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Abstract.  This article is concerned with a two-dimensional problem of micropolar generalized 
thermoelasticity for a half-space whose surface is traction-free and the conductive temperature at the surface 
of the half-space is known. Theory of two-temperature generalized thermoelasticity with phase lags using 
the normal mode analysis is used to solve the present problem. The formulas of conductive and mechanical 
temperatures, displacement, micro-rotation, stresses and couple stresses are obtained. The considered 
quantities are illustrated graphically and their behaviors are discussed with suitable comparisons. The 
present results are compared with those obtained according to one temperature theory. It is concluded that 
both conductive heat wave and thermodynamical heat wave should be separated. The two-temperature 
theory describes the behavior of particles of elastic body more real than one-temperature theory. 
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1. Introduction 
 

In the theory of uncoupled thermoelasticity the heat equation is independent of both mechanical 

effects and equation of motion. The uncoupled theory has two defects according to the dependency 

relation and that the temperature is contained in the dynamic equation as a known function. Biot 

(1952) has introduced coupled thermoelasticity theory to overcome the first shortcoming of the 

uncoupled theory in which that mechanical state of a solid has no effect on its temperature. 

However the coupled theory of Biot (1952) failed to treat the second shortcoming in which heat 

equation is in a diffusion type (parabolic). This means that the speed of propagation of temperature 

is infinite, which contradicts physical experiments. 

The generalized theories of thermoelasticity have treated the second shortcoming of the 

uncoupled theory. They have involved hyperbolic type of heat transport equation which predicts 

infinite speed of propagation of thermal signals. Among the generalized theories the extended 

thermoelasticity, the temperature rate dependent thermoelasticity and others (Lord and Shulman 

1967, Green and Lindsay 1971, Green and Naghdi 1991, 1992, 1993) have been the subject of 

                                           

Corresponding author, Professor, E-mail: zenkour@kau.edu.sa or zenkour@sci.kfs.edu.eg 

http://www.techno-press.org/?journal=aas&subpage=7
mailto:zenkour@kau.edu.sa
mailto:zenkour@sci.kfs.edu.eg


 

 

 

 

 

 

A. E. Abouelregal and A. M. Zenkour 

many investigations. Tzou (1995a, b, 1996) has proposed the dual-phase-lag (DPL) model to 

modify the classical thermoelastic model with two different time translations, one for heat flux and 

the other for temperature gradient. 

Wave propagations in micropolar materials have many applications in different fields of science 

and technology. The linear theory of micropolar thermoelasticity is developed by many 

investigators (Nowacki 1966, Tauchert et al. 1968, Eringen 1970, 1971) and coupled by the 

inclusion of heat effect. Boschi and Iesan (1973) have generalized the theory of thermoelasticity of 

Green and Lindsay (1971) to a homogeneous micropolar continua. Scalia (1990) has established a 

basic relation of micropolar thermoelasticity that implies in a simple way the reciprocal theorem 

and another uniqueness result. Kumar and Singh (1996) have discussed two problems in 

micropolar generalized thermoelastic half-space with stretch. El-Karamany and Ezzat (2004) have 

presented the boundary integral equation formulation for generalized linear micropolar 

thermoelasticity. Sherief et al. (2005) have solved an axisymmetric half-space problem based on 

the micropolar thermoelasticity theory. Othman and Singh (2007) have investigated the effect of 

rotation on displacement, microrotation and temperature distributions in micropolar half-space via 

five theories of thermoelasticity. El-Karamany and Ezzat (2013) have presented the constitutive 

laws for three-phase-lag micropolar thermoelasticity theory. 

The two-temperature model is presented and developed by many investigators (Gurtin and 

Williams 1966, Chen and Gurtin 1968, Chen et al. 1968, 1969, Nath et al. 1998, Allam et al. 2002, 

Quintanilla 2004, Youssef 2006, Abbas and Zenkour 2014, Zenkour and Abouelregal 2014a,b, 

2015, Carrera et al. 2015, Abouelregal and Zenkour 2016). This paper is concerned with the 

problem of wave propagations in an isotropic micropolar generalized thermoelastic half-space in 

which its surface is assumed to be traction-free. The model for linear theory of micropolar 

generalized two temperatures thermoelasticity (MP2TE) based on dual-phase-lag model is 

introduced. This model is solved by using the normal mode analysis. The exact formulae of 

thermodynamic temperature, conductive temperature, displacements, microrotation and stresses 

are obtained. The distributions of the considered variables are computed numerically and presented 

graphically, for a specific model. Comparisons are made with the results obtained in case of one-

temperature theory (MP1TE). Some comparisons will be shown in figures to estimate the effect of 

the two-temperature parameter. 
 

 

2. Mathematical model and basic equations 
 

The concept of micro-continuum, proposed by Eringen (1984), takes into account the 

microstructure of material while the theory itself remains still in a continuum formulation. 

Governing equations in a homogeneous isotropic micropolar generalized thermoelastic solid in the 

absence of body forces, body couples and heat sources are given by Eringen (1970) 

𝜎𝑖𝑗 = 𝜆휀𝑘𝑘𝛿𝑖𝑗 + (𝜇 + 𝛼)휀𝑖𝑗 + 𝜇휀𝑗𝑖 − 𝛾휃𝛿𝑖𝑗 , (1) 

𝑚𝑖𝑗 = 𝜖𝜔𝑘,𝑘𝛿𝑖𝑗 + (𝜐 + 𝛽)𝜔𝑖,𝑗 + (𝜐 − 𝛽)𝜔𝑖,𝑗, (2) 

𝜌𝑇0𝑆 = 𝜌𝐶𝐸휃 + 𝛾𝑇0휀𝑘𝑘, (3) 

and the linear equations of balance law are 

𝜎𝑖𝑗,𝑗 = 𝜌�̈�𝑖, (4) 
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𝜖𝑖𝑗𝑘𝜎𝑗𝑘 + 𝑚𝑗𝑖𝑗 = 𝜌𝐽�̈�,𝑖,     𝑖, 𝑗, 𝑘 = 1,2,3. (5) 

The linearized form of heat conduction is 

𝜌𝑇0�̇� = −𝑞𝑖,𝑖. (6) 

The modified classical thermoelasticity model with two temperatures in which Fourier law is 

replaced by the assumption 

(1 + 𝜏𝑞

𝜕

𝜕𝑡
) �⃗� = −𝐾 (1 + 𝜏𝜃

𝜕

𝜕𝑡
) ∇𝜙. (7) 

The two-temperature relation is given by (Nowacki 1966) 

𝜙 − 𝑇 = 𝑎𝜙,𝑖𝑖,     𝑎 > 0. (8) 

Now using divergence theorem and Eqs. (3) and (6), from Eq. (8) we obtain (Tzou 1995b) 

𝐾 (1 + 𝜏𝜃

𝜕

𝜕𝑡
) ∇2𝜙 + (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (𝜌𝑄) = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (𝜌𝐶𝐸

𝜕휃

𝜕𝑡
+ 𝛾𝑇0

𝜕휀𝑘𝑘

𝜕𝑡
), (9) 

Using Eqs. (1) and (2) in Eqs. (4) and (5), we get 

(𝜇 + 𝛼)∇2�⃗⃗� + (𝜆 + 𝜇 − 𝛼)∇(∇ ∙ �⃗⃗�) + 2𝛼∇ × �⃗⃗⃗� − 𝛾∇휃 = 𝜌
𝜕2�⃗⃗�

𝜕𝑡2
, (10) 

(𝜐 + 𝛽)∇2�⃗⃗⃗� + (휀 + 𝜐 − 𝛽)∇(∇ ∙ �⃗⃗⃗�) + 2𝛼∇ × �⃗⃗� − 4𝛼�⃗⃗⃗� = 𝜌𝐽
𝜕2�⃗⃗⃗�

𝜕𝑡2
. (11) 

 

 

3. Formulation of the problem 
 

Let us consider a half-micropolar generalized thermoelastic space, whose surface is traction-

free and subjected to decreasing thermal source with time which affects a narrow band of width 

2𝐿 surrounding the 𝑥-axis. Let us consider plane waves in plane such that all particles on a line 

parallel to 𝑧-axis are equally displaced. Therefore, all the field variables are functions of 𝑥, 𝑦 

and 𝑡 only, and independent of the variable 𝑧. So, we assume the components of displacement 

and micro-rotation vectors in the form 

�⃗⃗� ≡ (𝑢, 𝑣, 0),     �⃗⃗⃗� ≡ (0, 𝜔, 0), (12) 

and the cubical dilatation is given by 

𝑒 = 휀𝑘𝑘 = ∇ ∙ �⃗⃗� =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
. (13) 

Equations of motion and equation of balance of momentum (10) and (11) will be in the form 

(𝜇 + 𝛼)∇2𝑢 + (𝜆 + 𝜇 − 𝛼)
𝜕𝑒

𝜕𝑥
+ 2𝛼

𝜕𝜔

𝜕𝑦
− 𝛾

𝜕휃

𝜕𝑥
= 𝜌

𝜕2𝑢

𝜕𝑡2
,

(𝜇 + 𝛼)∇2𝑣 + (𝜆 + 𝜇 − 𝛼)
𝜕𝑒

𝜕𝑦
− 2𝛼

𝜕𝜔

𝜕𝑥
− 𝛾

𝜕휃

𝜕𝑦
= 𝜌

𝜕2𝑣

𝜕𝑡2
,

(𝜐 + 𝛽)∇2𝜔 + 2𝛼 (
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) − 4𝛼𝜔 = 𝜌𝐽

𝜕2𝜔

𝜕𝑡2
.

 (14) 
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The constitutive relations are given by 

𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑥
+ 𝜆

𝜕𝑣

𝜕𝑦
− 𝛾휃,

𝜎𝑦𝑦 = (𝜆 + 2𝜇)
𝜕𝑣

𝜕𝑦
+ 𝜆

𝜕𝑢

𝜕𝑥
− 𝛾휃,

𝜎𝑧𝑧 = 𝜆 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) − 𝛾휃,

 (15) 

𝜎𝑥𝑦 = (𝜇 + 𝛼)
𝜕𝑣

𝜕𝑥
+ (𝜇 − 𝛼)

𝜕𝑢

𝜕𝑦
− 2𝛼𝜔,

𝜎𝑦𝑥 = (𝜇 − 𝛼)
𝜕𝑣

𝜕𝑥
+ (𝜇 + 𝛼)

𝜕𝑢

𝜕𝑦
+ 2𝛼𝜔,

 (16) 

𝑚𝑧𝑥 = (𝜐 − 𝛽)
𝜕𝜔

𝜕𝑥
= (𝜐 − 𝛽)𝑚𝑥𝑧,     𝑚𝑧𝑦 = (𝜐 − 𝛽)

𝜕𝜔

𝜕𝑦
= (𝜐 − 𝛽)𝑚𝑦𝑧, (17) 

𝜙 − 휃 = 𝑎∇2𝜙,     ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
. (18) 

Introduce the following boundary conditions for the present application: 

(1) Mechanical boundary conditions that the surface of the half-space is traction free 

𝜎𝑦𝑦(𝑥, 0, 𝑡) = 𝜎𝑥𝑦(𝑥, 0, 𝑡) = 0,     𝑚𝑦𝑧(𝑥, 0, 𝑡) = 0. (19) 

(2) Thermal boundary condition that the conductive temperature at the surface of the half-space 

is known 

𝜙(𝑥, 0, 𝑡) = 𝑓(𝑥, 𝑡), (20) 

where the function 𝑓(𝑥, 𝑡), applied on the boundary, is taken as follows 

𝑓(𝑥, 𝑡) = 𝜙0𝐻(𝐿 − |𝑥|)e−𝑏𝑡, (21) 

where 𝜙0 is constant, 𝐻(∙) is the Heaviside unit step function −𝐿 < 𝑥 < 𝐿 and 𝑡 is a certain 

value of time. This means that the applied thermomechanical shock acts only on a band of width 

2𝐿 centered around the 𝑥-axis on the surface of the half space and zero everywhere else. 

 

 

4. Solution of the problem 
 

For simplification we use the following dimensionless variables 

{𝑥′, 𝑦′} =
𝑐1

휂
{𝑥, 𝑦},     {𝑢′, 𝑣′, 𝑡′} =

𝑐1
2

휂
{𝑢, 𝑣, 𝑡}     {휃′, 𝜙′} =

𝛾

𝜌𝑐1
2

{휃 − 𝜙0, 𝜙 − 𝜙0},

𝜎𝑖𝑗
′ =

1

𝜇 + 𝛼
𝜎𝑖𝑗,     𝜔′ =

𝛼

𝜇 + 𝛼
𝜔,     𝑐1

2 =
𝜆 + 2𝜇

𝜌
,     휂 =

𝐾

𝜌𝐶𝐸
,     𝑚𝑖𝑗

′ =
𝛼휂

𝑐1(𝜇 + 𝛼)(𝜐 + 𝛽)
𝑚𝑖𝑗 .

 (22) 

Using Eq. (22), we find the dimensionless forms of equations of motion and the equation of 
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balance of momentum (14) and the heat conduction Eq. (9) with 𝑄 = 0 as follows (suppressing 

primes for simplicity in the notation) 

휁1
2

𝜕2𝑢

𝜕𝑥2
+ 휁2

2
𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
+ 2

𝜕𝜔

𝜕𝑦
− 휁1

2
𝜕휃

𝜕𝑥
= 휁1

2
𝜕2𝑢

𝜕𝑡2
,

휁1
2

𝜕2𝑣

𝜕𝑦2
+ 휁2

2
𝜕2𝑢

𝜕𝑥𝜕𝑦
+

𝜕2𝑣

𝜕𝑥2
− 2

𝜕𝜔

𝜕𝑥
− 휁1

2
𝜕휃

𝜕𝑦
= 휁1

2
𝜕2𝑣

𝜕𝑡2
,

∇2𝜔 + 𝑔1 (
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) − 𝑔2𝜔 = 𝑔3

𝜕2𝜔

𝜕𝑡2
,

 (23) 

(1 + 𝜏𝜃

𝜕

𝜕𝑡
) ∇2𝜙 = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕휃

𝜕𝑡
+ 𝑔

𝜕휀𝑘𝑘

𝜕𝑡
), (24) 

where 

휁1
2 =

𝜆 + 2𝜇

𝜇 + 𝛼
,     휁2

2 = 휁1
2 − 1,     𝑔1 =

2𝛼2휂2

𝑐1
2(𝜇 + 𝛼)(𝜐 + 𝛽)

,

𝑔2 =
4𝛼휂2

𝑐1
2(𝜐 + 𝛽)

,     𝑔3 =
𝜌𝐽𝑐1

2

𝜐 + 𝛽
,     𝑔 =

휂𝛾2𝑇0

𝜌𝑐1
2𝐾

.

 (25) 

Also, using the non-dimensional forms (22), the constitutive Eqs. (15)-(18) take the form 

𝜎𝑥𝑥 = 휁1
2

𝜕𝑢

𝜕𝑥
+ 𝛿2

𝜕𝑣

𝜕𝑦
− 휁1

2휃,

𝜎𝑦𝑦 = 휁1
2

𝜕𝑣

𝜕𝑦
+ 𝛿2

𝜕𝑢

𝜕𝑥
− 휁1

2휃,

𝜎𝑧𝑧 = 𝛿2 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) − 휁1

2휃,

 (26) 

𝜎𝑥𝑦 =
𝜕𝑣

𝜕𝑥
+ 𝛿3

𝜕𝑢

𝜕𝑦
− 2𝜔,     𝜎𝑦𝑥 = 𝛿3

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
+ 2𝜔, (27) 

𝑚𝑧𝑥 = 𝛿4

𝜕𝜔

𝜕𝑥
= 𝛿4𝑚𝑥𝑧,     𝑚𝑧𝑦 = 𝛿4

𝜕𝜔

𝜕𝑦
= 𝛿4𝑚𝑦𝑧, (28) 

𝜙 − 휃 = 𝑎1∇2𝜙, (29) 

where 

𝛿2 =
𝜆

𝜇 + 𝛼
,     𝛿3 =

𝜇 − 𝛼

𝜇 + 𝛼
,     𝛿4 =

𝜐 − 𝛽

𝜐 + 𝛽
,     𝑎1 =

𝑐1
2

휂2
𝑎. (30) 

The decomposition on displacement vector is considered in the form 

�⃗⃗� = ∇Φ + ∇ × Ψ⃗⃗⃗⃗,     Ψ⃗⃗⃗⃗ ≡ (0,0, Ψ). (31) 

The expression relating the radial displacement 𝑢(𝑥, 𝑦, 𝑡)  and the axial displacement 

𝑣(𝑥, 𝑦, 𝑡) to the displacement potentials (31) follows as 

715



 

 

 

 

 

 

A. E. Abouelregal and A. M. Zenkour 

𝑢 =
𝜕Φ

𝜕𝑥
+

𝜕Ψ

𝜕𝑦
,     𝑣 =

𝜕Φ

𝜕𝑦
−

𝜕Ψ

𝜕𝑥
. (32) 

Using Eq. (32), we can simplify Eqs. (23) and (24) as follow 

∇2 (휁1
2

𝜕Φ

𝜕𝑥
+

𝜕Ψ

𝜕𝑦
) + 2

𝜕𝜔

𝜕𝑦
− 휁1

2
𝜕휃

𝜕𝑥
= 휁1

2
𝜕2

𝜕𝑡2
(

𝜕Φ

𝜕𝑥
+

𝜕Ψ

𝜕𝑦
), (33) 

∇2 (휁1
2

𝜕Φ

𝜕𝑦
−

𝜕Ψ

𝜕𝑥
) − 2

𝜕𝜔

𝜕𝑥
− 휁1

2
𝜕휃

𝜕𝑦
= 휁1

2 (
𝜕Φ

𝜕𝑦
−

𝜕Ψ

𝜕𝑥
), (34) 

(∇2 − 𝑔3

𝜕2

𝜕𝑡2
− 𝑔2) 𝜔 = 𝑔1∇2Ψ, (35) 

(1 + 𝜏𝜃

𝜕

𝜕𝑡
) ∇2Φ = (1 + 𝜏𝑞

𝜕

𝜕𝑡
) (

𝜕휃

𝜕𝑡
+ 𝑔

𝜕2

𝜕𝑡2
∇2Φ). (36) 

Eqs. (33) and (34) may be reduced to the following forms (assuming without loss of generality 

of our problem that all quantities are initially zero) 

(∇2 −
𝜕2

𝜕𝑡2) Φ = 휃,     (∇2 − 휁2
2

𝜕2

𝜕𝑡2) Ψ = −2𝜔. (37) 

 

 
5. Normal mode analysis 

 
The solution for the considered physical variables can be decomposed in terms of normal 

modes in the following form 

{휃, 𝜙, 𝑢, 𝑣, 𝜔, 𝜎𝑖𝑗, Φ, Ψ}(𝑥, 𝑦, 𝑡) = {휃̅, �̅�, �̅�, �̅�, �̅�, �̅�𝑖𝑗 , Φ̅, Ψ̅}(𝑦)e(i𝜉𝑥+Ω𝑡), (38) 

where Ω is the complex time constants, i = √−1 is the imaginary unit and 𝜉 is the wave 

number in the 𝑥-direction, and {휃, 𝜙, 𝑢, 𝑣, 𝜔, 𝜎𝑖𝑗, Φ, Ψ} are the amplitudes of the represented 

plane waves to the considered variables. 

By using Eq. (38) in Eqs. (33)-(36), we can get the following equations 

(𝐷2 − 휀1)Φ̅ = 휃̅, (39) 

(𝐷2 − 휀2)Ψ̅ = −2�̅�, (40) 

(𝐷2 − 휀3)�̅� = 𝑔1(𝐷2 − 𝜉2)Ψ̅, (41) 

(𝐷2 − 𝜉2)�̅� = 휀4[휃̅ + 𝑔(𝐷2 − 𝜉2)Φ̅], (42) 

�̅� − 휃̅ = 𝑎1(𝐷2 − 𝜉2), (43) 

where 
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𝐷 =
d

d𝑦
,     휀1 = 𝜉2 + Ω2,     휀2 = 𝜉2 + 휁2

2Ω2,

휀3 = 𝜉2 + 𝑔2 + 𝑔3Ω2,     휀4 =
Ω(1 + 𝜏𝜃Ω)

1 + 𝜏𝜃Ω
.

 (44) 

Putting 𝑓(𝑥, 𝑦) in normal mode form and substituting Eq. (38) into Eqs. (19) and (20) we get 

the boundary conditions in the form 

�̅�𝑦𝑦(𝑥, 0, 𝑡) = �̅�𝑥𝑦(𝑥, 0, 𝑡) = �̅�𝑦𝑧(𝑥, 0, 𝑡) = 0,     �̅�(𝑥, 0, 𝑡) = 𝑓̅(𝜉, Ω), (45) 

where 𝑓̅(𝜉, 𝛺) may be written as follows 

𝑓̅(𝜉, Ω) = 𝜙0e−[i𝜉𝑥+(Ω+𝑏)𝑡]. (46) 

By eliminating 휃̅, �̅�, Φ̅ in Eqs. (39), (42), (43) and �̅�, Ψ̅ in Eqs. (40), (41), we get the 

following equations 

(𝐷4 − 휂1𝐷2 + 𝛾1){휃̅, �̅�, Φ̅} = 0, (47) 

(𝐷4 − 휂2𝐷2 + 𝛾2){�̅�, Ψ̅} = 0, (48) 

where 

휂1 =
𝜉2 + 휀1 + 휀4[𝑎1(휀1 + 𝑔𝜉2) + (𝑎1𝜉2 + 1)(𝑔 + 1)]

𝑎1휀4(𝑔 + 1) + 1
,     휂2 = 휀2 + 휀3 − 𝑔1,

𝛾1 =
𝜉2휀1 + 휀4(휀1 + 𝑔𝜉2)(𝑎1𝜉2 + 1)

𝑎1휀4(𝑔 + 1) + 1
,    𝛾2 = 휀2휀3 − 2𝑔1𝜉2.

 (49) 

The solutions of Eqs. (47) and (48), which are bounded for the values 𝑦 ≥ 0, are given as 

follows 

{Φ̅, 휃̅, �̅�, Ψ̅, �̅�} = ∑{𝐴𝑗, 𝐴𝑗
1, 𝐴𝑗

2, 𝐴𝑗
3, 𝐴𝑗

4}

2

𝑗=1

e−𝜆𝑗𝑦, (50) 

where 𝐴𝑗, 𝐴𝑗
𝑛, 𝑛 = 1,2,3,4 are some parameters depending on 𝜉 and Ω, and 𝜆𝑖, 𝑖 = 1,2 are 

the positive roots of the equation 

𝜆4 − 𝐴1𝜆2 + 𝐵1 = 0, (51) 

whereas 𝜆𝑖, 𝑖 = 3,4, are the positive roots the equation 

𝜆4 − 𝐴2𝜆2 + 𝐵2 = 0. (52) 

Substituting Eq. (50) into Eqs. (39), (40) and (43) we get the following useful relations 

𝐴𝑗
1(𝜉, Ω) = (𝜆𝑗

2 − 휀1)𝐴𝑗(𝜉, Ω),     𝑗 = 1,2, (53) 

𝐴𝑗
2(𝜉, Ω) =

𝜆𝑗
2 − 휀1

1 − 𝑎1(𝜆𝑗
2 − 𝜉2)

𝐴𝑗(𝜉, Ω),     𝑗 = 1,2, (54) 
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𝐴𝑗
4(𝜉, Ω) = −

1

2
(𝜆𝑗

2 − 휀2)𝐴𝑗
3(𝜉, Ω),     𝑗 = 3,4. (55) 

Now substituting Eqs. (53)-(55) into Eqs. (40), (41) and (43), we get 

휃̅ = ∑(𝜆𝑗
2 − 휀1)𝐴𝑗e−𝜆𝑗𝑦

2

𝑗=1

, (56) 

�̅� = ∑
𝜆𝑗

2 − 휀1

1 − 𝑎1(𝜆𝑗
2 − 𝜉2)

𝐴𝑗e−𝜆𝑗𝑦

2

𝑗=1

, (57) 

�̅� = ∑ −
1

2
(𝜆𝑗

2 − 휀2)𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

, (58) 

To obtain the displacement components �̅� and �̅� substituting Eq. (38) into Eq. (32) and then 

using Eq. (50), we get 

�̅� = i𝜉 ∑ 𝜆𝑗𝐴𝑗e−𝜆𝑗𝑦

2

𝑗=1

− ∑ 𝜆𝑗𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

, (59) 

�̅� = − ∑ 𝜆𝑗𝐴𝑗e−𝜆𝑗𝑦

2

𝑗=1

− i𝜉 ∑ 𝜆𝑗𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

. (60) 

The stress and couple stress components can be obtained by using Eq. (38) into Eqs. (26)-(29) 

and then substituting Eqs. (56)-(58) into resulting equations, we get 

�̅�𝑖𝑖 = ∑ 𝛼𝑖𝑗𝐴𝑗e−𝜆𝑗𝑦

2

𝑗=1

− ∑ 휁𝑖𝑗𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

,     𝑖 = 𝑥, 𝑦, 𝑧, (61) 

�̅�𝑖𝑠 = ∑ 𝛼𝑖𝑠𝑗𝐴𝑗e−𝜆𝑗𝑦

2

𝑗=1

− ∑ 휁𝑖𝑗𝑠𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

,     𝑖, 𝑠 = 𝑥, 𝑦, (62) 

�̅�𝑥𝑧 = −
i𝜉

2
∑(𝜆𝑗

2 − 휀2)𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

, (63) 

�̅�𝑦𝑧 = −
1

2
∑ 𝜆𝑗(𝜆𝑗

2 − 휀2)𝐴𝑗
3e−𝜆𝑗𝑦

4

𝑗=3

, (64) 

where 

𝛼𝑥𝑗 = (𝛿2 − 𝛽1
2)𝜆𝑗

2 + 𝛽1
2휀1 − 𝜉2𝛿1,     휁𝑥𝑗 = i𝜉𝜆𝑗(𝛿2 − 𝛿1), (65) 
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𝛼𝑦𝑗 = 𝛽1
2𝜆𝑗

2 − 𝜉2𝛿2 + 𝛽1
2(휀1 − 𝜆𝑗

2),     휁𝑦𝑗 = −휁𝑥𝑗, (66) 

𝛼𝑧𝑗 = −𝜉2𝛿2 + 𝛽1
2(휀1 − 𝜆𝑗

2),     휁𝑧𝑗 = −i𝜉𝜆𝑗𝛿2, (67) 

𝛼𝑥𝑦𝑗 = −2i𝜉𝜆𝑗
2,     휁𝑥𝑦𝑗 = 𝜉2 − 휀2 + 𝜆𝑗

2(𝛿3 + 1), (68) 

𝛼𝑦𝑥𝑗 = −i𝜉𝜆𝑗(𝛿3 + 1),     휁𝑦𝑥𝑗 = 휀2 + 𝜉2𝛿3. (69) 

Now applying the thermal boundary conditions (45), we get 

∑ 𝛼𝑦𝑗𝐴𝑗

2

𝑗=1

+ ∑ 휁𝑦𝑗𝐴𝑗
3

4

𝑗=3

= 0, (70) 

∑ 𝛼𝑦𝑥𝑗𝐴𝑗

2

𝑗=1

+ ∑ 휁𝑦𝑥𝑗𝐴𝑗
3

4

𝑗=3

= 0, (71) 

1

2
∑ 𝐸𝑗𝐴𝑗

3

4

𝑗=3

= 0, (72) 

∑ 𝐸𝑗𝐴𝑗

2

𝑗=1

= 𝑓̅, (73) 

where 

𝐸𝑗 = 𝜆𝑗(𝜆𝑗
2 − 휀2),     𝑗 = 3,4,     𝐸𝑗 =

𝜆𝑗
2 − 휀1

1 − 𝑎1(𝜆𝑗
2 − 𝜉2)

,     𝑗 = 1,2. (74) 

Eqs. (70)-(73) can be solved for the unknowns 𝐴𝑗 and 𝐴𝑗
3. These solutions are 

𝐴1 =
Δ1𝑓̅

Δ
,     𝐴2 =

Δ4𝑓̅

Δ
,     𝐴3

3 =
Δ3𝑓̅

Δ
,     𝐴4

3 =
Δ4𝑓̅

Δ
, (75) 

where 

Δ1 = −𝐸3(𝛼𝑦2휁𝑦𝑥4 − 𝛼𝑦𝑥2휁𝑦4) − 𝐸4(𝛼𝑦𝑥2휁𝑦3 − 𝛼𝑦2휁𝑦𝑥3), (76) 

Δ2 = 𝐸3(𝛼𝑦1휁𝑦𝑥4 − 𝛼𝑦𝑥1휁𝑦4) + 𝐸4(𝛼𝑦𝑥1휁𝑦3 − 𝛼𝑦1휁𝑦𝑥3), (77) 

Δ3 = 𝐸4(𝛼𝑦2휁𝑦𝑥1 − 𝛼𝑦1휁𝑦𝑥2),     Δ4 = 𝐸3(𝛼𝑦2휁𝑦𝑥1 − 𝛼𝑦1휁𝑦𝑥2), (78) 

Δ = 𝐸1Δ1 + 𝐸2Δ2. (79) 

Thus, Eq. (75) constitute the complete solution of the thermal boundary condition problem. 
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Fig. 1 Variations of dynamical temperature 휃 with distance 𝑦 for three different theories 

 

 

We can get two particular cases for the present problem. For example, if we neglect the effect 

of micropolarity, the analytical expressions for displacement component and force stresses may be 

obtained in theory of thermoelasticity with two temperatures (2TE). In addition, as 𝑎1 → 0 and 

𝜙 → 0  and neglecting the effect of micropolarity, the classical theory (one-temperature 

generalized thermoelasticity theory 1TT) is recovered. 

 

 

6. Numerical results and discussions 
 

The magnesium crystal is chosen for the purposes of evaluations following Eringen (1970). The 

values of physical constants of magnesium, are given at reference temperature 𝑇0 = 23 ℃ as 

𝜆 = 9.4 × 1011 dyne/cm2,     𝜇 = 4.5 × 1011 dyne/cm2, 
𝛼 = 0.5 × 1011 dyne/cm2,     𝜐 + 𝛽 = 0.779 × 10−4 dyne/cm2, 

𝐾 = 0.6 × 10−2 cal/(cm s ℃),     𝐶𝐸 = 0.23 cal/(gm ℃), 
𝜌 = 1.74 gm/cm3,     𝐽 = 0.2 × 10−15 cm2,     𝛾 = 4.834 × 104 dyne. 

We have Ω = Ω0 + iΩ1 then eΩ𝑡 = eΩ0𝑡(cos Ω1𝑡 + i sin Ω1𝑡), so for small values of time we 

can take Ω is real (i.e., Ω = Ω0), in numerical calculations, the other constants of the problem is 

taken as follows 

𝛺0 = 2,     𝜉 = 2,     𝐿 = 2,     𝜙0 = 1,     𝑏 = 1. 

The computations are carried out at the non-dimensional time 𝑡 = 0.2, in the plane 𝑥 = 0.1 

and in the range 0 ≤ 𝑦 ≤ 3, and we consider the real part of the amplitudes of the field quantities 

which are represented on the vertical axis. 

The conductive and the dynamical temperature 𝜙 and 휃, the thermal stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 

𝜎𝑦𝑥, the displacement components 𝑢 and 𝑣, the micro-rotation 𝜔 and the components of the 

couple stress 𝑚𝑦𝑧 are represented graphically at different positions of 𝑦 and time 𝑡. The figures 

show that two-temperature parameter 𝑎1 has significant effect on all the fields. The waves reach 

the steady state depending on the value of the temperature discrepancy a1. So, according to the 

results of this work, it is important to distinguish between the dynamical temperature and the 

conductive temperature. 
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Fig. 2 Variations of conductive temperature 𝜙 with distance 𝑦 for three different theories 

 

 
Fig. 3 Variations of displacement 𝑢 with distance 𝑦 for three different theories 

 

 

Fig. 1 exhibits the variation of dynamical temperature 휃 in the context of the three theories 

(MP2TE) and (MP1TE), in which we observe that a significant difference in the dynamical 

temperature is noticed for the value of the non-dimensional two-temperature parameter 𝑎1 where 

the case of 𝑎1 = 0 indicates the old case, one type temperature (MP1TE) and the case of 𝑎1 =
0.2 ,  0.4  indicates the new case, two-temperature (MP2TE). In MP2TE, the mechanical 

temperature represents the temperature comes from the mechanical process between the particles 

and the layers of the elastic solid, so it seems to be less than the corresponding one in the theory 

MP1TE, which is the total temperature. In fact this figure indicates to the amount of 

thermodynamic process occurred inside the investigated material. If we neglect the effect of 

micropolarity, that is when 𝛼 = 𝛽 = 𝜐 = 휀 = 𝐽 = 0, we get theory of thermoelasticity with two 

temperatures (2TE). It is observed that the dynamical temperature 휃 decreases as the axial 

distance 𝑦 increases to move in the direction of wave propagation. The dynamical temperature of 

MP2TE model may be differing than those of MP1TE theory. 

Fig. 2 describes the variation of conductive temperature 𝜙 in the context of the two theories 

MP1TE and MP2TE. The conductive temperature in MP2TE records values higher than those 

values recorded in MP1TE, and this can be explained that is the sum of the two temperatures; the 

mechanical one and the temperature coming from the second gradient of the total temperature 𝜙𝑖𝑖. 

We can observe that there exists a slight difference between the three lines in Fig. 2, and this is due 

to the choice of the two temperatures discrepancy coefficient 𝑎1. For a large value of 𝑎1, the  
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Fig. 4 Variations of displacement 𝑣 with distance 𝑦 for three different theories 

 

 
Fig. 5 Variations of stress component 𝜎𝑥𝑥 with distance 𝑦 for three different theories 

 

 
Fig. 6 Variations of stress 𝜎𝑦𝑦 with distance 𝑦 for three different theories 

 

 

difference will be significant. The conductive temperature 𝜙 starts with its maximum value at the 

origin (due to the presence of the thermal boundary) and decreases until attaining zero beyond the 

thermal wavefront for the generalized theory, whereas it is continuous everywhere else for the 

coupled theory. 

Figs. 3 and 4 exhibit the space variation of normal and transverse displacements 𝑢 and 𝑣 in 

which we observe that a significant difference in the dynamical temperature is noticed for different 

value of the non-dimensional two-temperature parameter. It is evident that the values of transverse  
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Fig. 7 Variations of stress 𝜎𝑦𝑥 with distance 𝑦 for three different theories 

 

 
Fig. 8 Variations of micro-rotation 𝜔 with distance 𝑦 for three different theories 

 

 
Fig. 9 Variations of tangtial couple stresses 𝑚𝑦𝑧 with distance 𝑦 for three different theories 

 

 

displacement 𝑣 recorded in MP2TE are less than those values recorded in MP1TE, and the same 

behavior is noticed for the normal displacement 𝑢. 

Figs. 5-7 describe the variations of normal and shearing stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑦𝑥, and we 

observe that, the two-temperature influence still decreases the values of normal and shearing 

stresses. From Figs. 5 to 7, we found that, the two-temperature parameter has significant effects on 

all the fields. The waves reach the steady state depending on the value of the temperature 
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discrepancy 𝑎1 The behavior of variations are similar in nature in entire range with signifficant 

difference in their magnitude of variation. 

Figs. 8 and 9 exhibit the variation of micro-rotation 𝜔 and tangtial couple stresses 𝑚𝑦𝑧 under 

the three theories MP2TE, MP1TE and 2TE in which we observe that a significant difference in 

the values is noticed for different value of the non-dimensional two-temperature parameter 𝑎1. It 

is noticed that the value of tangential couple stress for MP1TE theory are large in comparison to 

MP2TE and MP2TE, theories and the values are small for the rest of the range. The tangential 

couple stress starts with a zero value at the origin (according to the boundary condition). 

 

 

7. Conclusions 
 

This work constructed a new model of two-temperature generalized micropolar 

thermoelasticity for thermoelastic medium. When we distinguish between the two temperatures, 

the first comes from the mechanical process and the second comes from the thermal process. We 

obtain that the values of most relevant variables record values less than that recorded in the 

conventional model of micropolar thermoelasticity (MP1TE). Indeed, this can be considered as an 

expected result according to the main dependence of these variables on the thermodynamic 

temperature and the decreasing inherent in this temperature. We think that, these results may be the 

nearer to the correct values, especially in the cases in which the small values of time in the elastic 

solids are considered. These facts indicate that the two temperatures discrepancy coefficient 𝑎1 

has well pronounced effect on predominantly elastic motions and only marginal effect on 

predominantly thermal disturbances. 

The generalized theory with phase lags is perhaps a more natural candidate for its identification 

as thermoelasticity than the usual theory. We may conclude that this theory (of heat conduction) is 

a good model to explain the heat conduction for several kinds of solids and fluids. According to 

the present study, the theory of two-temperature generalized thermoelasticity describes the 

behavior of the particles of elastic solid more real than that of one-temperature generalized 

thermoelasticity theory. It is appropriate to separate both the conductive heat wave and the 

thermodynamical heat wave. 
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EC 

 

Nomenclature 

a Two-temperature parameter (temperature discrepancy) 

CE Specific heat at constant deformation 

𝑒 = div �⃗⃗� Volumetric strain 

J Micro-inertia 

K Thermal conductivity 

mij Components of couple stress tensor 

t Time 

T0 Environment temperature 

�⃗⃗� Displacement vector 

Q Heat source 

Sij Kronecker’s delta function 

휀𝑖𝑗 Components of micropolar strain tensor 

𝜖𝑖𝑗𝑘 Permutation symbol 

𝜔𝑖 Component of microrotation vector 

𝜙 Conductive temperature 

𝜙0 Reference conductive temperature 

𝛾 Thermal elastic coupling tensor 

𝜆, 𝜇, 𝛼, 𝛽, 𝜐, 휀 Material constants 

𝛻2 Laplacian 
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𝜌 Material density 

𝜎𝑖𝑗 Stress components 

𝜏𝑞 Phase-lag of gradient of temperature 

𝜏𝜃 Phase-lag of heat flux 

휃 = 𝑇 − 𝑇0 Thermodynamical temperature 
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