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Abstract. In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube 
reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings 
are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel 
on the basis of higher-order shear deformation theory and Green– Lagrange nonlinearity. All nonlinear 
higher order terms are included in the mathematical model. The effective material properties of SWCNTRC 
are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the 
shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is 
employed to compute the nonlinear displacement and stresses. The present results are compared with 
published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio 
(R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on 
nonlinear bending response is investigated.  
 

Keywords: SWCNTRC shell panel; micromechanics; nonlinear bending; green-lagrange nonlinearity; 
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1. Introduction 
 

Wide application of reinforced composite shells in mechanical, civil, aeronautical, automotive, 

biomedical, nuclear, petro-chemical and marine engineering has created the necessity of the 

analysis of their responses precisely. It is well known that the shell structures are much stronger 

and stiffer than other structural forms due to their geometrical form (three -dimensional 

curvatures). Some researchers are reported in literature review as follow: Lal et al. (2011) 

investigated nonlinear bending response of laminated composite spherical shell panel with system 

randomness subjected to hygro-thermo-mechanical loading. Sadowski and Michael (2013) 

presented solid continuum finite elements and shell finite elements in the modeling of the 

nonlinear plastic buckling behavior of cylindrical shells. Jin et al. (2013) reported vibration 

analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary 

conditions. Song et al. (2016) expressed nonlinear vibration analysis of CNT-reinforced  
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Fig. 1 single and doubly curved SWCNTRC-shell panels (a) Elliptical, (b) Cylindrical, (c) Flat, (d) 

Hyperbolic, (e) Spherical 
 

 
Fig 2(a) SWCNTRC shell discritized using lagrange qudratic isopramrtic  nine noded element,  (b) 

Uniformaly Dicstributed SWCNTRC shell panels  
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functionally graded composite cylindrical shells in thermal environments. Shen and Xiang (2014) 

reported on nonlinear bending of nanotube-reinforced composite cylindrical panels resting on 

elastic foundations in thermal environments. Kar and Panda (2015) investigated thermoplastic 

analysis of functionally graded doubly curved shell panels using nonlinear finite element method. 

They developed nonlinear mathematical model of doubly curved shell panel based on higher-order 

shear deformation theory and Green-Lagrange geometric nonlinearity. Lopatin et al. (2016) 

studied bending of the composite lattice cylindrical shell with the mid-span rigid disk loaded by 

transverse inertia forces. Sofiyev et al. (2017) presented nonlinear vibration of composite 

orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation 

theory. Singh and Panda (2014) analyzed nonlinear free vibration analysis of single/doubly curved 

composite shallow shell panels. Panda and singh (2009) presented nonlinear free vibration of 

spherical shell panel using higher order shear deformation theory. Tornabene and Viola (2009) 

investigated free vibration analysis of functionally graded panels and shells, they used First order 

Shear Deformation Theory (FSDT) to study of moderately thick structural elements analysis. 

Orakdogen et al. (2010) reported Finite element analysis of functionally graded plates for coupling 

effect of extension and bending. Shariyat (2012) presented a general nonlinear global-local theory 

for bending and buckling analyses of imperfect cylindrical laminated and sandwich shells under 

thermo-mechanical load. Dai and Ting (2014) presented for the thermo-elastic bending of a 

functionally graded material cylindrical shell subjected to a uniform transverse mechanical load 

and non-uniform thermal load. Lezgy-Nazargah and Cheraghi (2015) investigated an exact Peano 

Series solution for bending analysis of imperfect layered FG neutral magneto-electro- elastic plates 

resting on elastic foundations. The free vibration and the bending behavior of carbon nanotube 

reinforced composite plate by using three different shear deformation theories under thermal 

environment were presented by Mehar and Panda (2016) Mahapatra et al. (2017) investigated The 

flexural behavior of the functionally graded sandwich spherical panel under uniform thermal 

environment. Katariya and Panda (2016) develop mathematical model for laminated curved 

structure of different geometries using higher -order shear deformation theory to evaluate in-plane 

and out of plane shear stress and strains correctly, Mehar et al. (2015) studied the free vibration 

behavior of functionally graded carbon nanotube reinforced composite plate under elevated 

thermal environment. The nonlinear free vibration behaviour of functionally graded carbon 

nanotube reinforced composite flat panel in temperature dependent material properties for different 

grading were investigated by Mehar and Panda (2016). Mehar and Panda (2016) presented the 

geometrical nonlinear static behaviour of the functionally graded carbon nanotube reinforced 

doubly curved shell panel under uniform thermal environment. The nonlinear static deflections of 

a functionally graded carbon nanotube (FG-CNT) reinforced flat composite panel under a uniform 

thermal environment for different end conditions were examined by Mehar and Panda (2016). 

Mehar and Panda (2016) investigated the vibration characteristics of carbon nanotube reinforced 

sandwich curved shell panel under the elevated thermal environment. Kulikov et al. (2016) 

investigated exact geometry solid-shell element based on a sampling surfaces technique for 3D 

stress analysis of doubly-curved composite shells. Chavan and Lal (2017) presented bending 

analysis of nanocomposite plate subjected to unform pressure. Khatibinia Mohsen et al. (2016) 

presented a layered approach to the non-linear static and dynamic analysis of rectangular 

reinforced concrete slabs. Shariq et al. (2017) studied effect of the experimental investigation of 

effect on time dependent deflection of reinforced beam due to creep and shrinkage.  

The nonlinear mathematical model of doubly curved SWCNTRC shell panel is developed 

based on HSDT and Green-Lagrange nonlinearity. The nonlinear higher order terms are included  
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Fig. 3 The effect of Elastic properties on increasing volume fraction of SWCNT 

 

 

in the mathematical model. The effective material properties of SWCNTRC are estimated by using 

Eshelby-Mori-Tanaka micromechanical approach. A Newton-Raphson iterative method is used to 

compute the nonlinear bending responses. The proposed numerical analysis has been validated 

with available literature. Numerical simulations are carried out to investigate effect of various 

parameters on geometric nonlinear behaviors of SWCNTRC shell panels. The effect of SWCNT 

volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear 

and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending 

response of SWCNTRC shell panels is investigated. 

 

 

2. Micromechanics approach 
 

In this section the Mori-Tanaka’s method to the computation of the effective properties of 

SWCNTR composites. it is assumed that Nano-composite reinforced by straight and long CNT 

fibers, also the fibers are uniformly distributed in the isotropic Matrix of composite as shown in 

Fig. 2(b). The effective elastic modulus of SWCNT can be defined as, (Aragh et al. 2012, Chavan 

and Lal 2017) 
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The effect of the volume fractions of SWCNT on elastic property of SWCNTRC shell panel are 

plotted in Fig. 3.  

The overall composite properties of SWCNTRC shell panels can be estimated by,  
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3. Mathematical formulation  
 

3.1 displacement field  
 

A different geometry of SWCNTRC shell panels are shown in Fig. 1. The following 

displacement field for the SWCNTRC shell panels based on the HSDT is given by (Kar and Panda 

2015). 

( ) ( ) ( ) ( ) ( )2 3

0, , , , , ,x x xu x y z u x y z x y z x y z x y  = + + +  

( ) ( ) ( ) ( ) ( )2 3

0, , , , , ,y y yv x y z v x y z x y z x y z x y  = + + +  

( ) ( )0, , ,w x y z w x y=  

(7) 

Where, (u, v, w) are the displacement along x, y, z direction. (u0, v0, w0) are the displacement of 

a point on the mid-plane. θx and θy is the rotation about x and y axis respectively. ψx, ψy, βx and βy 

are higher order terms of Taylor series expansion.  
 

3.2 strain-displacement relation  
 

The Nonlinear Green-Lagrange strain-displacement relation for SWCNTRC shell panels is 

given by (Kar and Panda 2015) 
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The Eq. (8) can be written as,  
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Total strain vector is sum of linear strain and nonlinear strain vectors can be expressed by 

       (l) (nl)l nlT T  = +  (10) 

Where, 

   0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3(l)
T

x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yzk k k k k k k k k k k k k k k     =  

   4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 9 9 9 9 9 10 10 10 10 10(nl)
T

x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yz x y xy xz yzk k k k k k k k k k k k k k k k k k k k k k k k k k k k k k     =

 (l) and  (nl) mid-plane curvature vector for linear and nonlinear respectively, detail all 

terms are given in appendix-A.  

Displacement vector can be defined by 
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 (n)q  is the nodal displacements vector at node i. Shape function (Ni) of isoperimetric 

quadratic nine noded elements (Reddy 2004) can be expressed as 
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(12) 

Mid-plane strain vector for linear and nonlinear can be written as 

    (l) (n)Bq q =  and     (nl) [S] (n)q =   (13) 

Where, [Bq], [S] and   are linear and nonlinear differential operator matrix respectively, all 

matrixes are given in Appendix-A. 
 

3.3 Stress and strain relation  
 

Stress and strain relation is given by 
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Fig. 4 Flow chart for Newton Raphson Force incrimental Technique 

 

 

   Q  =  
 (14) 

Where,    
T
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x y xy xz yz     = are stress and strain vectors 

respectively. Q 
 

is the transferred reduced elastic constant matrix.  

 

3.4 The strain energy of the SWCNTRC shell panel  
 

The strain energy of the SWCNTRC shell panel can be defined by, 
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Fig. 5 Flow chart for itration procedure steps 
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3.5 Work done of SWCNTRC shell panels due to external loading 
 

The total work done by external Loading (P) is defined by 
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  (g)W q P dxdy=   (16) 

Where, {00P000000}P =  is Force vector and  (g)q  is global displacement vector. 

The total potential energy of SWCNTRC shell panels can be defined by,  

U W= −  (17) 

Substituting Eqs. (15) and (16) into Eq. (17), we get  

0
(g)q


=




 (18) 

Solving Eq. (18) we get, 

  (g) {F}K q =
 

(19) 

Where, [K] [K ] [K ]l nl= + ; 

[K ]l is linear stiffness matrix and [K ]nl  is nonlinear stiffness matrix.  

 

 

4. Solution procedure  
 

The nonlinear bending responses are obtained by using newton Raphson load incremental 

technique and step iteration flowchart as shown in Figs. 4 and 5 respectively. The detail procedure 

for obtained nonlinear deflection of SWCNTRC shell panels following steps,  

I. First a small displacement solution of the stiffness equation Eq. (19) is obtained for the first 

load and set [Knl] = 0. 

II. The obtained linear deflection substitute in [S] matrix and determine nonlinear stiffness 

matrix. 

III. Total internal resisting force at any nodal for each harmonic is obtained by substituting 

stored displacement vector in the above step into the linear and nonlinear stiffness equation based 

on displacement from (II) 

IV. The incremental displacement within a load step (i) can be solved. 

V. From step no (IV) are added the total displacement and update [Knl] matrix is evaluated. 

VI. Convergence Test: in the large deflection (Nonlinear) problem the value has been set at 10-

3.  

The detail procedure is given Figs. 4-5 and respective equations as follows,  

Incremental solution of nonlinear stiffness Equation may be expressed as 

       
1

1n n nn
q K P q

−

−
= +  (20) 

  [0]nlK = ----for perfect structure 

Where,  
n

q = total displacement vector at any stage ‘n’;  
n

P =is the increment in load 

vectors at nth load step. 

29



 

 

 

 

 

 

Shivaji G. Chavan and Achchhe Lal 

   
1

1nn
q K q
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−=    ,      1n nn
q q q

−
= +  (21) 

Where,  n
q =deflection due to incremental load nP .  nq =total deflection at any stage, nth 

increment. N,I is increment steps ant cycle respectively.  
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P P P= −V V ;      
1

n nn
i i
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Where,   n
i

PV = Error load after cycle (i).  n
i

qV = incremental deflection at cycle (i).  
n

q

=Total deflection at any incremental stage (n). 
 

 

5. Results and discussion  
 

The nonlinear bending analysis of SWCNTRC shell panels are investigated by MATLAB-

2013a software code based on the present mathematical model. The present study, The 

SWCNTRC Shell panels are made of SWCNT and polymer matrix. Here, poly (methyl 

methacrylate) to as PMMA is considered as the matrix materials. The mechanical properties of 

PMMA are taken from (Lei et al. 2013), Em=3.52 Gpa and vm=0.3. SWCNT (10, 10) are chosen as 

reinforcement material. The SWCNT properties taken from (Dai and Ting 2014), SWCNT (10, 

10): (Length=9.26 nm, Diameter =1.36 nm, Thickness= 0.067 nm) 

11 22 33 12 12 21 23103.23 , 6.05 ,G 2.11 , 0.33, 0.51CNT CNT CNT CNT CNT CNT CNTE GPa E E GPa GPa v v v= = = = = = =

 The elastic properties of SWCNTRC shell panels are calculated from Eq. (6). The elastic 

properties are substituted in stiffness matrix and compute unknown deflections by using Eq. (26). 

The nine node isoperimetric elements are considered for present analysis as shown in Fig. 2(a). 

Non-dimensional transversely uniform distributed load and central deflection are 
4

0

m

P a
q

E h

 
=  

 

 and 

0

(g)q
W

h
=  of SWCNTRC shell panels respectively. 

Following boundary condition are employed for nonlinear responses of SWCNTRC shell 

panels,  

a) CCCC 

0 0 0 0x y x y x yu v w      = = = = = = = = = at X=0, a and y=0,b.  

b) CSCS 

0 0 0y y yv w   = = = = =  at x=0, a 

0 0 0 0x y x y x yu v w      = = = = = = = = = at y=0,b 

c) CFFF 

0 0 0 0x y x y x yu v w      = = = = = = = = =  at y=0; 

d) SSSS 

0 0 0y y yu w   = = = = =  at x=0,a 

0 0 0x x xu w   = = = = =  at y=0,b 
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Fig. 6 Convergence behavior of nonlinear deflection of SWCNTRC cylindrical shell panel with a/b=1, a/h= 

20, q0=0.1MPa and R/a=50 

 

 
Fig. 7 Linear-Nonlinear non-dimensional central deflection of simply supotred cylindrical shell panel 

 

 
Fig. 8 Nonlinear non-dimensional central deflection of simply supotred flat shell panel 

 

 

Present nonlinear SWCNTRC shell panels of shape function and regular nodal distribution 5×5 

as shown in Fig. 2. The convergence studies is carried out first for nonlinear bending analysis of  
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Fig. 9 load and Non-dimensional central deflection for Cylindrical, Hyperbolic, Elliptical, Spherical and Flat 

shell panel 

 

 
Fig. 10 load and Non-dimensional central deflection of linear and nonlinear for cylindrical shell panel with 

varying volume fraction of SWCNT 

 

 

simply supported SWCNTRC shell panel subjected to lateral pressure q0=0.1 MPa. Non-

dimensional nonlinear central deflection and mesh density as shown in Fig. 6. It can be seen that 

the variation of deflection up to mesh size 5×5, after that deflection are constant of mesh size form 

5×5 to 7×7. Therefore, a discretized with 5×5 element is used for all further analysis. 

The central deflection (W0) and non-dimensional load parameter (q0) of Cylindrical shell panel 

subjected to a uniform transverse load P=4×105 Pa with, shell aspect ratio 1a
b
= , 20a

h
= ,

5R
a
=  are used to validation purpose. The present results are a compared with the (Kar and 

Panda 2015) for linear and nonlinear deflection as shown Fig. 7. The present results are in good 

agreement with (Kar and Panda 2015). Nonlinear bending responses of SWCNTRC shell panel is 

compared with available literature. The geometric and materials properties of shell panels 

respectively is given for comparison purpose, a=b=12in and h=0.138in and E1=3×106 psi, 

E2=1.28×106 psi, G12=G23=G13=0.37×106 psi, v12=v23=0.32. Fig. 8 shows nonlinear deflection and 

load curve of simply supported SWCNTRC flat shell subjected to uniformly distributed loading. 

The present nonlinear deflection is compared with Lei et al. (2013). The present result is in good 

agreement with Lei et al. (2015).  
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Fig. 11 variation of non-dimensional central deflection of Hyperbolic SWCNTRC shell panel for different 

volume fraction of SWCNTs 

 

 
Fig. 12 variation of non-dimensional central deflection of Elliptical SWCNTRC shell panel for different 

volume fraction of SWCNTs 

 

 
Fig. 13 variation of linear and nonlinear non-dimensional central deflection of Spherical SWCNTRC shell 

panel for different volume fraction of SWCNTs 
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Fig. 14 variation of linear-nonlinear non-dimensional central deflection of Flat SWCNTRC shell panel for 

different volume fraction of SWCNTs 

 

 
Fig. 15 variation of linear and nonlinear non-dimensional central deflection of Cylindrical, Hyperbolic, 

Elliptical, spherical and Flat SWCNTRC simply supported shell panels 

 

 
Fig. 16 nonlinear non-dimensional central deflection and load of hyperbolic SWCNTRC shell panels with 

different boundary condition 
 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load (q
0
)

N
on

di
m

en
si

on
al

 c
en

tr
al

 d
ef

le
ct

io
n 

(W
0
)

flat

 

 

V
CNT

=0.25,Nonlinear

V
CNT

=0.25,Linear

V
CNT

=0.2,Nonlinear

V
CNT

=0.2,Linear

V
CNT

=0.17,Nonlinear

V
CNT

=0.17,Linear

V
CNT

=0.11,Nonlinear

V
CNT

=0.11,Linear

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load (q
0
)

N
on

-d
im

en
si

on
al

 c
en

tr
al

 d
ef

le
ct

io
n 

(W
0
)

 

 

Cylindrical, Nonlinear

Hyperbolic, Nonlinear

Elliptical,Nonlinear

Spherical,Nonlinear

Flat, Nonlinear

Cylindrical,Linear

Hyperbolic,Linear

Elliptical, Linear

Spherical,Linear

Flat,Linear

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

q
0

W
0

Hyperbolic

 

 

CFFF

CCCC

CSCS

SSSS

34



 

 

 

 

 

 

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels 

 
Fig. 17 nonlinear non-dimensional central deflection and load of cylindrical SWCNTRC shell panels with 

different boundary condition 

 

 
Fig. 18 Nonlinear non-dimensional central deflection and load of Elliptical SWCNTRC shell panels with 

different boundary condition 

 

 
Fig. 19 nonlinear non-dimensional central deflection and load of spherical SWCNTRC shell panels with 

different boundary condition 
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Fig. 20 Nonlinear non-dimensional central deflection and load of flat SWCNTRC shell panels with different 

boundary condition 

 

 
Fig. 21 variation of non-dimensional central deflection of Cylindrical, Hyperbolic, Elliptical, spherical and 

Flat SWCNTRC simply supported shell panels for different R/a ratio 

 

 
Fig. 22 variation of non-dimensional central deflection of Cylindrical, Hyperbolic, Elliptical, spherical and 

Flat SWCNTRC simply supported shell panels for different a/h ratio 
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Fig. 23 Through-thickness distributions of non-dimensional normal stresses (σxx) for Elliptical, Cylindrical, 

and hyperbolic, spherical and Flat SWCNTRC shell panels with uniformly transversely loading 

 

 
Fig. 24 Through-thickness distributions of non-dimensional normal stresses (σyy) for Elliptical, Cylindrical, 

and hyperbolic, spherical and Flat SWCNTRC shell panels with uniformly transversely loading 

 

 
Fig. 25 Through-thickness distributions of shear stresses (τxy) for Elliptical, Cylindrical, hyperbolic and 

spherical SWCNTRC shell panels with uniformly transversely loading 
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Fig. 26 Through-thickness distributions of shear stresses (τxz) for Elliptical, Cylindrical, hyperbolic and 

spherical SWCNTRC shell panels with uniformly transversely loading 

 

 
Fig. 27 Through-thickness distributions of shear stresses (τyz) for Elliptical, Cylindrical, hyperbolic and 

spherical SWCNTRC shell panels with uniformly transversely loading 

 

 

Fig. 9 presented nonlinear central deflection and load curves for SWCNTRC shell panels 

subjected to a uniform transverse load with a/h=20, R/a=5 and VCNT=0.17 simply supported 

boundary condition. It is observed that the maximum and minimum deflection of hyperbolic and 

elliptical SWCNTRC shell panels respectively. Fig. 10 depict linear-nonlinear central deflection 

and load for cylindrical SWCNTRC simply supported shell panels subjected to a uniform 

transverse load with a/h=20, R/a=5 and VCNT=0.17. It can be seen that the linear and nonlinear non-

dimensional central deflection decreased with increasing volume fraction of SWCNT. Fig. 11 

shows variation in the linear and nonlinear central deflection of Hyperbolic SWCNTRC shell 

panel with different volume fraction of SWCNTs. It is observed that maximum deflection of linear 

as compared to nonlinear deflection of SWCNTRC shell panels. Also, linear-nonlinear deflection 

of SWCNTRC hyperbolic shell panels decreased with increasing volume fraction of SWCNT. Fig. 

12 depicts load and central deflection of linear-nonlinear for elliptical SWCNTRC shell panels 

subjected to a uniform transverse load with a/h=20, R/a=5 and VCNT=0.17. It can be seen that the 

linear-nonlinear central deflection decreased with increasing volume fraction of SWCNT. Fig. 13 

presents the variation of linear and nonlinear central deflection of spherical SWCNTRC shell panel 
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Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels 

with different volume fraction of SWCNTs. It is observed that linear and nonlinear central 

deflection of SWCNTRC spherical shell panels decreased with increasing volume fraction of 

SWCNT. Fig. 14 shows linear and nonlinear central deflection and load for flat SWCNTRC shell 

panels simply supported subjected to a uniform transverse load with a/h=20, R/a=5 and VCNT=0.17. 

It can be seen that the linear and nonlinear central deflection decreased with increasing volume 

fraction of SWCNT. Fig. 15 depicts linear and nonlinear central deflection and load of SWCNTRC 

shell panels subjected to a uniform transverse loading. It can be seen that the maximum and 

minimum central deflection of Flat and hyperbolic shell panels respectively. Figs. 16-20 shows the 

load-deflection curves of SWCNTRC hyperbolic, cylindrical, Elliptical, spherical and flat shell 

panels (a/b=1, a/h=10, R/a=50, VCNT=0.17) under different boundary condition. These results are 

computed by using CCCC, CSCS, CFFF and SSSS boundary conations. It is observed that 

nonlinear deflection increased with the increasing load of CFFF boundary condition of 

SWCNTRC shell panels. However, nonlinear deflection for CCCC boundary condition is lower as 

compared to other types of boundary conditions. Fig. 21 depicts radius-to-width ratio (R/a) and 

nonlinear central deflection of SWCNTRC shell panels subjected to a uniform transverse loading 

with q0=0.1 MPa, a/h=20 and VCNT=0.17. It can be seen that the nonlinear central deflection of 

SWCNTRC shell panels decreased with increasing R/a ratio. However flat shell panels are remains 

constant by changing R/a. Fig. 22 presents width-to-thickness ratio (a/h) and nonlinear central 

deflection of elliptical SWCNTRC shell panels subjected to a uniform transverse loading with 

q0=0.1MPa, R/a=5 and VCNT=0.17. It can be seen that the nonlinear central deflection of 

SWCNTRC shell panels increased with increasing width-to-thickness ratio. When increases the 

a/h ratio then shells panels are become thin, so that nonlinear deflection is increased. Fig. 23 non-

dimensional normal stress 

2

2

0

x
xx

h

q a


 =  distribution along the non-dimensional thickness (z/h) of 

Elliptical, Cylindrical, and hyperbolic, spherical and Flat types of SWCNTRC shell panels 

subjected to a uniform transverse load P=4×105 Pa with volume fraction VCNT=0.17, shell aspect 

ratio 1a
b
= ,width thickness ratio , 20a

h
= , 5R

a
= . It can be found that the central normal 

stress distribution SWCNTRC shell panels are zero at mid-plane and anti-symmetric about the 

mid-plane due to the symmetric reinforcement with respect to the mid-plane. Fig. 24 non-

dimensional normal stress 
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y
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h
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
 =  distribution along the non-dimensional thickness (z/h) of 

Elliptical, Cylindrical, and hyperbolic, spherical and Flat types of SWCNTRC shell panels 

subjected to a uniform transverse load P=4×105 Pa with volume fraction VCNT=0.17, shell aspect 

ratio 1a
b
= ,width thickness ratio , 20a

h
= , 5R

a
= . It can be shown the central normal stress 

distribution SWCNTRC shell panels are zero at mid-plane and anti-symmetric about the mid-plane 

due to the symmetric reinforcement with respect to the mid-plane. Fig. 25 non-dimensional Shear 

stresses (

2

2

0

xy

xy

h

q a


 = ) distribution along the non-dimensional thickness (z/h) of Elliptical, 

Cylindrical, hyperbolic and spherical types of SWCNTRC shell panels subjected to a uniform 

transverse load P=4×105 Pa with volume fraction VCNT=0.17, shell aspect ratio 1a
b
= ,width 
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thickness ratio , 20a
h
= , 5R

a
= . It can be found that the central shear (τxy) stress distributions 

of SWCNTRC shell panels are maximum at mid-plane and symmetric about the mid-plane. Fig. 26 

non-dimensional Shear stresses (

2

2

0

xz
xz

h

q a


 = ) distribution along the non-dimensional thickness 

(z/h) of Elliptical, Cylindrical, hyperbolic and spherical types of SWCNTRC shell panels 

subjected to a uniform transverse load P=4×105 Pa with volume fraction VCNT=0.17, shell aspect 

ratio 1a
b
= ,width thickness ratio , 20a

h
= , 5R

a
= . It can be seen that the central shear (τxz) 

stress distributions of SWCNTRC shell panels are maximum at mid-plane and symmetric about 

the mid-plane Fig. 27 non-dimensional Shear stresses (

2

2

0

yz

yz

h

q a


 = ) distribution along the non-

dimensional thickness (z/h) of Elliptical, Cylindrical, hyperbolic and spherical types of 

SWCNTRC shell panels subjected to a uniform transverse load P=4×105 Pa with volume fraction 

VCNT=0.17, shell aspect ratio 1a
b
= ,width thickness ratio , 20a

h
= , 5R

a
= . It can be found 

that the central shear (τxz) stress distributions of SWCNTRC shell panels are maximum at mid-

plane and symmetric about the mid-plane. 

 

 

6. Conclusions 
 

In this article, the linear-nonlinear bending characteristic of different geometries of SWCNTRC 

shell panels subjected to uniform lateral loading is investigated. The geometric nonlinear 

mathematical model of SWCNTRC shell panel is developed on the basis of HSDT kinematics and 

Green–Lagrange nonlinearity. The effective material properties of SWCNTRC shell panels are 

estimated by using Eshelby-Mori-Tanaka model. The governing differential equation is derived 

using the total potential energy principle. The SWCNTRC shell panels are discretized into the nine 

node isoperimetric elements. The nonlinear bending responses are computed by using a Newton-

Raphson method. 

Following points are concluded:  

• It is observed that the central deflection increased with width-to-thickness increasing of 

SWCNTRC shell panels. 

• The deflection decreased with increasing volume fraction of SWCNT of SWCNTRC shell 

panels.  

• The non-dimensional deflection of Elliptical shell panel is greater than the other types of 

SWCNTRC panels.  

• The Maximum normal stresses (σx, σy) are presented at top and bottom of SWCNTRC shell 

panels surface.  

• Maximum shear stresses (τxy, τyz and τxz) at mid-plane of SWCNTRC shell panels.  
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Nomenclature and abbreviation  
 
E11, E22 and E33 Young’s modulus of the composite shell panels 

v12, v21 Poison’s ratio of composite material 

11 22 33, ,CNT CNT CNTE E E  Young’s modulus of SWCNTs 

12 23 12 21 23G ,G , ,CNT CNT CNT CNT CNTand v v v  Shear modulus and poison’s ratio of SWCNTs 

Em and vm Young’s modulus and poison’s ratio of matrix 

VCNT and Vm Effective volume fraction of SWCNT and matrix 

WCNT, ρCNT and ρm Mass fraction, Density of SWCNT and density of matrix 

kCNT, lCNT, nCNT, mCNT and pCNT  Hill elastic constant of SWCNT 
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a, b, h Shell panel length, width and thickness 

R1 and R2 Principle curvature radii 

W0 Non-dimensional central deflection 

SWCNT Single Wall Carbon Nanotube 

SWCNTRC Single Wall Carbon Nanotube Reinforced Composite 
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Appendix A 
 

Linear Thickness coordinate matrix l[T ]  

 

2 3

2 3

2 3

2 3

2 3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

l

z z z

z z z

T z z z

z z z

z z z

 
 
 
 =
 
 
  

 

Non-Linear Thickness coordinate matrix nl[T ]  

2 3

2 3

2 3
nl

2 3

2 3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[T ] ...0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

z z z

z z z

z z z

z z z

z z z

 
 
 
 =
 
 
  

4 5 6

4 5 6

4 5 6

4 5

4 5

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

z z z

z z z

z z z

z z

z z

 
 
 
 
 
 
  

11 12 16

12 22 26

16 26 66

44 45

45 55

0 0

0 0

[Q] 0 0

0 0 0

0 0 0

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

 
 
 
 =
 
 
 
 

 

Individual terms of matrix [Bq] 

 
1,1

Bq
x


=


;  
1,3

1

1
Bq

R
= ;  

2,2
Bq

y


=


;  
2,3

2

1
Bq

R
=  

3,1
Bq

y


=


;  
3,2

Bq
x


=


;

 
3,3

1 2

2
Bq

R R
= ;  

4,1
1

1
Bq

R
= − ; 

4,3
Bq

x


=


; 
4,4

1Bq = ; 
5,2

2

1
Bq

R
= − ; 

5,3
Bq

x


=


; 
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 
5,5

1Bq = ;  
6,4

Bq
x


=


;  
7,5

Bq
y


=


;  
8,4

Bq
y


=


;  
8,5

Bq
x


=


;  
9,4

1

1
Bq

R
= − ;

 
9,6

2Bq = ;  
10,5

2

1
Bq

R
= − ;  

10,7
2Bq = ;  

11,6
Bq

x


=


;  
12,7

Bq
y


=


;  
13,6

Bq
y


=


;

 
13,7

Bq
x


=


;  
14,7

1

1
Bq

R
= − ;  

14,8
2Bq = ;  

15,7
2

1
Bq

R
= − ;  

15,9
2Bq = ;  

16,8
Bq

x


=


;

 
17,9

Bq
y


=


; 
18,8

Bq
y


=


; 
18,9

Bq
x


=


; 
19,8

1

1
Bq

R
= − ; 

20,9
2

1
Bq

R
= −  

Linear Mid-plane strain terms  

0

x

u

x



=


 ; 0

y

v

y



=


; 0

xy

u v

y x


 
= +
 

; 0

xz x

w

x
 


= +


; 0

yz y

w

y
 


= +


; 1 x
xk

x


=


; 1 y

yk
y


=


; 

1 yx
xyk

y x

 
= +
 

; 1

1

x
xz xk

R


= − ; 

1

2

2
y

yz yk
R


= − ; 2 x

xk
x


=


; 2 y

yk
y


=


; 

2 yx
xyk

y x

 
= +

 
; 2

1

2 x
xz xk

R


= − ; 

2

2

2
y

yz yk
R


= − ; 3 x

xk
x


=


; 3 y

yk
y


=


; 

3 yx
xyk

y x

 
= +

 
; 3

1

x
xzk

R


= − ; 

3

2

y

yzk
R


= −  

Non-linear mid-plane strain terms 
2 2 2

4

2 2 2

1 1 1

2 2 2
x

u v w

x x x


  
= + +

  
;  

2 2 2
4

2 2 2

1 1 1

2 2 2
y

u v w

y y y


  
= + +

  
 ; 

2 2 2
4

xy

u v w

x y x y x y


  
= + +
     

 

4 yx
xz

u v

x x x x




 
= +
   

; 4

yz x y

u v

y y
  

 
= +
 

  ;  
5

1

yx x
x

u v w
k

x x x x x R

   
= + −
    

;

5

2

y yx
y

u v w
k

x y y y y R

    
= + −
    

;  

5

2 1

y y yx x x
xy

u u v v w w
k

x y y x x y y y x R y R

           
= + + + − −
         

; 

5 2 2
yx

xz x y x y

u v
k

x x x y


   

 
= + + +

   
; 5 2 2

yx
yz x y x y

u v
k

y y x y


   

 
= + − +

   

5 2 2
yx

yz x y x y

u v
k

y y x y


   

 
= + − +

   

2 2 2
6

2 2 2 2

1 1

1 1 1

2 2 2

x x x x x x x
x

u v w
k

x x x x x R x y x R

            
= + − + + +
       
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2 22
6

2 2 2

2 1

1 1 1

2 2 2

y y y yx
y

u v w
k

y y y y R y y R

      
= + − + + +
     

6

1 1 1 2

y y x yx x x x x x x x
xy

u u v v w w
k

x x y x x y y x x R y R x y x y R R

                     
= + + + − − + + +
             

 

6 3 3 2 2
y yx x

xz x y x y x y

u v
k

x y y x x x

  
     

   
= + + + + +

     
 

6 3 3 2 2
y yx x

yz x y x y x y

u v
k

y y y y y y

  
     

   
= + + + + +

     
 

7

2

1 1

y y yx x x x x
x x

u v w
k

x x x x x R x x x x R

      


      
= + − + + +
        

 

7

2

1 2

y y y yx x x x
y x

u v w
k

y y y y y R y y y y R

      


      
= + − + + +
        

 

7

2 1 1 2 1 2

y y y y y y y y x y y xx x x x x x
xy

u u v v w w
k

x y y x x y y x x R y R y x y x x y y x R R R R

                               
= + + + − − + + + + +
                 

 

7 3 3 2 2
y y yx x x

xz x y x y x yk
x x x x x x

    
     

    
= + + + + +

     
 

7 3 3 2 2
y y yx x x

yz x y x y x yk
y y y y y y

    
     

    
= + + + + +

     
 

222

8

2

1 1

1 1 1

2 2 2

y y yx x x x x
x xk

x x x x x x R R

      


        
= + + + + +    
          

 

222

8

2

2 2

1 1 1

2 2 2

y y y y yx x x
y xk

y y y y y y R R

      


        
= + + + + +    
          

 

8

1 2 1 2 1 2

y y y y y y x y y y x yx x x x x x
xyk

x y y x x y y x x y x y R R R R R R

                          
= + + + − + + + +
           

 

8 3 3 2 2
yx x x

xz x y x yk
x x x x

  
   

  
= + + +

   

8 3 3 2 2
yx x x

yz x y x yk
y y y y

  
   

  
= + + +

   
 

9

2

1

y yx x x x
xk

x x x x R

      
= + +

   
 ; 

9

2

2

y yx x x x
xk

y y y y R

      
= + +

   
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9

1 2 1 2

y y x y y xx x x x
xyk

x y y x y x R R R R

             
= + + + +

     
9 3 3

yx
xz x yk

y x


 


= +

 
; 

9 3 3
yx

yz x yk
y x


 


= +

 
;  
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10

1

1 1 1

2 2 2

yx x
xk

x x R

     
= + +    

      
;  

222

10

2

1 1 1

2 2 2

y yx
yk

y y R

      
= + +    

      
 ; 

10

1 2

y y y xx x
xyk

x y x y R R

       
= + +
   

 

Individual terms of matrix [ ]  

 
1,1 x


 =


;  

1,3
1

1

R
 = ;  

2,1 y


 =


;  

2,3
1 2

1

R R
 = ;  

3,2 x


 =


;  

33
1 2

2

R R
 = ;

 
4,1

1 2

1

R R
 =  

4,2 y


 =


;  

4,3
1 2

1

R R
 = ;  

5,1
1

1

R
 = − ;  

5,3 x


 =


;  

6,2
2

1

R
 = −

 
6,3 y


 =


; 

7,4 x
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