0. In all cases, 0 ≤ | θ | ≤ π / 2. The velocity on this 

trajectory is 

 ( ) cos( ), 0, sin( )t V  =v  

Since the lift has to cancel the component of the weight perpendicular to the trajectory, the 

following transversal equilibrium condition must be satisfied: 

L = W cos(θ)  in which 2
LVCS

2

1
L = 

 
(3) 

The sum of forces that act in the direction of motion of the airplane is: 

)sin(WDTR −−  in which 2
DVCS

2

1
D = 

 
(4) 

in which TR is the thrust produced by the propulsion system and D is the drag.  
 

2.1 Load factor  
 

According to Eq. (3), the value of the load factor is  
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)cos(
W

L
n ==

 

It is constant on the trajectory and in order to ensure the integrity of the airplane structure, its 

value has to be limited such that 

nmin ≤ n ≤ nmax, 

Since n is always non-negative, this inequality implies that 

mxn)cos(   

For most airplanes this condition is satisfied by the fact that nmax > 1. 
 

2.2 Lift coefficient 
 

Upon replacing L by its expression in Eq. (3), the following expression for the lift coefficient 

CL is obtained: 

2L
SV

)cos(W2
C



=




 
(5) 

Thus, CL changes in time as W and ∞ vary, but it must always satisfy the constraint  

CL ≤ CLmax (6) 

We introduce the variable W̃, which encompasses all the time varying terms on the right-hand 

side of Eq. (5), as 



=

W

W
~

 
(7) 

The definition of this variable will prove worthwhile, as most formulas derived hereafter will 

take a simpler form when expressed in terms of W̃. This variable has an intriguing physical 

meaning: it is the volume of air that has the same weight as the airplane, at the altitude of the 

airplane. Because of this, it could be referred to as the “airplane relative volume”. Note that W̃ has 

the absolute maximum value W̃MAX  = 0

( )c

W

h

, where W0 is the airplane maximum weight and hc 

its service ceiling and the absolute minimum value W̃MIN  = 1

(0)

W



, where W1 is the airplane 

empty weight. We define W̃i = W̃(ti) and W̃f = W̃f(tf). Given Eq. (5), Ineq. (6) can be written as 

maxLC)t(W
~


 t,  with    )cos(2

CSV
C maxL

2

maxL 
=

  
a constant (8) 

Ineq. (8) is satisfied at all times if and only if 

maxLmax CW
~


 

(9) 

where W̃MAX denotes the maximum value of W̃ on the trajectory. We will similarly denote by W̃min  

its minimum value. It will be crucial for the flyability analysis of trajectories to know the values of 
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W̃min and W̃max. These are determined in Appendix B, together with some other important properties 

of W̃. In any case, a necessary condition for Ineq.(5) to hold is that it holds at t = ti. This yields the 

following lower bound on the speed: 

LBVV   with  
maxL

i2
LB SC

)cos(W
~

2
V


=

 
(10) 

 
2.3 Fuel consumption 

 
The mass of the airplane changes as fuel is burned by its engines. Labonté (2012) discussed 

how to allow for this process in Newton’s equation of motion and showed that it then becomes 

)sin(WDTV
dt

dM
AFR R −−=







− 

 
(11) 

in which AFR is the Air to Fuel Ratio in the combustion engine. Since PR = V∞TR, Eq. (1) implies 







−=

 dt

dW

cV
TR



 
(12) 

Therefore, Eq. (11) yields the following differential equation for the airplane weight W:  

)sin(WD
dt

Wd

cVdt

Wd

g

V)AFR(



−−








−=













 
(13) 

Upon expressing CD in terms of CL and using for CL the value given in Eq. (5), Eq.(13) 

becomes the Riccati equation: 

)W
~

(Q
dt

dW
)V(G  −= 

 
with 2W

~
W
~

)W
~

(Q  ++=
 

(14) 

in which ,   and G are the following constants: 

2
1 V= 

 
)sin( =  2

1

V

=




 

And 

2

CS 0D
1 =

 SARe

)(cos2 2

1 


 =

 
]

g

V)AFR(

Vc

)V(
[)V(G 




 −=



 
(15) 

We note that the coefficient G(V∞) of dW/dt depends only on the speed and has the same value 

whether the airplane is ascending or descending. When the airplane is non-descending, the 

constants  and  are positive and  is non-negative; therefore Q(W̃) > 0 W̃. Therefore, G has to 

be positive otherwise, according to the differential equation, W would be increasing when the 

airplane is non-descending. Fig. 1 shows the graph of G as a function of V∞ for the Cessna 182 and 

the Silver Fox-like UAV. For the latter airplane, this condition on the coefficient results in the 

existence of an upper bound VUB0 on V∞, due to the fact that the propeller efficiency goes to zero 

and becomes negative after a certain speed. For that airplane, VUB0 = 66.0 m/s. This bound depends  

556



 

 

 

 

 

 

On determining the flyability of airplane rectilinear trajectories at constant velocity 

 

  
(a) Cessna 182 (b) Silver Fox-like UAV 

Fig. 1 Graph of G(V∞), the coefficient of dW/dt in terms of V∞ 
 

 

only on the characteristics of the airplane: It has the same value for all trajectories. 

When the airplane is descending,  < 0; constraints will have to be imposed so that 

0)W
~

(Q 
 

(16) 

since otherwise, according to Eq. (14), the weight of the airplane would increase, which is not 

possible. We shall examine, in the following sections, the conditions that must be imposed on  

and V∞ for Ineq. (16) to be satisfied. Note that whatever the trajectory considered, it is necessary 

that there be enough fuel to fly it; this yields the condition 

1f W)t(W 
 

Upon assuming that the above mentioned conditions are satisfied, Eq. (14) can be exactly 

solved, as described in Labonté (2012); its solution being a combination of confluent 

hypergeometric functions. However, we are not obliged to use the solution in this form because 

Labonté (2015) has shown that a one-step Runge-Kutta approximation of order four produces 

essentially the exact value of W(t). It is then this expression for the solution that we shall use. 

Accordingly, the weight of the airplane is given by W(t): 

 D(t)C(t)22B(t)A(t)
6

1
WW(t) i ++++=

 
(17) 

in which 

  A(t) =  t F(ti, Wi ),   B(t) =  t F(tm, Wi + A(t)/2) 

  C(t) =  t F(tm, Wi + B(t) /2)  D(t) =  t F(t, Wi + C(t))  

]WW[
)V(G

1
)W,t(F 21−




++−= 
 

 t = t - ti ,  tm = ti +  t/2 

Fig. 2 shows how W and W̃ vary with time, as the Silver Fox-like UAV, ascends on a rectilinear  
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(a) Weight W(t) (b) Relative volume W̃(t)  

Fig. 2 Weight variation in time for a Silver Fox-like UAV ascending with  = 15° and V∞ = 30 m/s 

 

  
(a) Weight W(t) (b) Relative volume W̃(t) 

Fig. 3 Weight variation in time for a Silver Fox-like UAV descending with  = -5° and V∞ = 40 m/s 

 

 

trajectory inclined at 15° and speed V∞ = 30 m/s, during 300 s. It is to be remarked that W is nearly 

a linear function of time; thus the linear approximation for W(t), discussed in Labonté (2015) could 

also very well be used instead of the solution given by Eq. (17). Fig. 3 shows similar graphs as in 

Fig. 2, for a descending trajectory inclined at -5° with a speed of 40 m/s. 

 
 
3. Constraints related to the power  

 

We note that according to Eqs. (1) and (14), the power required for the motion is 
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(a) Ascending with  = 50°, V∞ = 20.0 m/s (b) Descending with  = -5°, V∞ = 64.5 m/s  

Fig. 4 Power required PR and maximum power available PAmax for the Silver Fox-like UAV 
 

 

)W
~

(Q
Gc

PR
=



 

Thus, the non-negativity of Q corresponds to the non-negativity of PR. It is necessary that the 

airplane propelling system be able to provide enough power for the motion to be possible. Thus, it 

is required that  

maxAR PP   i.e., 
s

maxP )0(PcG
)W

~
(Q




 
(18) 

where PAmax is the maximum power available for the motion. Fig. 4(a) shows how PR and PAmax 

vary in time when the Silver Fox-like UAV ascends at 50°, with V∞ = 20.0 m/s. Fig. 4(b) shows 

the same parameters when the Silver Fox-like UAV descends at -10°, with V∞ = 64.5 m/s.  
 

3.1 Non-negativity of the power for descending trajectories 
 

In this section, we examine the conditions under which Ineq. (16) is satisfied. As a function of 

W̃, Q corresponds to an upward concave parabola with minimum at W̃c: 





2
W
~

c −=
 

(19) 

This point lies on the positive W̃-axis since  is negative and at that point, 









44
)W

~
(Q

2

c −=−=
 

where  is the discriminant of Q: 

)(cos
eAR

C4
)(sin 20D2 


 −=

 
(20) 
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We note that what is normally considered as the gliding angle g is the angle at which the power 

required PR is null, i.e. the angle at which Q = 0, this angle would therefore be 









−= −

eAR

C4
tan 0D1

g 


 

It should be remarked however that there are actually no constant values of  and V∞ for which 

PR remains null on the whole trajectory. Indeed, W̃ changes as the air density varies with the 

altitude and therefore it cannot remain at the value W̃c. We discuss gliding further in Section 12.3.  

If  ≤ 0, i.e. the trajectory is not more inclined than g, then Q does not have real roots or has a 

double real root and therefore Ineq. (16) is satisfied at all times. On the other hand, if  > 0, Q(W̃) 

has two positive real roots r− and r+  

   =−= 0
2rV

2

1
r 

  
(21) 

Note that  is independent of the speed V∞ while r± have an overall factor of 
2V , which is 

made explicit in Eq. (21) where r0± are independent of V∞. The inequality Q ≥ 0 is satisfied when 

one of the two following inequalities is satisfied 

− rW
~

 
(22) 

or + rW
~

 
(23) 

Because the two roots r- and r+ are separated, while W̃ is continuous, W̃ must always remain in 

the same one of the two intervals defined by Ineqs. (22) and (23).  

 

3.1.1 The braking forces  
Note that in all cases, Ineq. (16) must be satisfied at t = ti; this condition can be written as: 

( ) ( ) 0W
~

VW
~

V 2
i1

2
i

4
1 ++  

 

The left-hand side of this inequality is a quadratic function of 
2V , which corresponds to an 

upward concave parabola. This function may or may not have roots, depending on the value of its 

discriminant, which is
2

iW
~

 , with  given in Eq. (20). If it has roots, these are simply  

 = 0i
2 rW

~
V

 

the factors r0± being the same as in Eq. (21). Fig. 5 shows how Q(W̃i) varies in term of the 

speed V∞ for the Cessna 182, when  = -5°. 

As can be seen in Eqs. (3) and (4), the lift cancels the component of gravity that is 

perpendicular to the velocity and the drag opposes the component of gravity along the velocity. 

Thus, the drag must be strong enough to cancel enough of the force of gravity for the speed to 

remain constant. It is interesting to note that the two separate domains V∞ ≤ V− and V∞ ≥ V+ 

correspond respectively to the separate regions in which it is the lift induced drag and the parasite 

drag that dominates the force of gravity. In Fig. 6 the full line and the dotted line represent 

respectively the lift induced drag and the parasite drag, for the Cessna 182 on a trajectory with θ =  
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Fig. 5 Graph of Q(W̃i) as a function of V∞ for the Cessna 182, when  = -5° 
 

 

Fig. 6 Graphs of the lift induced drag (full line) and parasite drag (dotted line) for the Cessna 182 

 

 

−5°. These forces dominate respectively at low and large speeds. However, this ceases to be the 

case in the interval (V−, V+), in which the airplane would therefore accelerate. 

 
3.2 Sufficiency of the power  
 

The airplane propelling system should be able to provide enough power for its motion on the 

trajectory to be possible. Thus, it is required that Ineq. (18) hold, that is 

0)W
~

(QA 
 

with 
2

A W
~

W
~

)W
~

(Q  ++=
 

(24) 
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Fig. 7 Graph of as function of V∞, for the Cessna 182 

 

 

Fig. 8 QA for the Cessna 182 with V∞ = 30 m/s and  = 5° 

 

 

in which 

s

maxP )0(GPc


 −=

 

The parameter  , as  itself, depends only on the speed V∞ and has the same value for 

ascending and non-ascending trajectories. Fig. 7 shows how varies with V∞, for the Cessna 182; 

its behavior for the Silver Fox-like UAV is very similar. Note that it is necessary to have a 

mathematical representation for η(V∞) in order to analyze Ineq. (24). The function QA corresponds 

to the same upward concave parabola as Q, except that it is translated downward by the constant 
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cGPPmax(0) / ρs. Its minimum occurs at the position W̃c. It is necessary that the discriminant ΔA of 

QA be positive in order for QA to have two separate real roots, and that there be a non-trivial 

interval in which QA is non-positive. Its two real roots are 

 AA 2

1
r 


−=

 
(25) 

These two roots rA± depend on  and V∞ but are independent of t. For all trajectories, it is 

necessary that  

+−  AA r)t(W
~

r  t (26) 

 

 
4. Feasible ascending trajectories 
 

For ascending trajectories, W̃c, the position of the minimum of QA, is negative. It is therefore 

necessary that the intercept of QA on the ordinate axis be negative for Ineq. (24) to be possible 

when W̃ > 0. This means that 0 , which implies an upper bound VUB2 on V∞: 

2UBVV   (27) 

For the Cessna 182, VUB2 = 72.39 m/s and for the Silver Fox-like UAV, VUB2 = 56.35 m/s. 

Because 0 , the discriminant ∆A of QA is always positive and, thus, QA has two real roots. The 

root rA− is always negative and rA+ positive, Ineq. (24) is therefore satisfied if and only if  

+ Ar)t(W
~

 
 t (28) 

Fig. 8 shows how QA varies as a function of W̃ for the Cessna 182 with V∞ = 30 m/s and  = 5°. 

Ineq. (8) is of the same nature as Ineq. (28); and it can therefore be dealt with in the same manner.  

We now consider the problem of determining if an airplane of initial weight Wi can fly on a 

trajectory with a given angle of inclination  and, if so, for how long it can fly on this trajectory. 

The condition to satisfy is Ineq. (28). This inequality must obviously hold at t = ti; this will be the 

case if the speed V∞ is bounded above by VUB1. It is then important to know if W̃(t) is increasing or 

decreasing. According to the discussion done in Appendix B, W̃(t) is monotonically increasing  t 

> ti if Q̅(W̃i) ≥ 0 and if Q̅(W̃i) < 0, W̃(t) will be decreasing for some time and then possibly reach a 

minimum value and increase afterwards. It is worth remarking that W̃(t) is actually monotonically 

increasing except for very small inclination angles. The following two cases should be considered. 

Case 1: Q̅(W̃i) ≥ 0 

It is then required that W̃i  < rA+. An upper bound on the duration of the trajectory is then given 

by the time tend at which W̃(t) increases to the value rA+, that is until  

+= Aend r)t(W
~

 
(29) 

Case 2: Q̅(W̃i) < 0  

In that case, W̃(t) will be decreasing for some time so that Ineq. (28) will be satisfied until the 

end of the trajectory or the instant of time tend at which Eq. (29) holds. Thus, the trajectory will last 

longer, the farther W̃(ti) is from rA+. As can be seen in Fig. 9(a), the lower the speed, the farther rA+ 

will be from W̃(ti). Fig. 9(b) shows how W̃(t) approaches rA+ as time goes on.  
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(a) rA+ and W̃i in terms of V∞ (b) rA+ and W̃(t) in terms of t 

Fig. 9 Graphs for the Cessna 182, with Wi = W0, hi = 0 and  = 5°. (a) rA+ and W̃i as function of V∞, (b) rA+ 

and W̃(t) as functions of t, when the speed is 30 m/s 
 

 

The condition that guarantees the sufficiency of the lift for the motion, expressed in Ineq. (8), 

can be treated the same way as described above, with rA+ replaced by C̅Lmax in the above 

discussion. Note that the farther W̃(t) starts from rA+, the longer the trajectory will possibly be. 

Evidently, the trajectory terminates before tend of Eq. (29) if the service ceiling is reached or the 

fuel is completely burned.  
 

4.1 Example 
 

Consider a Cessna 182 that starts at sea level with Wi = W0, on a trajectory inclined at 5°. Upon 

applying the procedure described above, one obtains 

VLB = 23.1 m/s, VUB1 = 51.4 m/s, VUB2 =72.3 m/s, 

we therefore consider the possible choice V∞ = 30 m/s. The calculation of Q̅(W̃i) yields the 

value 58,806.5 m3, which is positive, thus indicating that W̃(t) is monotonically increasing. The 

time required for the airplane to reach its service ceiling is calculated to be tc = 2,110.0 s. The time 

t+ at which Eq. (29) is satisfied is found to be 926.9 s. This is therefore the last instant at which the 

trajectory is flyable; the altitude reached at this time is 2,423.5 m. It can also straightforwardly be 

checked that W̃f < C̅Lmax.  

 

 

5. Feasible non-ascending trajectories 

 

For such trajectories, W̃ is a monotonically decreasing function of t, as pointed out in Appendix 

B. Therefore W̃max = W̃i and W̃min = W̃f. Ineq. (8) is then satisfied if and only if the bound on VLB, 

given in Eq. (10), is satisfied. W̃ must further satisfy Ineqs. (16) and (24). Fig. 10 shows the graphs 

of Q and QA as functions of W̃ for the Cessna 182 when  = -5°, for two different speeds.  

We now show how to determine if an airplane of initial weight Wi can fly on a trajectory that 

starts at altitude hi, with a given angle of inclination  and, if so, how long it can fly on this 

trajectory. Recall that Ineqs. (16) and (24) must be satisfied at all times, thus, in particular at t = ti: 
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(a) V∞ = 35 m/s (b) V∞ = 70 m/s 

Fig. 10 Graph of Q̅(W̃) and Q̅A(W̃), for the Cessna 182, when  = -5°, for two different speeds V∞ 
 

 

Fig. 11 Graph of Q and QA for the Cessna 182, at t = ti as functions of V∞, when  = -5° 
 

 

0)W
~

(Q i 
 

and 0)W
~

(Q iA 
 

(30) 

These inequalities impose restrictions on the possible values of V∞. Fig. 11 show the graph of Q 

and QA for the Cessna 182, at t = ti as functions of V∞, when  = -5°. In that case there are two 

disjoint domains of possible speeds. The speed has to be selected so that Ineqs. (30) are satisfied. 

The following two cases have to be considered. 

Case 1: The roots r± are complex or they are real with W̃i ≤ r–. The maximum duration of the 

trajectory is determined by the instant tend at which 
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−= Aend r)t(W
~

 
(31) 

Case 2: The roots r± are real with W̃i > r+. Note that W̃i has to be actually greater than r+, 

otherwise the trajectory would consist in a single point because the maximum duration of the 

trajectory is determined by the instant tend at which 

+= r)t(W
~

end  
(32) 

Evidently, the trajectory terminates before tend of Eq. (31) or (32) if the sea level is reached or 

the fuel is completely burned.  
 

5.1 Example 
 

Consider the Cessna 182 that starts at its service ceiling with Wi = W0, on a trajectory inclined 

at -5°. Eq. (10) yields VLB1 = 30.6 m/s. Ineqs. (30) yield the two possible ranges for the speed 

[VLB1, 42.9] m/s  and  [64.0, 95.2] m/s (33) 

Let us consider the speed V∞ = 35 m/s, which is in the first of these intervals. With this speed, 

Ineqs. (30) are satisfied. W̃i > r+ and the maximum duration of the trajectory is until tend given by 

Eq. (32), thus tend = 1,281.1 s. The final altitude reached is then 1,609.1 m. Upon considering the 

speed V∞ = 70 m/s, which is in the second interval, one finds that Ineqs. (30) are satisfied and W̃i ≤ 

r–. Eq. (31) yields tend = 1,281.3 s and the final altitude reached is 1608.5 m. 

 

6. Tables of flyability parameters 
 

For the process of automatic trajectory construction, it can be very useful to dispose of tables 

that quickly help determine what angles of inclination and what speeds correspond to flyable 

trajectories. The analysis presented in this document, allow for the straightforward construction of 

such tables and we give examples of such tables below for the Cessna 182 and the Silver Fox-like 

UAV. In these tables, all the trajectories considered start with the largest possible weight Wi = W0. 

The first line of the tables contains the value of θ, the second line contains the smallest possible 

speed Vm, the third line: the final altitude attainable at this speed. The forth line contains the largest 

possible speed VM and the fifth line, the final altitude attainable at that speed. Only trajectories 

longer than 20 m are retained. Trajectories are flyable at all the speeds between Vm and VM and 

their final altitude can be very different than those obtained with these two extreme speeds, which 

are at the edge of flyability. We recall that the service ceiling for the Cessna 182 is hc = 5,517 m 

and for the Silver Fox-like UAV, it is hc =3,700 m. For ascending trajectories, the initial altitude is 

0 and for descending trajectories, it is hc. Note that the bounds on the speeds have not been 

determined with great precision; our intention in producing these table was mainly to give an idea 

of the possible ranges of parameters for flyable trajectories.  
 

6.1 Ascending trajectories 
 

Section 4 provides the necessary information for the construction of the tables. Accordingly, an 

inclination angle is selected and then the flyability of trajectories is tested with different values of 

the speed. All inclination angles, by increments of 2.5° for the Cessna and by 5° for the Silver Fox- 

like UAV, are considered until angles, for which no flyable trajectories are reached. 
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Table 1 Flyable trajectories for the Cessna 182 

 2.5 5 7.5 

Vm 23.2 23.2 23.1 

hmax 80.6 109.6 67.2 

VM 61.0 51.0 39.4 

hmax 188.6 145.8 26.2 

 

Table 2 Flyable trajectories for the Silver Fox-like UAV 

 5 10 20 30 

Vm 15.8 15.7 15.5 14.8 

hmax 39.8 25.9 256.6 139.1 

VM 52.7 47.8 35.7 21.0 

hmax 299.0 249.8 52.5 46.2 

 

Table 3 Flyable trajectories for the Cessna 182 

 0 -2.5 -5 -7.5 -10 

Vm 30.7 30.7 30.7 64.0 89.2 105.7 

hmin hc 0 0 0 0 1668.0 

VM 63.5 80.6 42.7 95.0 108.0 119.7 

hmin Hc 5427.0 5426.6 5417.6 5440.9 5425.5 

 

Table 4 Flyable trajectories for the Silver Fox-like UAV 

 0 -2.5 -5 -10 -12.5 

Vm 19.0 19.0 35.1 54.9 61.8 

hmin hc 0 0 0 0 

VM 55.9 58.0 59.9 63.4 64.8 

hmin hc 3166.4 3410.8 3642.2 3426.58 

 

 

6.2 Non-ascending trajectories 
 

Section 5 contains the necessary information for the construction of the tables. The method is 

the same as described above for the ascending trajectories.  
 

6.3 Remarks on gliding 
 

Gliding is considered to play an important role in the landing of airplanes. It allows airplanes to 

remain longer at high altitudes and spend less time at lower altitudes. Since the motor is at 

minimum power, the noise is minimized, and fuel consumption is also minimized see, for example, 

the discussion in Cunningham (1977), Dejarnette (1984), Clarke et al. (2013). The treatment of 

gliding flight that is found in most airplane dynamics books (for example, in Section 2.6 of Stengel 

(2004), Section 3.5 of Yechout et al. (2003), Section 12.7 of Houghton and Carruthers (1982), 

Section 6.9 of Anderson (2000), Section XI§3 of Cowley and Levy (1920)) is as follows.  

 The power required is set to zero in Eq. (4) so that there would be no fuel used. Both the angle 
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of the trajectory and the speed V∞ are considered constant. It then follows that 

)sin(mgD g−=
 

Together with Eq (3), this yields 






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
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C
)tan( L
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0D
g 


 

(34) 

The maximum horizontal distance occurs when g is minimum, which is when 

0DLg eARCC =
, 

at which point 

eAR

C
2)tan( 0D

g 
 −=

 

The gliding speed is obtained from the expression for the lift L, given in Eq. (3), in which the 

value of the lift coefficient CLg is entered. This yields 

  4/1
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S

W2
V

−



+= 


 
(35) 

 

 

It should be noted that, as is evident from our discussion of descending trajectories, there are in 

fact no constant values of   and V∞ for which the power required PR is null on the whole 

trajectory. As seen in Section 8, there is only one value of W̃ at which PR is null: it is the constant 

value W̃c but W̃ never remains at this value; it necessarily changes on the trajectory, due to the 

variation of the air density as the airplane descends. 

For the Cessna 182, Eq. (34) yields g = −0.0808 radians or -4.628°. Eq. (35) yields different 

values for Vg, according to the altitude at which it is evaluated, because of the parameter ρ∞ that it 

contains: at the service ceiling, Vg = 52.4 m/s and at the sea level Vg = 20.7 m/s. Note that, as seen 

in Section 8, the bound on the lift coefficient implies the lower bound VLB1 on the speed, with VLB1 

= 30.6 m/s for the Cessna 182. The following tables show the amount of fuel used in the descent at 

g at various speeds. In these tables tf is in minutes and ∆W is in Newtons. It covers the speeds 

from VLB1 to 70 m/s. 

As Table 5 shows, the smallest amount of fuel is used at about 50 m/s. We performed further 

calculations in order to determine the speed that would require less fuel. The results obtained are 

shown in Table 6.  

Table 6 indicates that the optimal speed for fuel usage is V∞ = 45.0 m/s, at which point only 

0.87 N of fuel is required, which is about 115 ml of fuel. Note that at the speed Vg = 52.4 m/s, 

calculated at hc, the amount of fuel used is still only about 450 ml. It is therefore not a very costly 

approximation to consider this speed as the gliding speed. 

For the Silver Fox-like UAV, Eq. (34) yields g = −0.0729 radians or -4.174°. Eq. (35) then 

yields Vg = 77.1 m/s at the service ceiling and Vg = 64.1 m/s at the sea level. However, the 

maximum allowed speed on such a descending trajectory is 59.3 m/s, which is at the bottom of the  
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Table 5 Time of flight and fuel used for the Cessna 182 at various speeds 

 = −       

V∞ 30.7 40 50 52.4 60 70 

tf 37.12 28.49 22.79 21.75 18.99 16.28 

∆W 25.64 3.08 2.01 3.38 10.32 24.13 

 
Table 6 Time of flight and fuel used at speeds close to the minimal fuel speed 

 = −      

V∞ 40 45 46 47 48 

tf 25.90 25.32 24.77 24.25 23.74 

∆W 0.99 0.87 0.88 1.00 1.24 

 

Table 7 Time of flight and fuel used for the Silver Fox-like UAV at various speeds 

 = −      

V∞ 19.0 25 30 40 59.3 

tf 44.59 33.89 28.24 21.18 14.29 

∆W 0.15 0.02 0.15 0.65 3.56 

 
 

gliding speeds range. Table 7 shows the time of flight and the amount of fuel used when 

descending from hc to sea level at various speeds. 

As Table 7 indicates, descending at the supposedly optimal fuel speed of 59.3 m/s, 3.56 N of 

fuel are required. This is an appreciable amount of fuel (19%), given the fact that the Silver Fox-

like UAV has a maximum of 19.1 N of fuel. As can be seen in this table, the optimal fuel economy 

is actually obtained when descending at 25.0 m/s.  

In concluding section, we make the following remarks about gliding. 

1. There are actually no constant values of  and V∞ for which the power required PR is null 

on the whole trajectory. 

2. The formula normally used for the gliding speed is inaccurate in that the value it yields 

depends on the altitude at which it is evaluated. 

3. The actual speed at which the consumption of fuel is minimum may be far from the speeds 

given by the gliding speed formula. It can be straightforwardly be determined by the 

trajectory analysis method developed in the previous sections. 
 

 

7. Conclusions 
 

The main contribution of this study is a method for determining all the constraints on the 

trajectories that are imposed by the dynamical abilities of an airplane. This constitutes a very 

important result as it provides information that is essential for automatic airplane trajectory 

planning. Another important contribution is the presentation of an approach for extracting 

meaningful information from these constraints, which is far from trivial, given that they 

correspond to inequalities with many variables.    

General formulas are provided that express the necessary and sufficient conditions for an 

airplane to be able to follow a specified ascending or descending rectilinear trajectory at constant 
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velocity. These formulas yield the possible angles of inclination of flyable trajectories, the 

minimum and maximum speeds that the airplane can have, the fuel it requires, the time it requires 

to fly it and the maximum altitude difference between the starting and the finishing points. We 

believe that most of these formulas are original, in that they have never been published before. 

They are absolutely crucial for providing autonomy to fixed-wings drones. They also constitute, an 

important tool for the analysis of general airplane performances.  

An intriguing new concept stood out, in that the variable W̃ = W / ρ∞ plays a crucial role in all 

the formulas derived. Intriguingly, this variable corresponds to the volume of air that has the same 

weight as the airplane; we thus referred to it as the “airplane relative volume”. It could be 

worthwhile exploring the particular significance of that variable, some important properties of 

which are exhibited in Appendix B.  

In Sections 11 and 12, we have shown examples of tables of parameters for which trajectories 

are flyable, for both the Cessna 182 and a Silver Fox-like UAV. It is seen, in those tables that the 

ranges of possible speeds become smaller as the trajectories become steeper. The most remarkable 

fact however is that much less inclined descending trajectories are flyable at constant velocity than 

ascending trajectories. This is due to the fact that when the airplane is descending, the force of 

gravity tends to accelerate its fall, while it has no other mean that its drag to balance this force. 

Some original remarks are made about gliding, which is a particularly important mode of descent. 

These include the facts that rigorous gliding cannot be done at constant speed on a rectilinear 

trajectory and that the gliding speed formula is inaccurate. It is a worthwhile side benefit of the 

present work to straightforwardly allow determining the speed of minimum fuel use.  

Such tables, as those shown as examples, could easily be stored in a small memory on-board 

the airplane, from which their information could be read when the need arises. This approach 

would be appropriate for automatic trajectory planners even for airplanes endowed with only small 

microcontrollers. 
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Appendix A: Reference airplanes 
 

 

We note that there could be small differences between the values we list here and the actual 

values for a particular model of the airplanes considered. We used values that we could find on the 

internet or estimate from the values for similar airplanes. These data are quite adequate for our 

purpose that is to illustrate the calculations involved in the formulas we have derived.  

The thrust of the Cessna 182 is provided by a reciprocating engine with constant speed 

propeller; that of the Silver Fox by a reciprocating engine with a fixed pitch propeller. We recall 

that the efficiency of the propeller is a function of the advance ratio J, defined as: 

DN

V
J =

 

in which N is its number of revolution per second and D is its diameter. Thus the maximum power 

available PAmax will depend on the speed, according to the equation: 

maxmaxA P)J(P =  

The dependence of η on J for a constant speed propeller has the general features shown in Fig. 

12(a). This curve approximates that given in Cavcar (2004) by the following quadratic 

expressions: 
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 J ≤ 0.8. 

8.0)J( =
    J > 0.8. 

The dependence of η on J for a fixed pitch propeller has the general features shown in Fig. 

12(b). This curve approximates that given in the Aeronautics Learning Laboratory for Science 

Technology and Research (ALLSTAR) of the Florida International University (Lowry 2011) by 

the following quadratic expressions: 
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   J > 0.7. 

Note that the propeller efficiency of this fixed pitch propellers goes to 0 at V∞ = 66.1 m/s and 

becomes negative after that. Although a negative propeller efficiency might be desirable to slow 

down the airplane when it descends, it is not recommended to let this happens. When this happens, 

the propeller drives the engine and damage to the engine may result; see for example the 

Commercial Aviation Safety Team document (2011). We shall therefore not allow speeds larger 

than that value.  
 

A.1 Cessna 182 Skylane 
 
The parameters listed are W1 = the weight of the empty airplane, W0 = the maximum take-off 
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(a) Constant speed propeller (b) Constant pitch propeller 

Fig. 12 Typical efficiency factor η as a function of the advance ratio J 
 

Table 8 Characteristic parameters of the Cessna 182  

W1 = 7,562 N W0  = 11,121 N WF =1737 N 

b = 11.02 m S = 16.1653 m2 e = 0.75 

CLmax = 2.10 CD0 = 0.029 nmax = 3.8, nmin = -1.52 

PPmax = 171.511 kW RPM = 2,600  

Const. speed propeller Diameter = 2.08 m ηmax = 0.80 

 

 

weight, WF = the maximum weight of fuel, b = the wingspan, S = the wing area, e = Oswald’s 

efficiency factor, CLmax = the maximum global lift coefficient, CD0 = the global drag coefficient at 

zero lift, nmax and nmin are respectively the maximum and minimum value of the load factor, PPmax = 

maximum breaking power at sea level, RPM = number of revolution per minute, Diameter = 

diameter of the propeller, η max = maximum value of the propeller efficiency. 

The characteristic parameters for the Cessna 182 can be found in Airliners.net (2015), Roud 

and Bruckert (2006) and McIver (2003). Some of the parameters, which were not readily available, 

were estimated from those of the very similar Cessna 172.  
 

A.2 Silver Fox-like UAV  
 

The Silver Fox UAV is presently produced by Raytheon. Some of its specifications can be 

found at Parsch (2006). The power available PA(0) for the Silver Fox is only about 370 W, which 

allows it to climb only at low angles. Meanwhile, it is common for Radio Controlled (RC) 

airplanes to climb at very steep angles (See for example Carpenter (2018)). Thus, upon taking 

advantage of motors that have been developed in this domain, a Silver Fox-like airplane could be 

endowed with much more power in order to improve considerably its maneuver envelope. One 

such motor is the Zenoah GT-80 Twin Cylinder 80cc (ZENE80T). It weighs 34 N and outputs 

4045 W at 7500 rpm. (Horizon Hobby 2017). We shall consider a Silver Fox-like UAV with such a 

motor. 
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Table 9 Characteristic parameters of the Silver Fox-Like airplane  

W1 = 100.0 N W0  = 148.0 N WF = 19.1 N 

b = 2.4 m S = 0.768 m2 e = 0.8 

CLmax = 1.26 CD0 = 0. 0251 nmax = 5.0, nmin = -2.0 

PPmax = 4.413 kW RPM = 7500 c = 7.447510-7 

Fixed pitch propeller Diameter = 0.56 m ηmax = 0.77 

hc = 3700 m   

 

 

Appendix B: On the behavior of W̃ 
 

B.1 The behavior of W̃ for non-ascending trajectories 
 

For non-ascending trajectories, θ ≤ 0 and W̃ is necessarily a monotonically decreasing function 

of time because W is monotonically decreasing and ρ∞
 is monotonically non-decreasing. Therefore, 

the maximum value of W̃ is W̃i and its minimum value is W̃f.  
 

B.2 The behavior of W̃ for ascending trajectories 
 

For ascending trajectories, θ > 0 and it is not evident whether W̃ is decreasing or increasing and 

what its maximum and minimum values are, because both the weight W and the air density ρ∞ are 

monotonically decreasing functions of time. Since W̃ is continuous and differentiable, it reaches its 

maximum and minimum values at the two ends of the trajectory or, possibly at some intermediate 

critical points, where its derivative is null.  

We shall hereafter prove that there is no such intermediate critical point at which W̃ is 

maximum and we shall also show that it is possible, for certain trajectories, for W̃ to have a local 

minimum at some intermediate point and that there would then be only one such intermediate 

minimum. 

In order to determine if critical points exist, we obtain an equation for W̃′(t). Given Eq. (14) and 

the fact that 
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B.3 Analysis of Q̅ 

 

If there is an interval of time ]b,a[I =
 , in which 0 , then Q̅ is obviously negative in 
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that interval, because all of its terms are negative and W̃
 
is therefore monotonically decreasing in 


I . Its maximum value is then W̃(a) and its minimum value is W̃(b). 

 is monotonically decreasing with t since T(h) decreases with t. Indeed,  

0
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Since  is decreasing, if the trajectory lasts long enough,  will become null at t = b, with 
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and then become negative. 

As a function of W̃, Q̅ corresponds to a downward concave parabola, with discriminant 

 42 −=
 

(40) 

Obviously, at the instant t = b, at which 0= , the discriminant is: 0 . Then, because of its 

continuity,   will remain negative during a certain interval of time after b. We denote this 

interval in which 0  and 0  by ]c,b[I =
 . In this interval, Q̅ still has no real roots 

and is therefore negative. Since W̃′(t) is negative, W̃(t) is monotonically decreasing and its 

maximum value in the interval I  is its value at t = b and its minimum value is its value at t = c. 

In the interval I ,   is a monotonically increasing function of t because both   and '

are negative, while α and δ are independent of t.   that started negative at t = b, will increase 

and reach the value 0 when 
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If the rectilinear trajectory is long enough that it goes through this altitude, this occurs at the 

instant tΔ: 
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after this instant   becomes positive.  
 

B.4 Behavior of W̃ when  > 0 
 

Let us then consider the situation in which 0 . Q̅ has then the two real roots 
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 


= 2
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(43) 

It is straightforward to show that W̃− and W̃+ are positive and are respectively monotonically 

decreasing and monotonically increasing functions of time. W̃′ is positive when W̃(t) is in the 

interval between these two roots: I2(t) = (W̃− (t), W̃+(t)) and it is negative in the two intervals 

outside of the roots: I1(t) = {W̃(t) < W̃− (t)} and I3(t) = {W̃(t) > W̃+ (t)}.   

We shall demonstrate the fundamental fact that if at some time t1, W̃(t1) is in the interval I2(t1), 

then at all later times t2, W̃(t2) is in the interval I2(t2). This is shown in the following two theorems. 

Theorem 1: If W̃ is in the region I2(t1) at some time t1, there exists no later time t2 at which it 

will be in the region I3(t2). 

Proof: Consider the function F: F(t) = W̃(t) − W̃+(t). Suppose that the contrary of the 

proposition of the theorem is true, that is, F(t1) < 0 and there exists a later time t2 at which F(t2) > 

0. The continuity of F implies that there exists at least one instant τ, between t1 and t2 at which F(τ) 

= 0. Without loss of generality, τ can be taken to be the last instant at which F is null. The mean 

value theorem applied to W̃ in the interval [τ, t2] then says that there exists an instant tc such that τ 

<tc <t2 at which 
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Note that the right-hand side of Eq. (44) would be positive when W̃(t2) > W̃+(t2) and W̃(τ) > 

W̃+(τ) so that 
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because W̃+ is monotonically increasing and t2 > τ so that W̃+(t2) > W̃+(τ). However, since tc > τ and 

τ is the last zero of F, F(tc) > 0 so that W̃′(tc) < 0. There is therefore a contradiction in Eq. (44) 

which implies that the proposition of the theorem cannot be false. 

Theorem 2: If W̃ is in the region I2(t1) at some time t1, there exists no time t2 at which it will be 

in the region I1(t2). 

Proof: Let us define the function F: F(t) = W̃(t)− W̃-(t). If at time t, W̃(t) I2(t), then F(t) > 0, 

by the definition of the interval I2. Furthermore, F′(t) = W̃′(t)− W̃′-(t) > 0 since W̃′(t) > 0 and W̃′-(t) 

< 0. The fact that F is monotonically increasing implies that, if t2 > t1, F(t2) > 0 when F(t1) > 0. 

Therefore W̃ always remains in I2. 

 

B.5 The maximum and minimum values of W̃ 
 

The above two theorems can be used to determine the maximum and the minimum values of W̃ 

as follows. Let t2 > t1. 

Case 1: W̃(t1) I1(t1) and W̃(t2) I1(t2)  

There is then, no instant of time tc between t1 and t2, at which W̃(tc) is in I2(tc) since otherwise W̃ 

would have stayed in I2 at all times after tc, contrary to the hypothesis. Since W(t) remained in I1(t) 

577



 

 

 

 

 

 

Gilles Labonté 

  
(a) Cessna 182 (b) Silver Fox-like UAV 

Fig. 13 Graph of sin(θ) below which Q̅(W̃i) becomes negative, in terms of V∞ 

 

 

∀t [t1, t2], it was monotonically decreasing  t. Its maximum value is then its initial value in I1 

and its minimum value is W̃f. 

Case 2: W̃(t1)  I1(t1) and W̃(t2)  I2(t2)  

Since W̃′(t1) < 0 and W̃′(t2) > 0 while W̃′ is a continuous function of t, there is an instant of time 

t0 between t1 and t2 at which W̃(t0) = W̃-(t0) i.e. W̃′(t0) = 0 and there is only one such instant of time 

since once W̃ has entered the region I2, it cannot thereafter leave that region. In that case W̃ has a 

single local minimum at W̃-(t0), at which point its slope goes from negative to zero to positive. The 

minimum value of W̃ is then W̃(t0) and its maximum value is either the initial value it had in I1 or 

W̃f. The instant of time t0 can be determined by finding the instant at which the function F: F(t) = 

W̃(t) – W̃-(t) becomes null. 

Case 3: W̃(t1)  I2(t1)  

In that case, W̃(t2)  I2(t2)  t2 > t1. W̃ is monotonically increasing  t therefore its minimum 

value is its initial value in I2 and its maximum value is W̃f. 

Case 4: W̃(t1)  I3(t1) and W̃(t2)  I2(t2)  

The situation is similar to that described in Case 2, with W̃-(t0) replaced by W̃+(t0). W̃ has a 

single local minimum at W̃+(t0). The minimum value of W̃ is then W̃(t0) and its maximum value is 

either its initial value in I3 or W̃f. The instant t0 can be determined by finding the zero of the 

function F: F(t) = W̃(t)− W̃+(t). 

Case 5: W̃(t1)  I3(t1) and W̃(t2)  I3(t2)  

The situation is similar to that described in Case 1. W̃ is monotonically decreasing t. Its 

maximum value is its initial value in I3 and its minimum value is W̃f. 

 
B.6 Negativity of Q̅(W̃i) 
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The discussion of Section B.5 indicates that the behavior of W̃(t) can be inferred from the 

domain in which resides W̃(ti). We shall not prove that W̃(ti) is always in the domain I2(ti), except 

when the angle θ is very small and we will obtain an expression for these angles. This implies that 

for all inclinations, except for these very small angles, W̃ is an increasing function of t. 

Consider Q̅ evaluated at t = ti, in which cos2(θ) is replaced by [l − sin2(θ)]; the condition Q̅(Wi) 

≤ 0 can then be written as follows: 
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(45) 

The left-hand side of Ineq. (45) is a quadratic expression in sin(θ), which corresponds to an 

upward concave parabola. Its discriminant is positive, it has two real roots, the smallest of which is 

negative since the intercept of the parabola on the ordinate is negative. Thus, Ineq. (45) is satisfied 

if and only if sin(θ) is smaller than the largest root, that is 
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(46) 

Fig. 13 shows the curve of sin(θ) as a function of V∞, below which Q̅(W̃i) becomes negative, for 

the Cessna 182 and the Silver Fox-like UAV. The largest angle at which Q̅(W̃i) can be negative is 

seen to be 0.8° for the Cessna 182 and 2.3° for the Silver Fox-like UAV. For all trajectories more 

inclined than these angles, W̃ will be a monotonically increasing function of t. 
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