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Abstract. One-dimensional (1D) models of incompressible flows, can be of interest for many applica-
tions in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant
pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of in-
compressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain
of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the
framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure
fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which
are functions of the 1D computational domain coordinate. As a consequence, the governing equations
can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation or-
der. Several numerical examples are considered for validating this novel methodology, including simple
Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-
conventional computational domains. The attention is mainly focused on the use of hierarchicalMcLaurin
polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the
pipe section. The preliminary results show the great advantages in terms of computational costs of the
proposed method. Furthermore, they provide enough confidence for future extensions to more complex
fluid-dynamics problems and fluid-structure interaction analysis.
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1. Introduction

One-dimensional models in fluid-dynamics have attracted the interest of many researchers work-
ing in fluid-dynamics modelling, although the fundamental 3D nature of the phenomena considered.
Many engineering applications, as a matter of fact, have a characteristic dimension which makes the
problem as one-dimensional; for example, a river bed as well as a vessel represent a predominant
direction for a river or for a blood flow, as suggested by Quarteroni et al. (2009) and Vreugden-
hil (1998). Considering the computational hemodynamics as reference application, probably the first
one-dimensional model belongs to Euler (1775), who derived the partial differential equations (PDEs)
for mass and momentum conservations. From the mathematical point of view, this theory was later
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formalized by the Navier-Stokes set of equations that still represents a fundamental basis for flu-
ids applications. More recently, the circulatory system was largely investigated by Fung in (Fung
(1997)).

The simplification of a flow model from 3D to 1D does not represent an easy challenge, and
probably, it may involve strong simplifications due to the presence of local phenomena related to
turbulence, boundary conditions and other features. However, one-dimensional models of flows can
take some advantages in terms of comprehension of complex networks, and in terms of computational
costs. For this purpose, a coupling between FEM and spectral methods has been proposed by Perotto
et al. (2017), whereas Formaggia et al. (2001) derived a 1D model of incompressible fluid by inte-
grating the Navier-Stokes equations over each section normal to the longitudinal direction. On the
other hand, a combination of isogeometric analyses with reduced order modeling techniques based
on proper orthogonal decomposition (POD) was presented by Salmoiraghi et al. (2016). Similarly,
Smith et al. (2002) developed a finite difference model of blood flow by integrating the axial velocity
of the 3D equations, whereas Sherewin et al. (2003), carried out 1D analyses of a vascular network
by using a spectral/hp element spatial discretization. Formaggia et al. (2003) proposed a family of
1D nonlinear systems for blood pulsing propagation in compliant arteries. Another branch of inves-
tigation is linked to the real-time solutions and active control of the PDEs in the case of complex
fluids. The employment of CFD reduced models in such context has been analyzed by Ravindran
et al. (2000) and Quarteroni and Rozza (2006).The one-dimensional approach is enhanced by its ca-
pability to be coupled with more refined models (i.e., 2D and 3D) in some delimited points of the
domain, as proposed by Perotto et al. (2009) and by Formaggia et al. (2001).

The presence of a predominant direction allows the construction of a 1D finite element model
along the pipe longitudinal axis; the unknown field is then approximated through the transversal
cross-section by means of interpolation functions. This idea was exploited, initially, in structural
mechanics by Carrera and Giunta (2010) by introducing Taylor (TE) polynomials as interpolation
function. Subsequently, Lagrange (LE) and Legendre (HLE) functions were introduced, see Carrera
and Petrolo (2012) and Pagani et al. (2016). The Carrera Unified Formulation (CUF), as presented in
such works, allows to describe the unknown field as an arbitrary expansion of the generalized vari-
ables; in this way, the governing equations can be written in terms of fundamental nuclei (Carrera et
al. (2014)), that are invariants of the approximation theory adopted. One-dimensional CUF capabili-
ties were employed in many other areas of interest: composite beams, Giunta et al. (2013), aerospace
and civil engineering structures, Carrera et al. (2012), Carrera and Pagani (2014), rotordynamics, Fil-
ippi and Carrera (2016) and multi-field analysis, Miglioretti and Carrera (2015), among the others.
In recent works, CUF was extended to variable kinematics problems (Carrera and Zappino (2017)),
in which a coupling between 3D and 1D models is exploited without affecting the formulation of the
problem.

Preliminary results about the utilization of 1D TE CUF models for fluid-dynamics have been
discussed by Varello (2013) and Pagani (2015). In the present work, one-dimensional flow models
for incompressible and highly viscous fluids have been implemented employing the LE through the
cross-section of the pipes. In this framework, it was possible an assessment of different models for the
analysis of the flow in circular and non-circular conducts. The present paper is organized as follows:
(1) first, CUF models for fluid-dynamics are presented; (2) then some numerical results are discussed
and analyzed and (3) finally the key findings are drawn.
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Fig. 1 Computational domain Ω

2. Stokes equations and Galerkin approximation

The domain, considered fixed, is assumed in a Cartesian coordinate system such as the one de-
picted in Fig. 1. Ω is usually referred to as computational domain or control volume. It is bounded,
and its bounding surface is denoted by ∂Ω, whereas Γ is used to refer to a generic surface in the
domain. The outwardly oriented unit vector normal to the boundary ∂Ω is indicated with n.

Let’s consider the Navier-Stokes set of equations. In the complete form, they comprehend the
conservation of mass, i.e. continuity equation, the conservation of linear momentum and the con-
servation of energy. These equations are based on the assumption that the fluid is a continuum not
made of discrete particles, and the solution is not straightforward due to the presence of the non-linear
convective term. However, there are some cases in which it is possible to neglect this contribute as
in the case we are dealing with. Let the Reynolds number Re to be defined as follows

Re =
|U| D
ν

(1)

where D is a dimension representative of the domain Ω, U is the representative velocity and ν is the
kinematic viscosity in [m2/s]. Generally, in the case of highly viscous fluids, the Reynolds number
can be small (Re ≪ 1) and the contribution of the non-linear convective term can be neglected. In
these cases, the Navier-Stokes set of equations for incompressible flow can be reduced to the so-called
Stokes equations, which hold 

− ν∆u + ∇p = f in Ω

∇ · u = 0 in Ω

u = gD on ΓD

ν
∂u
∂n

− p n = tN on ΓN

(2)

where the first equation represents the momentum conservation while the second is the continuity
equation. u represents the velocity in [m/s], p is the pressure in [m2/s2] and f is the vector of body
forces acting in Ω. The last two equations represent the boundary conditions applied to the system;
in particular, the first one describes a general non-homogeneous Dirichlet boundary condition at the
inlet cross section while the second represents the Neumann boundary condition applied at the outlet
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cross-section, see Fig. 1. It is remarked that, since we are taking into account a steady flow, all the
derivatives in time are neglected.

The weak form of Stokes equations is formally obtained by taking the scalar product of the mo-
mentum equations with a vector function v (test function) belonging to a suitable functional space V
(test function space), integrating over the computational domain Ω and applying the Green integra-
tion formula. Similarly, the continuity equation is multiplied by a scalar test function q belonging to
a suitable test functional space Q and integrated over the computational domain Ω. The weak form
of the momentum conservation for the Stokes problem, thus, read as follows∫

Ω

[
− ν∆u · v + ∇p · v

]
dΩ =

∫
Ω
f · v dΩ (3)

By using the Green formula for the Laplacian operator and for the divergence operator and con-
sidering ν constant for the fluid considered, Eq. (3) becomes∫

Ω
ν∇u :∇v dΩ −

∫
Ω
p∇ · v dΩ =

∫
∂Ω

(
ν
∂u
∂n

− p n
)
· v dΓ +

∫
Ω
f · v dΩ (4)

∀ v ∈ V . The term∇u :∇v in Eq. (4) is

∇u :∇v = tr
(
∇uT ∇v

)
(5)

where the symbol tr stands for the trace of a square matrix. The mass conservation of the Stokes
equation (second expression in Eq. (2)) is

−
∫
Ω
q∇ · u dΩ = 0 (6)

∀ q ∈ Q. It should be noted that the negative sign in Eq. (6) has been included only for the sake of
convenience.

2.1 Boundary conditions

In the case of mixed Dirichlet−Neumann homogeneous boundary conditions, Stokes problem can
be significantly simplified. In fact, the integral term on the boundary ∂Ω in Eq. (4) can be expressed as
a summation of two integrals over ΓD and ΓN . On the other hand, the test function space V is chosen
in such a way that the test functions v vanish over ΓD. It is therefore straightforward to demonstrate
that, in the case of homogeneous boundary conditions,∫

∂Ω

(
ν
∂u
∂n

− pn
)
· v dΓ = 0 (7)

Hence, theweak form of the Stokes problemwithmixedDirichlet−Neumann homogeneous bound-
ary conditions in Eq. (2) is

Find u ∈ V =
[
H1
ΓD

(Ω)
]3

, p ∈ Q = L2 (Ω) such that
∫
Ω
ν∇u :∇v dΩ −

∫
Ω
p∇ · v dΩ =

∫
Ω
f · v dΩ ∀ v ∈ V

−
∫
Ω
q∇ · u dΩ = 0 ∀ q ∈ Q

(8)
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where L2(Ω) is the space of square-integrable functions on Ω ⊂ R and H3 is the Sobolev space
formed by the totality of functionsL2(Ω) such that all their derivatives up to order 3 belong toL2(Ω).

2.2 Galerkin approximation

The Galerkin approximation of the Stokes problem with homogeneous boundary conditions as in
Eq. (8) has the following form

Find uh ∈ Vh, ph ∈ Qh such that
∫
Ω
ν∇uh :∇vh dΩ −

∫
Ω
ph∇ · vh dΩ =

∫
Ω
f · vh dΩ ∀ vh ∈ Vh

−
∫
Ω
qh∇ · uh dΩ = 0 ∀ qh ∈ Qh

(9)

The terms uh and ph in Eqs. 9 are the discrete solutions of the Stokes problem in weak form
(Eq. (8)). Let the bilinear forms a : V × V → R and b : V ×Q → R to be defined as follows

a (u, v) =

∫
Ω
ν∇u :∇v dΩ (10)

b (u, q) = −
∫
Ω
q∇ · u dΩ (11)

With this notation, the Galerkin approximation of the Stokes equation reads

Find uh ∈ Vh, ph ∈ Qh such that{
a (uh, vh) + b (vh, ph) = (f, vh) ∀ vh ∈ Vh

b (uh, qh) = 0 ∀ qh ∈ Qh

(12)

where Vh ⊂ V and Qh ⊂ Q represent two families of finite dimensional subspaces depending on a
real positive discretization parameter h.

3. One-dimensional CUF models for Stokes flow

Several types of flows in nature can be considered as mono-dimensional, and then can be ap-
proximated via 1D models. Nevertheless, simplified models are not able to describe higher-order
phenomena and refined models may be necessary. The one-dimensional Carrera Unified Formu-
lation (CUF) is here used along with FEM to approximate the Galerkin formulation of the Stokes
equations.

According to CUF, the velocity field uh and the pressure field ph are expressed, in a unified
manner, as a generic expansion of the generalized unknowns through arbitrary functions of the cross-
section domain coordinates

uh(x, y, z) = FU
τ (x, z)uτ (y), τ = 1, 2, · · · ,MU (13)

ph(x, y, z) = FP
m(x, z)pm(y), m = 1, 2, · · · ,MP (14)
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where uτ (y) is the vector of velocity components and pm(y) is the scalar pressure, function of the
pipe axis y. According to CUF, τ andm indicate summations. FU

τ orFP
m correspond to the expanding

functions on the cross-section Γ, which is defined in the Cartesian plane xz, and MU and MP are
the number of terms in the expansion, for velocity and pressure respectively. These terms are strictly
connected with the expansion order adopted in the description of the velocity and pressure fields,
and, indeed, with the accuracy of the model. A brief introduction of the cross-sectional functions that
have been adopted in the past few years in the framework of the CUF is presented in the following
sections.

3.1 Taylor expansions

Taylor expansion models (TE) employ hierarchical sets of 2D polynomials from Maclaurin series
of the type xizj for the definition of Fτ (x, z). In this work the polynomial approximation order
for velocity and pressure are denoted to as NU and NP , respectively. For instance, a second order
model, for the approximation of the velocity field (NU=2), makes use of constant, linear and quadratic
expansion terms

ux(x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y) + xz ux5(y) + z2 ux6(y)

uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)

uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(15)

where ux1 , ux2 · · · , uz6 are the primary variables. The same methodology is valid for the expansion
of the scalar pressure. In this context, it is possible to increase the polynomial order with ease by
adding higher-order terms to the unknown, enhancing the accuracy of the approximation. TE models
have been extensively studied in many works, see for example Carrera et al. (2014), Giunta et al.
(2013).

3.2 Lagrange expansions

Lagrange expansion models (LE) are based on the use of Lagrange-type polynomials as generic
expansions on the pipe cross-section. The transversal physical surface is subdivided into a number of
local expansion sub-domains, whose polynomial degree depends on the type of Lagrange expansion
employed. Three-node linear L3, four-node bilinear L4, nine-node quadratic L9, and sixteen-node cu-
bic L16 polynomials have been employed in the framework of CUF. As an example, the L9 quadratic
model holds the following approximation of the velocity field

ux(x, y, z) = F1 ux1(y) + F2 ux2(y) + F3 ux3(y) + · · ·+ F9 ux9(y)

uy(x, y, z) = F1 uy1(y) + F2 uy2(y) + F3 uy3(y) + · · ·+ F9 uy9(y)

uz(x, y, z) = F1 uz1(y) + F2 uz2(y) + F3 uz3(y) + · · ·+ F9 uz9(y)

(16)

Themain feature of LEmodels is the possibility to make use of local expansions of pure unknowns
variables, being these arbitrarily placed over the cross-section surface. In this case, F1, · · · , F9 are
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the following quadratic Lagrange polynomials

Fτ = 1
4(r

2 + r rτ )(s
2 + s sτ ), τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s

2 + s sτ )(1− r2) + 1
2r

2
τ (r

2 + r rτ )(1− s2), τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2), τ = 9

(17)

where r and s vary above the cross-sectional natural plane between−1 and+1, and rτ and sτ repre-
sent the locations of the roots of the nine-node Lagrange polynomial set. According to LE modelling,
higher-order theories can be opportunely formulated by increasing the polynomial order (e.g., cubic
L16) or by using a combination of polynomial sets on the conduit cross-section to have a piece-wise
refined velocity (or pressure) field (see Carrera and Petrolo (2012)).

4. Finite element formulation

The main advantage of CUF is that it allows to write the governing equations in a unified manner.
The class of expanding functions (e.g., TE, LE) and the polynomial order of the theory become arbi-
trary inputs of the model. In the case of FE approximation of the pipe axis, the generalized velocities
uτ (y) and pressures pm (y) are described as a function of the unknown nodal vectors, u τi and pmt

, and the 1D shape functions, Ni and Nt , as follows

uτ (y) = NU
i (y) u τi, i = 1, . . . , pU + 1 (18)

pm (y) = NP
t (y) pmt, i = 1, . . . , pP + 1 (19)

where i and t stand for summation. pU and pP represent the order of the FEM shape functions
for velocity and pressure, respectively. The shape functions NU

i and NP
t can be arbitrary and, in

general, different; in this work the classic Lagrangian 1D shape functions are considered, in partic-
ular, two-node linear (B2), three-node quadratic (B3) and four-nodes cubic (B4) are employed, (see
Zienkiewicz et al. (1977)).

Combining the FE approximation in Eqs. (18) and (19) with CUF (Eqs. (14)) the final expressions
describing the unknown fields are

uh (x, y, z) = FU
τ (x, z)NU

i (y) u τi, τ = 1, . . . , MU i = 1, . . . , pU + 1 (20)

ph (x, y, z) = FP
m (x, z)NP

t (y) pmt, m = 1, . . . , MP t = 1, . . . , pP + 1 (21)

4.1 CFD fundamental nuclei

According to 1DCUF, the generic discrete test functions vh ∈ Vh and qh ∈ Qh are approximated in
a manner equivalent to Eqs. (20) and (21). It is sufficient, therefore, that the Galerkin approximation
in Eq. ( 9) is verified for each function of the basis of Vh and Qh, because all the functions in the
spaces Vh and Qh are a linear combination of the basis functions (see Quarteroni (2009), Brezzi
(1974)). Hence, the solution of the Galerkin approximation in the framework of CUF comes from



370 A. Varello, A. Pagani, D.Guarnera and E. Carrera

Node of L4 element
for pressure discretization

Node of L9 element
for velocity discretization

Axial mesh for Pressure 
and Velocity

Fig. 2 CUF LE model discretizations of pressure and velocity fields

the following system of equations

Find uh ∈ Vh, ph ∈ Qh such that{
a (uh, φτie) + b (φτie, ph) = (f, φτie) ∀ τ, ∀ i, ∀ e

b (uh, ϕmt) = 0 ∀m, ∀ t

(22)

with τ = 1, . . . , MU , i = 1, . . . , pU + 1, e = 1, . . . , 3, m = 1, . . . , MP , t = 1, . . . , pP + 1. The
index e refers to the three components of the velocity field, and

φτie (x, y, z) =


δ1e F

U
τ (x, z)NU

i (y)

δ2e F
U
τ (x, z)NU

i (y)

δ3e F
U
τ (x, z)NU

i (y)

 (23)

are the bases of the space Vh due to the 1D CUF approximation and δke = 1 if e = k, 0 otherwise.
Similarly,

ϕmt (x, y, z) = FP
m (x, z)NP

t (y) (24)
For the sake of clarity, indices s (instead of τ ) and j (instead of i) are introduced into Eq. (22)

for the CUF approximation of the discrete solution uh (see Eq. (20)). After extensive mathematical
manipulations (see Varello (2013)), Eq. (22) becomes the following system of algebraic equations Aτ sij qsj + Bτmit T pmt = Fτi ∀ τ, ∀ i

Bmstj qsj = 0 ∀m, ∀ t
(25)

where Aτ sij is the fundamental nucleus related to the bilinear form a (uh, φτie) of the 1D CUF
model

Aτ sij =

[
ν

∫
L
NU

i NU
j dy

∫
ΓS

FU
τ,x F

U
s,x dΓ + ν

∫
L
NU

i,y N
U
j,y dy

∫
ΓS

FU
τ FU

s dΓ +

ν

∫
L
NU

i NU
j dy

∫
ΓS

FU
τ,z F

U
s,z dΓ

]
I

(26)
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Fig. 3 Procedure to build the finite element matrices and vectors expanding the fundamental nuclei. Scheme
for momentum conservation equation

Bτmit T is the fundamental nucleus related to the bilinear form b (φτie, ph)

Bτmit T =



−
∫
L
NU

i NP
t dy

∫
ΓS

FU
τ,x F

P
m dΓ

−
∫
L
NU

i,y N
P
t dy

∫
ΓS

FU
τ FP

m dΓ

−
∫
L
NU

i NP
t dy

∫
ΓS

FU
τ,z F

P
m dΓ


(27)

Bmstj is the fundamental nucleus corrisponding to the bilinear form b (uh, ϕmt)

Bmstj =



−
∫
L
NP

t NU
j dy

∫
ΓS

FP
m FU

s,x dΓ

−
∫
L
NP

t NU
j,y dy

∫
ΓS

FP
m FU

s dΓ

−
∫
L
NP

t NU
j dy

∫
ΓS

FP
m FU

s,z dΓ



T

(28)

and Fτi is the fundamental nucleus related to the term (f, φτie).

Fτi =

∫
Ω
FU
τ NU

i f dΩ (29)
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A B
T

B 0

S

q

p

F

0

q* F*

Fig. 4 Condensed problem in FE scheme

In Eq. (26), I is the 3× 3 identity matrix.
Like in other applications of CUF, the mathematical expressions of the nuclei are formally in-

dependent of the theory orders (NU and NP ) and on the FEM shape functions (pU and pP ). These
nuclei have to be expanded against the indices τ , s,m, i, j, and t. For further details on the expansions
of the fundamental nuclei, interested readers are referred to Carrera et al. (2014), where mechanical
problems are mainly addressed. This expansion leads to the construction of the elemental FE arrays
associated to the Galerkin approximation of the Stokes problem. The expansion is carried out by fol-
lowing a scheme depicted in Fig. 3. Assembling all the finite elements, the final system of equations
is formulated as {

Aq + BTp = F

Bq = 0
(30)

It is interesting to note the following relation between the nuclei of the matrices BT and B

Bmstj T = Bτmit (31)

which is formally true aside from the use of different indices.
The system of Eq. (30) can be written collecting matrices A, BT , B and a zero matrix 0 in a

single symmetrical matrix S, collecting the unknowns q and p in a single vector of unknowns q⋆, and
collecting the column vectors F and 0 in a single column vector F⋆ following the scheme in Fig. 4.

Sq⋆ = F⋆ (32)

interested readers can find more detailes about the imposition of the boundary conditions in Ref.
Varello (2013)
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5. Numerical results

The one-dimensional CUF for fluid-dynamics is assessed in this section. A number of refined
models are compared with analytical solutions, whenever possible, or with finite volume results ob-
tained with commercial software tool. The first case study consists in the evaluation of fluid parame-
ters in the case of Poiseuille flow in a cylindrical pipe. The second numerical assessment confirms the
validity of the technique in presence of different boundary conditions, whereas the third subsection
deals with the study of Stokes flow in a square-section cylindrical pipe.

The length of the pipe considered is L = 6 m and the radius is r = 1 m in the case of the circular
section. In case of square cross-section, the side is s = 2 m. All the subsequent analyses present
a homogeneous Dirichlet boundary condition on the lateral surface ΓLat

D (no-slip condition), and a
homogeneous Neumann boundary condition on the outlet section ΓOut

N . Conversely, the inlet section
ΓIn
D presents, according to each case study considered, different nonhomogeneous Dirichlet boundary

conditions. No body forces are applied to the fluid and thus f = 0 is taken into account in the Stokes
equations. The fluid has a viscosity ν equal to 10−2m2/s satisfying the condition of Re ≪ 1 for the
velocity profiles introduced afterwards. If not differently specified, CUF models are discretized with
10 1D FEM elements, which ensure convergent results.

5.1 Poiseuille flow in circular-section pipe

The first case analyzed is the Poiseuille flow in the cylindrical pipe considered. The Poiseuille
flow is the condition achieved by a flow in cylindrical pipe when the Reynolds number is very small.
For this kind of flows, the analytical solution exists and, represents a good benchmark to assess the
1D CUF theory for fluid-dynamics.

In the Poiseuille flow, the velocity u does not vary along the longitudinal axis y. In particular,
the axial velocity component uy describes a paraboloid in which the maximum value uymax occurs
at the centre of the section. To simulate this kind of flow, the following non-homogeneous Dirichlet
boundary condition is given at the inlet section ΓinD

ux = 0
uy = 10−4

(
1− x2 − z2

)
on ΓinD

uz = 0
(33)

According to the Poiseuille analytic solution Stera and Salak (1993), the paraboloidal inlet veloc-
ity profile, which is depicted in Fig. 5, should remain constant over the pipe axis. As shown in Fig. 5,
which gives the Poiseuille profiles for different 1D models and reference solution, a second-order
for velocity and a zero-order for pressure are sufficient to detect the exact solution in the case of TE.
On the contrary, in the case of LE, 5 cubic cross-section subdomains for velocity and 5 quadratic
polynomials for the pressure are necessary to find the solution with a good approximation, as re-
sumed in Table 1. The finite volume solutions are obtained by (OpenFoam OpenFOAM Foundation
(2011)) and they come from three different discretizations. Namely, the model OpenFOAMA was
constructed with 2640 finite volumes (132x20 mesh, where 132 stands for the number of volumes on
the cross-section and 20 is the discretization along the y-axis), OpenFOAMB has 13600 (340 x 40)
finite volumes, and OpenFOAMC has 108800 (1368 x 80) finite volumes. The value of pressure
decreases linearly along the pipe and does not have any dependency on the x and z coordinates. In
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Table 1 Inlet pressure andmaximum axial velocity at y=3 in terms of percentage errors versus analytical solution
for the Poiseuille flow. Comparison of OpenFOAM results with CUF results

Model ep(%) euy (%) DOFs

OpenFOAM
OpenFOAMA -0.72 -2.56 10560
OpenFOAMB -0.25 -0.97 54400
OpenFOAMC 0.21 -0.39 435520

CUF - TE
NU2, NP 0 -0.05 -0.05 389

CUF - LE
5L9U , 5L4P +1.83 -2.19 2493
5L16U , 5L9P -0.03 +0.24 5361

particular, it is important to underline that the outlet value is equal to zero, exactly as described by
the Poiseuille analytical solution, see Fig. 6. Linear to cubic shape functions (i.e., B3 and B4) were
used for the FE discretization along the y axis. The choice of the class of expansion is a key point of
the analysis due to instability; in fact, finite elements of the same polynomial degree for both velocity
and pressure are in general unstable, giving rise to typical spurious pressure modes. For the sake
of completeness, a convergence analysis is provided; in particular, an investigation on the L2 norm
of relative error was performed. The convergence was first compared between TE and LE models,
by varying the order of expansion over the section, see Fig. 7(a) . Then, as presented in Fig. 7(b),
two specific LE models were considered, and the relative error by varying the FE meshes along the
longitudinal axis was evaluated. As Fig. 7(a) suggests, in the case of Poiseuille flow in circular pipes,
the TE models are able to detect the correct solution without increasing the order of expansion, in
contrast with LE ones. Regarding Fig. 7(b), a stability problem, and a consequent increasing of the

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

u
y

x 
1

0
4

(m
/s

)

x (m)

Exact

CUF-TE NU=2, NP=0
OpenFOAMA

OpenFOAMB

OpenFOAMC

CUF-LE 5L9U, 5L4P

CUF-LE 5L16U, 5L9P

Fig. 5 Poiseuille flow velocity profile at y = 3 m, z = 0



Analysis of Stokes flows by Carrera unified formulation 375

0

5

10

15

20

25

0 1 2 3 4 5 6

px
10

6
(m

2 /s
2 )

y (m)

1D CUF - TE
1D CUF - LE

(a) Comparison between CUF-1D models (b) 3D scheme of pressure trend in circular pipe

Fig. 6 Pressure trend comparison between LE and TE models along the longitudinal axis y (a), 3D scheme of
the pressure trend of the Lagrange model 5L16U - 5L9P , results are inm2/s2 (b). Poiseuille flow

error, is evident whenever the 1D elements for FE discretization of the y axis are the same for both
the pressure and velocity.

5.2 Fourth-order and fifth-order inlet velocity profiles in circular pipes

The Poiseuille flow has been used to assess the 1D CUF models for Stokes fluid-dynamics; it is
the most simple flow in a pipe, and the condition of a constant pressure over the section is commonly
used by classical one-dimensional models for fluid-dynamics. In this section, the capabilities of the
1D CUF models are presented in the description of more complex flow. Thus, fourth-order and fifth-
order velocity profiles are hereinafter introduced at the inlet cross-section and the results from 1D
CUF models are compared with those obtained via OpenFoam. As first case, the following fourth-
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Table 2 Maximum inlet pressure and maximum axial velocity at y = 3m. Comparison of OpenFOAM results
with CUF results, fourth-order inlet velocity profile

Model p× 105(m2/s2) uy × 105(m/s) DOFs

OpenFOAM
OpenFOAMA 1.70 6.50 10560
OpenFOAMB 1.79 6.53 54400
OpenFOAMC 1.87 6.36 435520

CUF-TE
NU NP

8 7 1.86 6.66 6651
8 6 1.86 6.66 6403
6 5 1.86 6.66 4095
6 4 1.86 6.66 3909
4 3 1.79 6.66 2155
4 2 1.79 6.66 2031

CUF-LE
5L9U 5L4P 1.75 6.53 2493
5L16U 5L9P 1.82 6.67 5361
9L16U 9L9P 1.84 6.66 9045

order velocity profile is enforced at the inlet cross-section ΓinD
ux = 0

uy = 10−4
(
1− x2 − z2

)2 on ΓinD
uz = 0

(34)

Note that the flow is still axisymmetric and that the other boundary conditions remain the same as
in the previous section. According to the considerations done before, the longitudinal mesh is kept
different between velocity and pressure: 10 cubic B4 Lagrange elements for velocity and 10 quadratic
B3 for pressure are employed.

Table 2 shows the maximum value of the pressure at the inlet and the maximum value of the axial
velocity in the middle of the pipe. TE model with NU=6 and NP=4 provides convergent results,
whereas LE model needs 9 cubic elements for velocity and 9 quadratic ones for pressure. It is clear
from Table 2 that both one-dimensional models, TE and LE, can approach the finite volume solution
with a drastic reduction of degrees of freedom.

In the case of the fourth-order velocity inlet profile, uy is still axisymmetric, but, it changes along
the longitudinal axis y, as depicted in Fig. 8(a). In particular, the velocity presents a transition area in
which the profile moves from a 4th-order to a 2nd-order Poiseuille flow. The behaviour of the pres-
sure across the section is drawn in Fig. 8(b). Due to the inlet boundary condition, also the pressure
trend presents a variation along the longitudinal axis; as expected, the pressure has an axisymmetric
behaviour at the beginning of the pipe, and then tends to become constant over the section, approxi-
mately at 1/10 of the length of the cylinder.

As the fifth-order inlet velocity profile concerns, it is not axisymmetric. It means that the following
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Fig. 8 Fourth-order inlet boundary condition. The profile for axial velocity uy (a), and for pressure (b). Com-
parison of OpenFOAM results with CUF reuslts

Dirichlet non-homogeneous boundary condition was imposed on the first section of the pipe
ux = 0
uy = 10−4

(
1− x2 − z2

)(
1/4 + xz + x3

)
on ΓinD

uz = 0
(35)

The meshes along the y-axis remain unvaried, as well as the other boundary conditions. As a con-
sequence, the flow obtained through the first sections is no more axisymmetric and it is requested a
higher-order expansion, as it is possible to verify in Table 3, which gives the maximum inlet pressure
value and maximum axial velocity at mid-span. The axial velocity profiles at various cross-sections
till the mid-span (where the flow is fully developed) are depicted in Fig. 9. In this case the transition
area is longer than the previous one faced for the fourth-order profile, as drown in Fig. 10. Nonethe-
less, the behaviour of velocity uy gradually tends to the more natural condition of axial-symmetry,
due to the outlet and lateral boundary conditions.

As expected, the pressure is not constant across the sections at the beginning of the pipe; it ap-
proaches gradually the constant profile typical of Poiseuille flow. First it becomes flat, then decreases
linearly up to the outlet.

The following comments arise from these analyses:

• The different orders of velocity inlet profile represent an important assessment for the 1D CUF
theory for fluid-mechanics due to its capability to predict the evolution of complex flows also
when they are not axisymmetric.

• In the case of high-order flows, as suggested by Tables 2 and 3, appropriate accuracy of LE
would require more DOFs than comparable TE models for the considered analysis cases.

• As it is possible to verify in the Table 3, one-dimensionalmodels allow for detecting the solution
with a drastic reduction of the computational efforts, compared to finite volume solutions.
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Table 3 Maximum inlet pressure and maximum axial velocity at y = 3m. Comparison of OpenFOAM results
with CUF results, fifth-order inlet velocity profile

Model p× 106(m2/s2) uy × 105(m/s) DOFs

OpenFOAM
OpenFOAMA 7.20 2.43 10560
OpenFOAMB 8.17 2.44 54400
OpenFOAMC 9.08 2.35 435520

CUF-TE
NU NP

10 9 9.52 2.50 9823
8 7 9.48 2.50 6651
8 6 9.57 2.50 6403
6 5 9.23 2.50 4095
6 4 10.72 2.50 3909
5 4 10.80 2.50 3048

CUF-LE
9L16U 9L9P 9.19 2.50 9045
20L16U 20L9P 9.36 2.50 19818

5.3 Second-order flow in square-section pipe

The last numerical assessment of this paper aims at demonstrating the capabilities of LE CUF
models to deal with complex and unconventional computational domains with ease. In particular,
the flow through a square-section pipe have been evaluated, using LE one-dimensional models. The
flow considered keeps the viscosity of the previous cases as well as the boundary conditions on the
outlet and lateral surfaces. At the inlet section, a second-order velocity profile is enforced, the same
used for the Poiseuille flow in the cylindrical pipe.

As in other fluid-dynamics problems, velocity and pressure fields are described by different order
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Fig. 10 3D plot of axial velocity profile through the transition area in [m/s]. Fifth-order inlet boundary condi-
tion, TE model, NU = 6, NP = 5

polynomials; commonly, the pressure order is smaller than the velocity one, as shown in Fig. 11,
which gives an example of LE modelling for the case under consideration. The first analysis consists
of a comparison among schemes with different polynomial orders. Subsequently, some results about
using the same order for pressure and velocity are presented. According to Fig. 12(a), in which
the axial component of velocity uy is depicted, some aspects about the order of polynomials and
the boundary effects are relevant. In fact, the case 1L16U is not able to detect the maximum value
of 10−4 imposed, probably due to its cubic nature. At the same time, the 1L9U case can find the
maximum imposed, but does not perceive the decrease of axial velocity detected by the 4L9U model.
This question is evident in Fig. 13(a), (b), (c), where uy is drawn on yz plane. According to this
figure, the model with 4 Lagrange sub-domains is the only one presenting a decrease between inlet
and midspan sections. As seen for the velocity, the pressure response depicted in Fig. 12(b) is affected
by the boundary effects close to the inlet cross-section; nevertheless, each model presents a uniform
decay along the conduct. While the order chosen for the velocity does not affect considerably the
results, this is not true for the pressure field. For this reason, it is important to underline the necessity
of keeping the pressure order smaller than the velocity one. When this condition is not satisfied, one
can observe some stability problems concerning the pressure trend, see Fig. 14. As suggested by
this figure, the choice of the expansion order across the section (Fig. 14(b)) and, of course, along the
longitudinal axis (Fig. 14(a)), is an important parameter in fluid-dynamic analyses.

Due to this last section, we can confirm 1D CUF as an efficient and alternative tool for compu-
tational fluid-dynamics also in case of the non-circular section. This formulation allows to impose
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Velocity Field 
1x 9-nodes element

Pressure Field
1x 4-nodes element

Discretization complete:

Velocity and Pressure 

nodes

Fig. 11 Example of Lagrange elements across the section. 1xL9 for Velocity and 1xL4 for Pressure

different velocity profile with ease, and offers a simple way to manage the boundary.

6. Conclusions

In this work, CUF has been used for the analysis of incompressible, laminar and viscous fluids
in rigid pipes. In particular, some higher-order 1D models for Stokes flows have been proposed.
According to CUF, the primary variables of the flow (i.e. velocity and pressure) are expressed as
arbitrary expansion of the generalized unknowns. By using these expanding functions on the cross-
sectional plane, a unified finite element method has been developed straightforwardly. The case of
Poiseuille flow has been taken into account as numerical assessment, and then more complex flows
have been analyzed. In particular, Taylor expansion (TE) and Lagrange (LE) 1D models have been
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(a) 1L9U - 1L4P (b) 1L16U - 1L4P

(c) 4L9U - 4L4P (d) 4L9U - 4L4P - 3D Plot

Fig. 13 Axial velocity uy in square-section pipe. Comparison of three different models (a),(b),(c), values are
in [m/s]; 3D plot of uy of 4L9U4L4P model (d)
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employed for the description of the flow in both circular and square section conduct. The results ob-
tained from these 1D models have been compared with the analytical solution and with 3D numerical
approximations obtained via finite volume software OpenFoam. The analysis here performed clearly
underlines:

• LE and TE models based on CUF provide accurate results of velocity and pressure with respect
to analytical solution.

• 1Dmodels allow to obtain efficient results with lower computational costs compared with those
obtained via 3D finite volume software.

• CUF represents an alternative tool to investigate the Stokes flow also in non-circular section
cylinders.

These promising preliminary results can be considered as a first step toward more advanced ap-
plications, like complex fluids and fluid-structure interaction.
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