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Abstract.  Thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of 
functionally graded carbon nanotube-reinforced composite (FG-CNTRC) is investigated within the 
framework of Timoshenko beam theory. The material properties of FG-CNTRC are supposed to vary 
continuously in the thickness direction and are estimated through the rule of mixture and are considered to 
be temperature dependent. The governing equations and boundary conditions are derived by using 
Hamilton's principle and are solved using an efficient semi-analytical technique of the differential transform 
method (DTM). Comparison between the results of the present work and those available in literature shows 
the accuracy of this method. A parametric study is conducted to study the effects of carbon nanotube volume 
fraction, slenderness ratio, core-to-face sheet thickness ratio, and various boundary conditions on free 
vibration behavior of sandwich beams with FG-CNTRC face sheets. It is explicitly shown that the vibration 
characteristics of the curved nanosize beams are significantly influenced by the surface density effects. 
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1. Introduction 
 

The use of sandwich structures is growing very rapidly all over the world and has received 

increasing attention due to their superior characteristics. The need for high performance and low 

weight structures makes sandwich construction one of the best choices in aircrafts, space vehicles 

and transportation systems. Functionally graded materials (FGMs) are composite materials with 

inhomogeneous micromechanical structure in which the material properties change smoothly 

between two surfaces and leads to a novel structure which can withstand large mechanical loadings 

in high temperature environments (Ebrahimi and Salari 2015). Presenting novel properties, FGMs 

have also attracted intensive research interests, which were mainly focused on their static, dynamic 

and vibration characteristics of  FG structures (Ebrahimi and Rastgoo 2008a, b, c, Ebrahimi 2013, 

Ebrahimi  et al. 2008, 2009a, b, 2016a, Ebrahimi and Zia 2015, Ebrahimi and Mokhtari 2015, 

Ebrahimi et al. 2015, Ebrahimi and Salari 2015, Ebrahimi and Salari 2015, Ebrahimi and Jafari 

2016, Ebrahimi and Barati 2017a, b, Ebrahimi et al. 2017, Ebrahimi et al. 2017, Ebrahimi and Salari 

2017).  
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Also, many researches have been conducted on vibration, buckling and post-buckling analysis of 

sandwich structures with FGM face sheets (Zenkour 2005, Bhangale and Ganesan 2006, Pradhan 

and Murmu 2009, Zenkour and Sobhy 2010). Actually, material gradation will reduce maximum 

stresses and change the spatial location where such maximums arise (Rahmani and Pedram 2014). 

This provides the opportunity of fitting material variation to attain desired stresses in a structure.  

On the other hand, the thermo-mechanical effect on FG structures is studied by many researchers 

(Ebrahimi and Barati 2016, Shafiei, Ebrahimi et al. 2017a, b, c) (Ebrahimi and Salari 2015a, b, c, d, 

2016, Ebrahimi et al. 2015a, 2016c, Ebrahimi and Nasirzadeh 2015, Ebrahimi and Barati 2016a, b, c, 

d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, Ebrahimi and Hosseini 2016a, b, c). Tounsi et al. (2013) 

investigated a refined trigonometric shear deformation theory for thermoelastic FG sandwich plates.  

Carbon nanotubes (CNTs) have extraordinary mechanical properties. Due to their outstanding 

properties such as, superior mechanical, electrical, and thermal nanotubes have attracted growing 

interest and are considered to be the most promising materials for applications in nanoengineering 

(Lau and Hui 2002, Lau et al. 2004). So many applications for carbon nanotubes have been proposed 

by researchers: conductive polymers; energy conversion devices and energy storage; sensors; field 

emission displays; replacing silicon in microcircuits; multilevel chips; probes for SPM (scanning 

probe microscopy). The CNT-based nanocomposite devices may withstand high temperature during 

manufacture and operation. Various studies show that the physical property of carbon nanotubes 

depends strongly on temperature, from which we believe that the elastic constants of nanotubes, such 

as Young’s modulus and shear modulus, are also temperature dependent (Fidelus et al. 2005, Bonnet 

et al. 2007). However, it is remarkably difficult to directly measure the mechanical properties of 

individual SWCNTs experimentally due to their extremely small size.  

In 1994, Ajayan et al. (1994) studied the polymer composites reinforced by aligned CNT arrays. 

Since then, many researchers inspected the material properties of CNTRCs (Odegard et al. 2003, 

Thostenson and Chou 2003, Griebel and Hamaekers 2004, Zhu et al. 2007, Loghman et al. 2015). 

Xu et al. (2006) examined the thermal behavior of SWCNT polymer–matrix composites. Han and 

Elliott (2007) used molecular dynamics, to simulate the elastic properties of CNTRCs. These studies 

proved that adding a small amount of carbon nanotube can significantly improve the mechanical, 

electrical, and thermal properties of polymeric composites. Studies on CNTRCs have also revealed 

that distributing CNTs in a uniform way as the reinforcements in the matrix can give only 

intermediate improvement of the mechanical characteristics (Qian et al. 2000; Seidel and Lagoudas 

2006). This is principally because of the weak interfacial bonding strength between the CNTs and 

matrix. Shen (2009) extended the idea of FGMs to CNTRCs and founded out that a graded 

distribution of CNTs in the matrix can lead to an interfacial bonding strength. Sofiyev et al. (2015) 

studied the influences of shear stresses and rotary inertia on the vibration of FG coated sandwich 

cylindrical shells resting on the Pasternak elastic foundation. Ke et al. (2010) examined the effect of 

FG-CNT volume fraction on the nonlinear vibration and dynamic stability of composite beams. 

Wang and Shen (2011) studied the vibration of CNTRC plates in thermal environments. They 

mentioned that the CNTRC plates with symmetrical distribution of CNTs have lower natural 

frequencies, but lower linear to nonlinear frequency ratios than ones with unsymmetrical or uniform 

distribution of CNTs. Wang and Shen (2012) studied the nonlinear bending and vibration of 

sandwich plates with CNTRC face sheets in sandwich structures with FG-CNTRC face sheets. The 

effects of nanotube volume fraction, foundation stiffness, core-to-facing thickness ratio, temperature 

change, and in-plane boundary conditions on the nonlinear vibration and bending behaviors of 

sandwich plates with CNTRC facings sheets were considered. Yang et al. (2015) examined the 

dynamic buckling FG nanocomposite beams reinforced by CNT as a core and integrated with two 
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surface bonded piezoelectric layers. Wu et al. (2015) investigated free vibration and buckling 

behavior of sandwich beams reinforced with FG-CNTRCs face sheets based on Timoshenko beam 

theory but they considered neither the temperature dependency of the material properties nor the 

thermal environment effects on the structure. 

There was no previous work done on the thermo-mechanical vibration of sandwich beams with a 

stiff core and FG-CNTRC face sheets reinforced by SWCNTs. These researches are investigated for 

the first time within the framework of Timoshenko beam theory. The material characteristic of 

carbon nanotubes is supposed to change in the thickness direction in a FG form. DTM is employed 

to solve the differential governing equations of sandwich beams for the first time. A parametric study 

is conducted to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-

face sheet thickness ratio, different thermal environment and various boundary conditions on the free 

vibration characteristics of FG-CNTRC sandwich beams.  

 

 

2. CNTRC sandwich beam  
 

Consider a symmetric sandwich beam with the length of L, width b and total thickness h 

subjected to an axial load caused by thermal expansion. As shown in Fig. 1 the sandwich beam is 

made of two CNTRC face sheets with thickness of fh and a stiff core layer of thickness ch . Three 

different types of support conditions namely, simply supported-simply supported (S-S), clamped-

clamped (C-C) and clamped-simply supported (C-S) are considered individually. Moreover, two 

distributions of CNTs, i.e., V- graded and uniform distributions, are considered. 

 

 

 
Fig. 1 A simple scheme of Sandwich beam with CNTRC face sheets 

 

 

The material properties can be determined from the rule of mixture as 

11 1 11

cn

cn m mE V E V E= +  (1a) 

*

2

22 22 22

cn m

cn m

V V

E E E


= +  (1b) 
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*

3

12 12

cn m

cn

m

V V

G G G


= +  (1c) 

where 11

cnE  , 22

cnE  and 12

cnG  are Young’s moduli and shear modulus of CNTs, respectively. mE  

and mG  are the properties for the matrix. i  ( 1,2,3i =  ) is CNT efficiency parameter 

accounting for the scale-dependent material properties and can be obtained by matching the elastic 

modulus of CNTRCs achieved from molecule dynamic simulation and those which are extracted 

from rule of mixture. mV  and cnV  are the volume fraction of matrix and the CNTs, respectively. 

The relation between them can be expressed as 

1cn mV V+ =  (2) 

It is supposed that for the FG-CNTRC face sheets cnV  changes linearly across the thickness 

the top face sheet as follows 

( ) *2 c

cn cn

f

z h
V V

h

− +
=  (3a) 

and also for the bottom face sheet 

( ) *2 c

cn cn

f

z h
V V

h

−
=  (3b) 

in which 
*V can be described as 

* cn
cn

cn cn
cn cn

m m

w
V

w w
 

 

=

+ −

 
(4) 

where cnw is the mass fraction of CNT, and m and cn are the densities of matrix and CNT, 

respectively. There is a simple relation for 
*

cnV  in UD-CNTRCs which can be given by: 

*

cn cnV V= , so it's obvious that the mass fraction for UD-CNTRC and FG-CNTRC face sheets are 

equal. The density and Poisson’s ratio of the CNTRC face sheets can be described in order as 

cn cn m mV V  = +  (5) 

cn cn m mV V  = +  (6) 

in which vm and vcn are Poisson’s ratio of the matrix and CNT, respectively. Because FG 

structures, such as sandwich beams in this case, are used mostly in high temperature environment, 

eventually significant changes in mechanical properties of the ingredient materials are to be 

expected, it is necessary to take into account this temperature-dependency for precise prediction of 

the mechanical reaction. Thus, Young’s modulus and thermal expansion coefficient believed to be 
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functions of temperature, as to be shown in Section 3.1, so that E and  are both temperature and 

position dependent. The behavior of FG materials can be predicted under high temperature more 

precisely with considering the temperature dependency on material properties. The nonlinear 

equation of thermo-elastic material properties in function of temperature ( )T K can be expressed 

as (Shen 2004) 

1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T−

−= + + + +  (7) 

where 
0 1 1 2
, , ,P P P P

−
and 

3
P  are the temperature dependent coefficients which are presented in 

Table 1. For composite host, PMMA matrix has been chosen. Eventually there are different 

expressions to describe the temperature dependent properties of PMMA; 

( ) 645 1 0.0005 10 /m T K −= +   , ( )3.52 0.0034mE T GPa= − , in which 0T T T= +

and 0 300T K= (Yanga and Ke 2015). To predict the correct CNT properties which is dependent 

to temperature (Zhang and Shen 2006), we should estimate CNT efficiency parameters 1  and 

2  by matching the Young’s modulus E11 and E22 of CNTRCs obtained by the rule of mixture to 

those obtained from the MD simulations given by Han and Elliott (Han and Elliott 2007). It should 

be noted that only E11 should be used in beam theories. The results are shown in Table 2. 

 

 
Table 1 Temperature dependent properties of Young’s modulus and thermal expansion coefficient for
Ti-6Al-4V  

Material Properties 0
P  

1
P
−

 
1

P  
2

P  
3

P  

Ti-6Al-4V  
( )E Pa  122.56e+9 0 -4.586e-4 0 0 

1
( )K

−
 7.5788e-6 0 6.638e-4 -3.147e-6 0 

 

Table 2 Temperature dependent properties of Young’s modulus and thermal expansion coefficient for CNTs 

Temperature (oK) 11 ( )cnE TPa  22 ( )cnE TPa  12 ( )cnG TPa  
1( )cn K −

 

300 5.6466 7.0800 1.9445 3.4584 

500 5.5308 6.9348 1.9643 4.5361 

700 5.4744 6.8641 1.9644 4.6677 

 

 

3. Theoretical formulations 
 

3.1 Governing equations 
 

The displacement of an arbitrary point in the beam along the x and z directions, according to 

Timoshenko beam theory can be expressed by 

( , , ) ( , ) ( , )U x z t U x t z x t= + ,     ( , , ) ( , ),W x z t W x t=  (8) 

where ( , )U x t  and ( , )W x t are displacement elements of a point in the mid-plane, t is time 
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and  is the rotation of the beam cross-section. The linear strain-displacement relationship can be 

described as 

xx

U
z

x x




 
= +
 

,     .xz

W

x
 


= +


 (9) 

The normal stress and shear stress are expressed as 

11( )xx

U
Q z z

x x




  
= + 

  
,     55( ) ,xz

W
Q z

x
 

 
= + 

 
 (10) 

where 

11 2

( )
( )

1

E z
Q z


=

−
,     11

( )
( ) .

2(1 )

E z
Q z


=

+
 (11) 

The normal force, bending moment and transverse shear force resultants are presented as 

/2

11 11
/2

,
h

x xx
h

U
N dz A B

x x




−

 
= = +

   (12a) 

/2

11 11
/2

,
h

x xx
h

U
M zdz B D

x x




−

 
= = +

   (12b) 

/2

55
/2

,
h

x xz
h

W
Q dz A

x
   

−

 
= = + 

 
  (12c) 

where the shear correction factor is expressed by 5/ 6 = . The inertia related terms and stiffness 

components can be determined from 

/2
2

1 2 3
/2

{ , , } ( ){1, , }
h

h
I I I z z z dz

−
=  , (13a) 

/2
2

11 11 11 11
/2

{ , , } ( ){1, , }
h

h
A B D Q z z z dz

−
=  ,

/2

55 55
/2

( )
h

h
A Q z dz

−
=   (13b) 

It should be noted that, the formulas in this paper are for sandwich beams. So the integrations' 

intervals which is from / 2h−  to / 2h  would be divided in to  / 2 , / 2c f ch h h− − − ,  / 2, / 2c ch h−  

and  / 2, / 2c c fh h h+  intervals. 

The governing equations of motion of the beam, by using Hamilton's principle can be defined 

as 

2 2

1 22 2
,xN U

I I
x t t

  
= +

  
 (14a) 

2 2

12 2
,

T
xQ W W

N I
x x t

  
+ =

  
 (14b) 
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2 2

2 32 2
.x

x

M U
Q I I

x t t

  
− = +

  
 (14c) 

in which coefficient 
sK  is called the Timoshenko shear correction factor and its exact value 

depends on the material properties and cross section parameters of the beam. Here, sK for 

rectangular beams has been assumed to be 5/6. Also 
TN is the thermal resultant and can be 

described as 

( ) ( )( )
/2

0
/2

, ,
h

T

h
N E z T z T T T dz

−
= −  (15) 

where 0T  is the reference temperature.

 

For simply supported-simply supported (S-S), clamped-

clamped (C-C) and clamped-simply supported (C-S) sandwich beams with a movable end at x=L, 

the boundary conditions require 

0,U = 0,W = 0,xM =      at 0,x =  (16a) 

0,xN = 0,W = 0,xM =      at ,x L=  (16b) 

for a S-S beam, 

0,U = 0,W = 0, =      at 0,x =  (17a) 

0,xN = 0,W = 0, =      at ,x L=  (17b) 

for a C-C beam and 

0,U = 0,W = 0,xM =      at 0,x =  (18a) 

0,xN = 0,W = 0, =      at ,x L=  (18b) 

for a C-S beam. 

 

3.2 Dimensionless governing equations 
 

It is better first to clarify the following dimensionless quantities 

,
x

L
 =

( , )
( , ) ,

U W
u w

h
=

110

,
T

T N
N

A
= ( ) 31 2

1 2 3 2

10 10 10

, , , , ,
II I

I I I
I I h I h

 
=  
 

 

, = ,
L

h
 = ( ) 5511 11 11

11 55 11 11 2

110 110 110 110

, , , , , , ,
AA B D

a a b d
A A A h A h


 

=  
 

 

110

10

,
At

L I
 = 10

110

,
I

L
A

 =   

(19) 
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where 10I  and 110A  are the values of 1I  and 11A  of a homogeneous beam made from pure 

core material. Dimensionless natural frequency of the sandwich beam is expressed by . With 

respect to Eq. (18), and substituting Eq. (12) into Eq. (14), the final equations can then be 

explained in dimensionless form as 

2 2 2 2

1 211 112 2 2 2
,

u u
a b I I

 

   

   
+ = +

   
 (20a) 

2 2 2

155 2 2 2
,Tw w w

a N I



   

    
+ − = 

    
 (20b) 

2 2 2 2

2 311 11 552 2 2 2
,

u w u
b d a I I

 
 

    

     
+ − + = + 

     
 (20c) 

then the transformed boundary conditions turn into 

0,u = 0,w = 0, =      at 0, =  (21a) 

11 11 ,
u

a b


 

 
+

 
0,w = 0, =      at ,L =  (21b) 

for a S-S sandwich beam  

0,u = 0,w =
11 11 0,

u
b d



 

 
+ =

 
     at 0, =  (22a) 

11 11 ,
u

a b


 

 
+

 
0,w =

11 11 0,
u

b d


 

 
+ =

 
     at ,L =  (22b) 

for a C-C sandwich beam and 

0,u = 0,w = 0, =      at 0, =  (23a) 

11 11 ,
u

a b


 

 
+

 
0,w = 11 11 0,

u
b d



 

 
+ =

 
     at ,L =  (23b) 

for a C-S sandwich beam. 
 

 

4. Uniform temperature rise (UTR) 
 

The initial temperature of the sandwich beam is assumed to be (
0

300T K= ), which is a stress-

free state and is uniformly changed to the final temperature of T. The temperature rise is given by 

0T T T = −  (24) 

114



 

 

 

 

 

 

Vibration analysis of functionally graded carbon nanotube-reinforced composite... 

5. Solution procedure 
 

5.1 Application of differential transform method to free vibration problem 
 

Differential transform method (DTM) is a semi-analytic transformation technique based on 

Taylor series expansion equations and is a useful tool to obtain analytical solutions of differential 

equations. Certain transformations rules are applied to governing equations and the boundary 

conditions of the system in order to transform them into a set of algebraic equations in terms of the 

differential transforms of the original functions. This method constructs an analytical solution in the 

form of polynomials. It is different from the high-order Taylor series method, which requires 

symbolic computation of the necessary derivative of the data functions and is expensive for large 

orders. The Taylor series method is computationally expansive for large orders. DTM is an iterative 

procedure for obtaining analytic Taylor series solutions of differential equations; in fact, this method 

tries to find coefficients of series expansions of unknown function with using the initial data on the 

problem. Differential transformation of the nth derivative of the function y(x) and differential inverse 

transformation of Y(k) are respectively defined as (Hassan 2002) 

0 0

1
( ) ( )

!

k

k
k x

d
Y k y x

k dx



= =

 
=  

 
  (25) 

0

( ) ( )ky x X Y k


=  (26) 

in which y(x) is the original function and Y(k) is the transformed function. As a consequently of Eqs. 

(47), (48) the following relation can be obtained 

0 0

( ) ( )
!

k k

k
k x

x d
Y k y x

k dx



= =

 
=  

 
  (27) 

0

( ) ( )k

k

y x X Y k


=

=  (28) 

 

 
Table 3 Some transformation rules for one-dimensional DTM (Ju 2004) 

Original function Transformed function 

( ) ( ) ( )f x g x h x=   ( ) ( ) ( )F K G K H K=   

( ) ? )f x g x=  ( ) ( )F K G K=  

( ) ( ) ( )f x g x h x=  ( ) ( )
0

( )

K

l

F K G K l H l

=

= −  

( )
( )n

n

d g x
f x

dx
=  ( )

( )!
( )

!

k n
F K G K n

k

+
= +  

( ) nf x x=  ( ) ( )
1

0

k n
F K K n

k n


=
= − = 
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In these calculations,
1

( ) ( )k

n

y x X Y k


+

=  is small enough to be neglected, and N is 

determined by the convergence of the eigenvalues. From definitions of DTM in Eqs. (47)-(49), the 

fundamental theorems of differential transforms method can be performed which are listed in 

Table 4. While Table 4 presents the differential transformation of conventional boundary 

conditions. First, we assume the following variation for ( , )w x t  and ( , )x t  

( , ) i tw x t we =     and     ( , ) i tx t e  =  (29) 

By reducing u and substituting Eq. (51) into Eqs. (37) and (38), the equations of motions may 

be turned to 

2
2 2

255 0 12
( )xa N I w

w w
 

  


 
+ − = − 



 

 

 
 (30) 

2
2 211 11

2 3

11 1

2 2

1

1

1 552 2

wb b

a
d a I I

a

 
   

 
 



   
+ − + − 


=

 
−


 (31) 

According to the basic transformation operations presented in Table 3, the transformed form of 

the governing Eqs. (52) and (53) around 
0 0x =  may be obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2

55 11 2 2 1 1 1 2 2 ( )xa k k W k k k N k k W k I W k  + + + + + + − + + + = −    (32) 

( ) ( ) ( ) ( ) ( )
2

211 11
11 55 3 2

11 11

1 2 2 1 1
b b

d k k k a k W k I I
a a

     
   

− + + + − + + + = − −     
   

 (33) 

Also by using the theorems introduced in Table 4, various transformed boundary conditions can 

be expressed as follows: 

• Simply Supported-Simply supported 

   0 0, 1 0w = =  

   
0 0

0, 0
k k

w k k k
 

= =

= =   (34a) 

• Clamped-Simply supported 

   0 0, 0 0w = =  

   
0 0

0, 0
k k

w k k k
 

= =

= =   (34b) 

• Clamped-Clamped 
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   0 0, 0 0w = =  

   
0 0

0, 0
k k

w k k
 

= =

= =   (34c) 

Now by using Eqs. (54) and (55) together with the transformed boundary conditions one can 

obtain the following eigenvalue problem 

 
( ) ( )

11 12

( ) ( )

21 21 22

( ) ( )
0

( ) ( )

n n

n n

M M
C

M M

 

 

 
= 

 

 (35) 

where  C  corresponds to the missing boundary conditions at 0x =  and 
( )n

ijM  are the 

polynomials in terms of ( )  corresponding to the n th  term. For the non-trivial solutions of Eq. 

(35), it is necessary that the determinant of the coefficient matrix set equal to zero 

( ) ( )

11 12

( ) ( )

21 21 22

( ) ( )
0

( ) ( )

n n

n n

M M

M M

 

 

 
= 

 

 (36) 

The i th estimated eigenvalue may be obtained by the nth iteration, by solving Eq. (36). The 

total number of iterations are related to the accuracy of calculations can be determined by the 

following equation 

( ) ( 1)n n

i i  −−   (37) 

 

 
Table 4 Transformed boundary conditions based on DTM (Ju 2004) 

x=0 x=L 

Original B.C. Transformed B.C. Original B.C. Transformed B.C. 

f (0) 0=  [0] 0F =  f ( ) 0L =  

0

[ ] 0

k

F k



=

=  

df (0)
0

dx
=  [1] 0F =  

df ( )
0

dx

L
=  

0

? ] 0

k

k F k



=

=  

2

2

(0)
0

dx

d f
=  [2] 0F =  

2

2

( )
0

dx

d f L
=  ( )

0

1 ? ] 0

k

k k F k



=

− =  

3

3

(0)
0

dx

d f
=  [3] 0F =  

3

3

( )
0

dx

d f L
=  ( )( )

0

1 2 [ ] 0

k

k k k F k



=

− − =  

 

 

6. Results and discussion 
 

6.1 Comparison studies 
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Before starting to study the free vibration analysis of sandwich beams with CNTRC facing sheets, 

a comparison is made between the present results and those from the open literature in order to 

validate the present formulation. Table 5 shows the number of repetition for convergence of the first 

three frequencies using DTM. It is found that in DTM after a certain number of iterations 

eigenvalues converged to a value with good precision. According to Table 5 the first natural 

frequency converged after 15 iterations with 4-digit precision while the second and third ones 

converged after 23 and 31 iterations respectively. Table 6 compares numerical dimensionless natural 

frequency of the simply- supported FG sandwich beams with the analytical results (Wu et al. 2015). 

As it can be seen, the proposed results match very well with the results of reference paper. Moreover, 

the first three dimensionless natural frequencies for the C-C FG-CNTRC beam are tabulated in Table 

7. The parameters used in this example are the same as those in Ref. (Wu et al. 2015). A good 

agreement is obtained, again. 

 

 

Table 5 Convergence study for the first three frequencies with FG-CNTRC face sheets ( / 20L h = , 

/ 8
c f

h h = ) 

n 1  2  3  

12 0.14499 - - 

13 0.14502 - - 

14 0.14503 - - 

15 0.14504 0.54167 - 

16 0.14504 0.59675 0.72903 

17 0.14504 0.58092 0.83827 

18 0.14504 0.57080 42.7243 

19 0.14504 0.57184 5.0476 

20 0.14504 0.57289 1.05913 

21 0.14504 0.57279 1.11939 

22 0.14504 0.57269 41.59312 

23 0.14504 0.57270 6.07850 

24 0.14504 0.57270 1.23659 

25 0.14504 0.57270 1.24982 

26 0.14504 0.57270 1.26681 

27 0.14504 0.57270 1.26417 

28 0.14504 0.57270 1.26180 

29 0.14504 0.57270 1.26206 

30 0.14504 0.57270 1.26232 

31 0.14504 0.57270 1.26227 

32 0.14504 0.57270 1.26227 

33 0.14504 0.57270 1.26227 
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Table 6 Comparison of first three dimensionless natural frequencies of S-S sandwich beams with FG-

CNTRC face sheets ( / 20L h = , / 8c fh h = ) 

Mode 

 
*

0.12
cn

V =  
*

0.17
cn

V =  
*

0.28
cn

V =  

 Present 

(Wu and 

Kitipornchai et 

al. 2015) 

Present 

(Wu and 

Kitipornchai et 

al. 2015) 

Present 

(Wu and 

Kitipornchai et 

al. 2015) 

1 
FG 0.1450 0.1453 0.1594 0.1588 0.1844 0.1825 

UD 0.1429 0.1432 0.1566 0.1560 0.1806 0.1785 

2 
FG 0.5727 `0.5730 0.6289 0.6247 0.7261 0.7174 

UD 0.5643 0.5650 0.6180 0.6140 0.7114 0.6997 

3 
FG 1.2623 1.2599 1.3837 1.3689 1.5933 1.5554 

UD 1.2444 1.2429 1.3605 1.3465 1.5623 1.5246 

 

Table 7 First three dimensionless natural frequencies of C-C sandwich beams with FG-CNTRC face sheets (

/ 20L h = , / 8
c f

h h = ) 

Mode 

 
*

0.12
cn

V =  
*

0.17
cn

V =  
*

0.28
cn

V =  

 Present 

(Wu and 

Kitipornchai et 

al. 2015) 

Present 

(Wu and 

Kitipornchai et 

al. 2015) 

Present 

(Wu and 

Kitipornchai et 

al. 2015) 

1 
FG 0.3239 0.3240 0.3528 0.3530 0.4031 0.4032 

UD 0.3192 0.3195 0.3467 0.3470 0.3950 0.3949 

2 
FG 0.8724 0.8704 0.9483 0.9443 1.0800 1.0699 

UD 0.8602 0.8588 0.9327 0.9291 1.0594 1.0492 

3 FG 1.6626 1.6520 1.8026 1.7838 2.0441 2.0029 

 UD 1.6404 1.6313 1.7744 1.7569 2.0086 1.9672 

 
 

6.2 Free vibration analysis 
 

In this study, poly (methyl methacrylate), i.e., PMMA with 2.5mE = GPa, 1190m = kg/m3 

and 0.3m = , is chosen to be the matrix material for CNTRCs. The armchair (10, 10) SWCNTs, 

with material properties of 11 5.6466cnE = TPa, 22 7.08cnE = TPa, 12 1.9445cnG = TPa, 

1400cn = kg/m3 and 0.175m =  at room temperature, (Shen and Zhang 2010) are selected as 

the reinforcement for CNTRCs. The CNT efficiency parameter j  is obtained by matching the 

Young's modulus 11E  and 22E and shear modulus 12G  of CNTRCs determined from the rule of 

mixture against those from the MD simulations given by Han and Elliott (Han and Elliott 2007). 

The following values presented by Shen and Zhang (Shen and Zhang 2010): 
1 0.137 = , 

2 1.022 =

, 
3 0.715 = are used for the case of * 0.12cnV = , 

1 0.142 = , 
2 1.626 = , 

3 1.138 =  for * 0.17cnV = ; 

and 
1 0.141 = , 

2 1.585 = , 
3 1.109 = for * 0.28cnV = . Also, Titanium alloy is chosen for. Titanium 
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alloy (Ti-6Al-4V) as the core material has the following characteristics: 113.8cE = GPa, 

4430c = kg/m3 and 0.342c = . The thickness of the sandwich beam is chosen as 10 mm 

totally, and kept unchanged in all numerical situations while the thickness of core layer and face 

sheets change arbitrarily as the core-to-face sheet thickness ratio is changed with the following 

values: hc/hf = 8, 6, 4. The natural frequencies with respect to the effect of initial thermal 

environment are presented in Tables 8-10. Table 8 and Fig. 2 present the first three natural 

frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets with different CNT 

volume fractions 
*

cnV .  

 

 

Table 8 Effect of nanotube volume fraction on first three natural frequencies of sandwich beams with FG-

CNTRC face sheets ( / 20L h = , / 8c fh h = ) 

   0T =  200T =  400T =  

Mode B.S.   
*

cnV    
*

cnV    
*

cnV   

   0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28 

1 S-S FG 0.1450 0.1595 0.1844 0.1393 0.1538 0.1789 0.1340 0.1487 0.1741 

 S-S UD 0.1429 0.1566 0.1806 0.1370 0.1509 0.1749 0.1317 0.1457 0.1699 

2 S-S FG 0.5727 0.6289 0.7261 0.5518 0.6086 0.7065 0.5319 0.5899 0.6893 

 S-S UD 0.5643 0.6180 0.7114 0.5432 0.5976 0.6917 0.5231 0.5785 0.6741 

3 S-S FG 1.2623 1.3837 1.5933 1.2166 1.3394 1.5505 1.1725 1.2980 1.5124 

 S-S UD 1.2444 1.3605 1.5623 1.1983 1.3159 1.5193 1.1539 1.2740 1.4807 

1 C-C FG 0.3239 0.3528 0.4031 0.3121 0.3414 0.3922 0.3008 0.3309 0.3826 

 C-C UD 0.3192 0.3467 0.3950 0.3072 0.3353 0.3841 0.2958 0.3245 0.3742 

2 C-C FG 0.8724 0.9483 1.0800 0.8407 0.9177 1.0508 0.8100 0.8891 1.0246 

 C-C UD 0.8602 0.9327 1.0594 0.8283 0.9019 1.0300 0.7973 0.8729 1.0034 

3 C-C FG 1.6626 1.8026 2.0441 1.6003 1.7425 1.9891 1.5423 1.6881 1.9379 

 C-C UD 1.6404 1.7744 2.0086 1.5778 1.7140 1.9505 1.5193 1.6579 1.8989 

1 C-S FG 0.2251 0.2474 0.2857 0.2167 0.2391 0.2778 0.2088 0.2316 0.2708 

 C-S UD 0.2218 0.2430 0.2799 0.2133 0.2347 0.2718 0.2052 0.2270 0.2647 

2 C-S FG 0.7166 0.7860 0.9059 0.6905 0.7607 0.8814 0.6655 0.7372 0.8597 

 C-S UD 0.7063 0.7727 0.8880 0.6801 0.7472 0.8634 0.6548 0.7234 0.8414 

3 C-S FG 1.4584 1.5962 1.8337 1.4052 1.5446 1.7838 1.3538 1.4961 1.7389 

 C-S UD 1.4383 1.5703 1.7992 1.3848 1.5184 1.7492 1.3329 1.4694 1.7039 

 

 

The core-to-face sheet thickness ratio and the slenderness ratio are kept unchanged at hc/hf=8 

and L/h=20, respectively. It is observed that the natural frequency of the sandwich beam increases 

with an increase in the CNT volume fraction but decreases as the temperature increases. The 

C-C sandwich beam has a higher natural frequency than the same C-S beam and the C-S beam 

higher than S-S one. Furthermore, it is observed that the natural frequencies of the sandwich beam 

with UD-CNTRC face sheets is also lower than those of the beam with FG-CNTRC face sheets.  

*

cnV
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Fig. 1 First three natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets with 

different CNT volume fraction 

 
Table 9 Dimensionless first three natural frequencies of sandwich beams with FG-CNTRC face sheets and 

different values of /L h ( / 8c fh h = , 
* 0.17cnV = ) 

   0T =  200T =  400T =  

Mode B.S.   L/h   L/h   L/h  

   10 20 30 10 20 30 10 20 30 

1 S-S FG 0.3145 0.1595 0.1066 0.3043 0.1538 0.1021 0.2945 0.1487 0.0983 

 S-S UD 0.3090 0.1566 0.1047 0.2988 0.1509 0.1001 0.2893 0.1457 0.0962 

2 S-S FG 1.1943 0.6289 0.4237 1.1556 0.6086 0.4094 1.1192 0.5899 0.3965 

 S-S UD 1.1752 0.6180 0.4162 1.1363 0.5976 0.4018 1.0995 0.5785 0.3886 

3 S-S FG 2.4953 1.3837 0.9434 2.4116 1.3394 0.9130 2.3315 1.2980 0.8849 

 S-S UD 2.4597 1.3605 0.9270 2.3757 1.3159 0.8964 2.2952 1.2740 0.8678 

1 C-C FG 0.6661 0.3528 0.2379 0.6443 0.3414 0.2300 0.6237 0.3309 0.2227 

 C-C UD 0.6557 0.3467 0.2337 0.6339 0.3353 0.2257 0.6131 0.3245 0.2183 

2 C-C FG 1.6884 0.9483 0.6483 1.6308 0.9177 0.6272 1.5753 0.8891 0.6078 

 C-C UD 1.6657 0.9327 0.6371 1.6078 0.9019 0.6159 1.5521 0.8729 0.5962 

3 C-C FG 3.0220 1.8026 1.2518 2.9148 1.7425 1.2115 2.8114 1.6881 1.1747 

 C-C UD 2.9874 1.7744 1.2308 2.8794 1.7140 1.1902 2.7758 1.6579 1.1529 

1 C-S FG 0.4781 0.2474 0.1660 0.4626 0.2391 0.1599 0.4482 0.2316 0.1547 

 C-S UD 0.4702 0.2430 0.1630 0.4547 0.2347 0.1596 0.4400 0.2270 0.1515 

2 C-S FG 1.4468 0.7860 0.5331 1.3987 0.7607 0.5156 1.3529 0.7372 0.4995 

 C-S UD 1.4254 0.7727 0.5238 1.3772 0.7472 0.5061 1.3311 0.7234 0.4898 

3 C-S FG 2.7758 1.5962 1.0983 2.6799 1.5446 1.0629 2.5874 1.4961 1.0301 

 C-S UD 2.7397 1.5703 1.0795 2.6438 1.5184 1.0439 2.5510 1.4694 1.0107 

 

 

This is because the sandwich beam with UD-CNTRC face sheets has a lower stiffness than the 

beam with FG-CNTRC face sheets. Table 9 and Fig. 3 present the first three natural frequencies of 

C-C, S-S and C-S sandwich beams with CNTRC face sheets but with different slenderness ratio 

L/h. The core-to-face sheet thickness ratio and the CNT volume fraction are kept unchanged at  
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Fig. 2 First three natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets with 

different slenderness ratios 

 
Table 10 Dimensionless first three natural frequencies of sandwich beams with FG-CNTRC face sheets and 

various values of /c fh h  ( / 20L h = , 
* 0.17cnV = ) 

 

hc/hf=8 and 
*

cnV =0.17, respectively. It is observed that the natural frequency of the sandwich beam 

decreases with an increase in the slenderness ratio but decreases as the temperature increases. The 

C-C sandwich beam has a higher natural frequency than the same C-S beam and the C-S beam  

   0T =  200T =  400T =  

Mode B.S.  /c fh h  /c fh h  /c fh h  

   8 6 4 8 6 4 8 6 4 

1 S-S FG 0.1595 0.1661 0.1779 0.1538 0.1607 0.1729 0.1487 0.1560 0.1686 

 S-S UD 0.1566 0.1617 0.1703 0.1509 0.1562 0.1651 0.1457 0.1513 0.1606 

2 S-S FG 0.6289 0.6549 0.7016 0.6086 0.6362 0.6849 0.5899 0.6194 0.6708 

 S-S UD 0.6180 0.6380 0.6721 0.5976 0.6191 0.6553 0.5785 0.6020 0.6408 

3 S-S FG 1.3837 1.4406 1.5427 1.3394 1.3998 1.5065 1.2980 1.3629 1.4756 

 S-S UD 1.3605 1.4047 1.4803 1.3159 1.3636 1.4440 1.2740 1.3262 1.4126 

1 C-C FG 0.3528 0.3673 0.3934 0.3414 0.3568 0.3840 0.3309 0.3474 0.3760 

 C-C UD 0.3467 0.3579 0.3770 0.3353 0.3473 0.3675 0.3245 0.3377 0.3594 

2 C-C FG 0.9483 0.9870 1.0564 0.9177 0.9587 1.0313 0.8891 0.9331 1.0097 

 C-C UD 0.9327 0.9628 1.0143 0.9019 0.9344 0.9892 0.8729 0.9084 0.9673 

3 C-C FG 1.8026 1.8741 2.0047 1.7425 1.8210 1.9575 1.6881 1.7710 1.9152 

 C-C UD 1.7744 1.8304 1.9290 1.7140 1.7772 1.8819 1.6579 1.7268 1.8394 

1 C-S FG 0.2474 0.2575 0.2759 0.2391 0.2499 0.2689 0.2316 0.2431 0.2631 

 C-S UD 0.2430 0.2508 0.2642 0.2347 0.2431 0.2572 0.2270 0.2361 0.2511 

2 C-S FG 0.7860 0.8183 0.8762 0.7607 0.7949 0.8555 0.7372 0.7740 0.8379 

 C-S UD 0.7727 0.7976 0.8404 0.7472 0.7741 0.8195 0.7234 0.7528 0.8015 

3 C-S FG 1.5962 1.6613 1.7781 1.5446 1.6136 1.7357 1.4961 1.5703 1.6992 

 C-S UD 1.5703 1.6212 1.7085 1.5184 1.5733 1.6661 1.4694 1.5295 1.6292 
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Fig. 3 first three natural frequencies of C-C, S-S and C-S sandwich beams with CNTRC face sheets with 

different core-to-face thickness ratio 

 

 

higher than S-S one. Furthermore, it is observed that the natural frequencies of the sandwich beam 

with UD-CNTRC face sheets is also lower than that of the beam with FG-CNTRC face sheets. 

This is because the sandwich beam with UD-CNTRC face sheets has a lower stiffness than the 

beam with FG-CNTRC face sheets.  

Table 10 and Fig. 4, present the first three natural frequencies of C-C, S-S and C-S sandwich 

beams with CNTRC face sheets but with different core-to-face thickness ratio hc/hf. The 

slenderness ratio and the CNT volume fraction are kept unchanged at L/h=20 and 
*

cnV =0.17, 

respectively. It is observed that the natural frequency of the sandwich beam increases with an 

increase in the core-to-face thickness ratio but decreases as the temperature increases. The C-C 

sandwich beam has a higher natural frequency than the same C-S beam and the C-S beam higher 

than S-S one. Furthermore, it is observed that the natural frequencies of the sandwich beam with 

UD-CNTRC face sheets is also lower than that of the beam with FG-CNTRC face sheets. This is 

because the sandwich beam with UD-CNTRC face sheets has a lower stiffness than the beam with 

FG-CNTRC face sheets.  

 

 

7. Conclusions  
 

Thermo-mechanical vibration characteristics of sandwich beams with CNTRC face sheets have 

been examined based on the Timoshenko beam theory and semi analytical DTM. The effects of 

CNT volume fraction, core-to-face sheet thickness ratio, slenderness ratio, and end supporting 

conditions on the free vibration behaviors of stiff-cored sandwich beams with CNTRC face sheets 

with respect to uniform temperature change revealed through a parametric study. Numerical results 

show that CNT volume fraction, end supporting conditions, and slenderness ratio have a 
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significant influence on the natural frequencies, whereas the effects of temperature change and 

core-to-face sheet thickness ratio is much less pronounced. The natural frequencies of the 

sandwich beam decrease with an increase in temperature change, core-to-face and slenderness 

ratio, but they increase with an increase in CNT volume fraction. The numerical results also point 

out that the sandwich beam with UD-CNTRC face sheets has lower vibration performances than 

FG-CNTRC the beam with face sheets. 
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