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Abstract.  A method for decoupling reliability based design optimization problem into a set of 
deterministic optimization and performing a reliability analysis is described. The inner reliability analysis 
and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must 
perform a large number of iterations to find the optimized shape and size of structure, the computational cost 
is very high. Therefore, during the course of this research, new multilevel reliability optimization methods 
are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: 
one of the shape design variables, and the other of the size design variables. In each iteration, the probability 
constraints are converted into equivalent deterministic constraints using reliability analysis and then 
implemented in the deterministic optimization problem. The framework is first tested on a short column with 
cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In 
addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane 
loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in 
linear and quadratic manner are presented.  
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1. Introduction 
 

In the future, the use of probabilistic methods both in structural design and during the 

certification process is expected to undergo a significant increase. There is an increasing 

realization in many quarters that designing a structure considering various uncertainties is a more 

rational approach than the current approach of using safety factors (Mohaghegh 2005). Therefore, 

several investigations have been performed using an uncertainty based approach. 

The conventional approach to formulate the Reliability Based Design Optimization (RBDO) is 

to utilize a double-loop optimization and uncertainty analysis which are nested one into another to  
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Fig. 1 The double-loop RBDO framework 

 

 

minimize the objective function while satisfying the probability constraints, Fig. 1. The purpose of 

the optimization loop is to execute optimum search. The purpose of the uncertainty analysis loop is 

to evaluate the design and its uncertainty characteristics. At every iteration of the outer loop, the 

optimizer calls the uncertainty analysis, which executes many simulations, depending on the 

uncertainty analysis methods being used, e.g., the Monte Carlo Simulation and the First and 

Second Order Reliability Methods. The computational cost associated with the nested RBDO is 

very high due to the number of simulations required for each uncertainty analysis during every 

optimization iteration (Yao et al. 2011). Since the double loop procedure may be computationally 

impractical, researchers have studied several techniques to reduce the high computational expense 

of RBDO. To merge the double loop RBDO into one single level problem, Agarwal et al. (2004) 

proposed replacing the lower-level inverse reliability analysis optimization problem with the 

corresponding First Order necessary Karush-Kuhn-Tucker (KKT) optimality conditions at the 

upper level optimization. The proposed formulation is implemented in an augmented design space 

that consists of both the original design variables and the so-called most probable point (MPP) of 

failure corresponding to each critical constraint. This formulation is mathematically equivalent to 

solving the original nested optimization if the constraint qualification conditions are satisfied. A 

concern with Agarwal et al. (2004)’s formulation is that the number of design variables is 

increased with the number of critical constraints. This greatly increases the optimization 

computational cost. Chen et al. (1997) also developed another method to convert the double loop 

RBDO into a single loop procedure by approximately finding the MPP of each active constraint. 

The MPP is found by using the gradients of the constraints and the desired safety factor. 

Another way of converting the double loop RBDO into a single loop procedure is to perform 

the optimization and uncertainty analysis sequentially. The double loop reliability constraints are 

formulated as deterministic constraints based on the uncertainty analysis. Then the equivalent 

constraints are used in the optimization to direct the optimal solution to the feasible region which 

satisfies the reliability requirement. Agarwal and Renaud (2006) developed a decoupled method 

for RBDO. The deterministic optimization loop is separated from the reliability analysis loop. The 

MPPs are updated during the deterministic optimization by using a first-order Taylor series 

expansion about the design point from the preceding cycle. The sensitivities required to update the 

MPP are obtained using a post-optimality analysis at the MPP optimal solution. Elishakoff and 

Chamis (2001) studied the relationship between the safety factor and reliability levels and showed 

that in many cases the safety factors can be directly expressed by the required reliability levels. 

However, since the value of the safety factor does not specify the reliability, the author introduced 

468



 

 

 

 

 

 

A multilevel framework for decomposition-based reliability shape and size optimization 

the notion of probabilistic sufficiency factor (Qu and Haftka 2004), which has a high correlation 

with the target reliability. A probabilistic sufficiency factor of 1.0 represents that the achieved 

probability of failure is equal to the target one. If a probabilistic sufficiency factor is less than one, 

the probability of failure exceeds the target and the design is not safe, and a probabilistic 

sufficiency factor larger than one means that the probability of failure is less than the target 

probability. Qu and Haftka (2004) compared the performance of response surface approximations 

fitted for three approaches of describing failure in a non-deterministic manner, namely: (a) the 

probability of failure, (b) the safety index, and (c) the probabilistic sufficiency factor. They 

showed that the response surface approximation can have better accuracy when it is fitted to the 

probabilistic sufficiency factor than to either of the other two. Furthermore, they showed that the 

probabilistic sufficiency factor provides more information in regions of low probability than either 

of the other two.  

Wu et al. (2001) also proposed a safety factor based RBDO by converting reliability constraints 

to the equivalent deterministic constraint with safety factor in the optimization cycle. Du and Chen 

(2004) developed a sequential RBDO methodology. In their framework, the optimization is 

conducted by first using the MPP of the previous design point and then performing a reliability 

analysis to update the MPP. The combined optimization and reliability analysis cycle is repeated 

until the objective convergence and the reliability requirement is achieved. Ba-abbad et al. (2006) 

improved the Du and Chen technique to distribute the reliability of the system over its components 

in an optimal way. In Ba-abbad et al. (2006)’s technique, at each iteration, the first-order reliability 

analysis is carried out to check if this design has an acceptable reliability. Then, the performance 

measure analysis is performed to calculate the MPPs of the various failure modes. Finally, the 

approximate deterministic optimization is conducted to find the optimum design and measure the 

maximum of the safety indices.  

Another approach for improveing the efficiency of RBDO is to use surrogate models such as 

response surfaces. Lopez et al. (2015) developed a methodology based on the response surface 

method and Firefly Algorithm to perform design optimization of truss structures. The response 

surface method is responsible for the reduction of the computational cost corresponding to the 

evaluation of the probabilistic constraints and the Firefly Algorithm addresses the issues related to 

the non-convexity and mixed-variables of the optimization problem. 

As was discussed earlier, most of the reported single-loop RBDOs in the literature utilize an 

iterative procedure which finds the design variables while updating the MPPs and replacing the 

probabilistic constraints by equivalent deterministic constraints. Recently, some single-loop 

RBDO techniques have emerged that do not involve the iterative cycle. Shan and Wang (2008) 

proposed an approach by finding the feasible and reliable space of solutions in the first step and 

then performing an optimization in that space. Although the developed method eliminates the 

reliability analysis in the RBDO process, using the design point to calculate the gradient vector 

instead of using the MPPs may lead to an accuracy issue in some engineering applications (Li et 

al. 2013). 

The robustness and efficiency problems in reliability based shape design optimization result in 

its limited range of applications (Yao et al. 2011). This research proposes a multilevel approach 

for decomposition-based reliability shape and size optimization. A sequential optimization and 

reliability analysis methodology is developed that utilizes the shape and size variables as design 

variables, and the applied loads and the Young’s modulus as random variables. The proposed 

approach, first, conducts the reliability analysis to find MPPs and the probability of satisfying the 

given constraints. Next, each probability constraint in the multilevel shape and size optimization is 
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converted to an equivalent deterministic constraint by using its MPP obtained in the previous 

iteration. Since the changes in size and shape variables during the optimization process result in 

different kinds of changes in the structure’s performance, the single step shape and size 

optimization may suffer from a lack of convergence and may lead to a sub-optimal solution. In 

addition, due to the large number of design variables, the combined shape and size optimization 

requires significant computational effort. One way to improve the efficiency and reach lower 

optimal design is breaking large structural optimization problems into multilevel optimizations 

(Wang et al. 1997, Hansen and Horst 2008, Montemurro et al. 2016). We propose a two-step 

optimization algorithm for decomposing the shape and size optimization problem. In the two-step 

optimization algorithm, the size and shape optimization process is divided into two parts; the first 

part consists of a sizing optimization, while keeping the structural layout unchanged to minimize 

the mass while satisfying the buckling, stress, and crippling constraints, and the second step 

involves calculating the best layouts for the maximum multiple objective functions that include 

buckling, stress and crippling.  

The sequential multilevel RBDO framework employs EBF3PanelOpt, a Computational Design 

Environment for panel with curvilinear stiffeners, to analyze the structures. EBF3PanelOpt 

developed at Virginia Tech employs the PYTHON programming environment (Kapania et al. 

2013, Tamijani et al. 2014). The finite element commercial software, MSC.PATRAN and 

MSC.NASTRAN are used to parametrically create and analyze a detailed finite element model of 

curvilinearly stiffened panels. The developed sequential RBDO framework also utilizes 

DAKOTA, Design Analysis Kit for Optimization and Terascale Applications, for reliability 

analysis and design optimization. The present framework is demonstrated on two set of examples: 

the first example relates to RBDO of a short column with rectangular cross section having 

uncertain material properties and subject to uncertain loads; the second set of examples includes 

the panel with two and four curvilinear stiffeners with 13 and 25 size and shape design variables, 

respectively, and up to seven random variables, depending on the loading condition. In these 

examples, various combinations of loading conditions, including uniform, linearly varying, and 

quadratically varying in-plane compression and shear loads, are taken into account as random 

variables.  
 

 

2. Reliability based design optimization framework 
 

For deterministic design optimization, all of the important parameters influencing the system 

are assumed to be well defined with known values. These parameters could include loading 

conditions and material properties. Traditionally, uncertainties are accounted for by using safety 

factors in the design process. This approach often leads to overdesigning the system. Thus, the 

need to include uncertainty in design process becomes important and reliability-based design 

optimization is being increasingly accepted by the industry. However, RBDO encounters 

computational issues when it is applied to a complex engineering design. Performing a reliability 

analysis for a given structure requires repeating the structural analysis for different sets of random 

variables, which can be computationally very expensive when using numerical methods such as 

finite element analysis. In order to reduce the computational time of RBDO, the framework can be 

reformulated by converting the probabilistic constraints into equivalent deterministic constraints. 

Then, the deterministic optimization and uncertainty analysis loop are conducted sequentially, 

which finally converge to an optimized design while satisfying the reliability constraints after a 

required number of iterations. In order to illustrate the sequential optimization and reliability  
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A multilevel framework for decomposition-based reliability shape and size optimization 

 
Fig. 2 Transformation and MPP (Choi et al. 2006) 

 

 

analysis framework, first the double-loop RBDO, Fig. 1, is presented 

{

      

    ( )

     [  (   )   ]               

        

 (1) 

where d is the design variables’ vector and d
L
 and d

U
 are the design variables’ lower and upper 

bounds. Here, X is the random variables vector, f is the objective function, gi is the ith constraint 

function, m is the number of constraints, Prob[gi(d, X)≤0] is the probability of satisfying the ith 

constraint, and R is the specified reliability for the constraints. The RBDO goal is to minimize the 

structural weight subjected to given probabilistic constraints on buckling, von Mises stress, and 

crippling (gi, m=3). The buckling factor is considered for the buckling constraint and is defined as 

the inverse of the fundamental eigenvalue. The von Mises stresses for all elements were 

aggregated using the Kreisselmeier and Steinhauser (KS) function and the crippling constraint is 

calculated as the ratio of maximum negative principal stress and the maximum allowable stress in 

the stiffener. The structure responses including the first buckling eigenvalue, von Mises stress, and 

the principal stress vector are calculated using finite element analysis. 

In order to perform the RBDO efficiently rather than utilizing a double-loop framework (Eq. 

(1)) the deterministic optimization and the uncertainty quantification are decoupled from one 

another. Various techniques have been developed to decouple the optimization and the reliability 

analysis. One of these techniques is sequential optimization and reliability analysis (SORA). The 

main idea behind SORA is to perform optimization by applying the equivalent deterministic 

constraints, instead of using the reliability constraints. The constraints on the probability of 

satisfying constraints of a structure can be converted to the equivalent deterministic constraints by 

using the MPPs at the desired level of safety.  

For MPP based sequential RBDO, the random variables are replaced with their MPPs; 

therefore, the deterministic constraints are shifted to meet the desired reliability level. The 

calculated MPP is improved after each iteration to provide an accurate MPP for the deterministic 

optimization. A multilevel MPP RBDO framework is developed utilizing the sequential 

optimization and reliability analysis (see Fig. 3). In the proposed approach, first the reliability 

analysis of initial design (d
0
) is conducted to find the MPP corresponding to the desired reliability 

( ). MPP is the design point that has most significant contribution to the Probability of failure 

(Choi et al. 2006). The MPP is defined in a standardized and independent coordinate system. In 

the transformation procedure, the design vector X is transformed into the vector of standardized, 
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independent Gaussian variables, U (see Fig. 2). Generally, MPP calculation can be formulated as 

an optimization problem 

{
 

 
      

      (   )
 
 ⁄

     ( )   
 

 (2) 

The shortest distance β from the origin to a point on the limit-state surface, g(U), is called the 

reliability index (Hasofer and Lind 1974). Typical MPP-based reliability analysis methods include 

first and second order reliability methods (FORM/SORM). To calculate the probability of failure 

using FORM and SORM, first, the MPP needs to be found. After finding the MPP and reliability 

index using Eq. (2), FORM and SORM approximate the probability of failure by using first or 

second order Taylor series expansion of limit state function at the MPP. In the MPP approaches, 

first the Taylor series is constructed at the means of random variables, and then the Taylor series is 

evaluated at each MPP. The uncertainty analysis is performed using DAKOTA. An overview of 

the various MPP search algorithms available in DAKOTA are provided in its reference manual 

(Adams et al. 2009). We have tested the following MPP algorithms for the current research:  

• first order and second order Taylor series centered at the uncertain variable means 

(x_taylor_mean) 

• first order and second order Taylor series starts at the uncertain variable means and updates 

the Taylor series approximation at each MPP prediction (x_taylor_mpp) 

• two-point adaptive nonlinear approximation (TANA)  

Of these algorithms, the x_taylor_mpp yields to MPP results similar to TANA and converges in 

less computational time. Therefore, the x_taylor_mpp is selected for the MPP search and is 

implemented in the framework. 

After performing the reliability analysis, each probability constraint gi(d, XMPP) in the 

multilevel shape and size optimization is converted to an equivalent deterministic constraint by 

using its MPP. By replacing the random variables with their MPPs, the current constraint is shifted 

to meet the desired reliability level. Then the deterministic multilevel optimization is performed to 

optimize the mass of structures while satisfying the equivalent constraints on buckling, stress, and 

crippling. Once the optimum is found, the reliability analysis is performed at current optimum to 

find the updated MPPs (X
j
MPP) and also to calculate the probability of satisfying constraints, Ps. If 

the objective function is not close to one obtained in the previous iteration, or some constraints are 

violated, the iterative procedure will continue until the objective function and MPPs converge, and 

the probability of satisfying constraints is larger than the desired system probability of safety. In 

order to reduce the number of optimization iterations and find the optimized design faster, the 

design obtained in the previous iteration is given as the initial design for the current optimization 

cycle.  

 

 

3. EBF3PanelOpt 
 

EBF3PanelOpt, a finite element framework for panels with curvilinear stiffeners, is utilized to 

analyze the structures. Detailed information concerning the framework can be found in (Mulani et 

al. 2013), however, a brief summary of it is given here. 

EBF3PanelOpt is developed using an object oriented script written in Python that interfaces  
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A multilevel framework for decomposition-based reliability shape and size optimization 

 
Fig. 3 The sequential framework for RBDO 

 

 

MSC.PATRAN®  and MSC.NASTRAN®  to perform FEA on a panel with curvilinear, blade-type 

stiffeners and returns the mass of the panel and constraints on yielding, buckling, and crippling or 

local failure of the panel. In this framework, the user needs to create an initial Patran database 

using either EBF3PanelOpt or utilizing Patran directly.  

After giving the input variables, EBF3PanelOpt writes a Patran session file in Python, launches 

Patran and executes this session file to update geometry of the stiffened panel. After successful 

execution of the session file, it writes the input file (bdf) for Nastran. The successful execution of 

this Nastran (bdf) file, the Nastran response file (f06) is read by Python; responses like bucking 

factor, von Mises stress and the crippling stress for a stiffener are calculated by Python. During the 

execution of Patran and Nastran, if any error occurs or if it takes more time than the allocated time, 

these processes will be terminated and default responses will be sent with “pass/fail” as an active 

constraint. The pass/fail response indicates a failure so that the design can be disregarded without 

discontinuities being introduced into the design space. During analysis, completion of bdf and 

session files closure is monitored for successful execution. 

A key feature of EBF3PanelOpt is the ability to specify the geometry in a parametric fashion 

such that the optimizer fully specifies the panel shape and size. Sizing quantities such as panel 

thickness, stiffener thickness, and stiffener height are used as design variables to define the 

geometry. The stiffener curve is represented using a third order uniform rational B-spline using 

two end-points and a control point so the stiffener always remains in the panel area. The stiffener  
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Table 1 Description of the thirteen design variables 

Design Variable Meaning Lower Limit Upper limit 

d1 Starting point of first stiffener 0 1 

d2 Shape parameter (x-coordinate) for first stiffener 0 1 

d3 Shape parameter (y-coordinate) for first stiffener 0 1 

d4 Ending point of first stiffener 0 1 

d5 Starting point of second stiffener 0 1 

d6 Shape parameter (x-coordinate) for second stiffener 0 1 

d7 Shape parameter (y-coordinate) for second stiffener 0 1 

d8 Ending point of second stiffener 0 1 

d9 & d10 Height of Stiffener 1 and 2 2 cm 6 cm 

d11, d12 & d13 Thickness of Stiffener 1, 2 and Panel 2 mm 6 mm 

 

 

end-points lie on the perimeter of the panel, the end-point design variable always lies between 0 

and 1. The control-point is defined using interpolation of the panel surface, so the control-point’s x 

co-ordinate and y co-ordinate have values between 0 and 1. For a uniform cross-section blade-

stiffener, height and thickness are design variables apart from plate thickness as a design variable. 

Thus, for two and four stiffeners cases, a stiffened panel having uniform cross-section stiffeners 

has 13 and 25 design variables, respectively. 

During the successful execution of EBF3PanelOpt, linear buckling analysis is carried out using 

the SOL-105 solver from Nastran that gives the lowest buckling eigenvalue or the critical buckling 

load factor, as well as von Mises stress distribution for the static analysis. Crippling criteria for the 

stiffeners is calculated using the formulation given in the page 444 of Niu (2011). Various 

responses are normalized before being reported to the user or optimizer. The buckling factor is 

defined as the inverse of the fundamental eigenvalue. The von Mises stress in the stiffened panel 

should be less than the allowed stress (yield stress) for safe design. In EBF3PanelOpt, during the 

optimization or to account artificial effect of boundary conditions, the von Mises stress, are 

averaged over all finite elements using Kreisselmeier-Steinhauser (KS) criteria. Hence, the 

successful EBF3PanelOpt evaluation provides the mass of the structure, the buckling factor, 

normalized von Mises stress and crippling stress, and pass/fail response as output. 
 
 

4. Multilevel reliability based optimization  
 

Using the combined shape and sizing optimization methods for optimizing problems with high 

number of shape variables may result in numerous complications. Since the optimizer must 

perform a large number of iterations to find the global optimum for shape and size variables, the 

computational cost is very high. Combined shape and sizing optimization methods may also fail 

because of numerical problems and the lack of convergence to a sub-optimal solution. Therefore, 

during the course of this research, new optimization methods have been developed that essentially 

divide the design domain into two sub-spaces: one of the sizing design variables, and the other of 

the shape design variables. The advantage of doing two-step optimization lies in the principle of 

the Divide and Conquer strategy. In two-step optimization, first size optimization is carried out for 

fixed values of shape design variables with minimization of mass as an objective and the  
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A multilevel framework for decomposition-based reliability shape and size optimization 

 
Fig. 4 Description of the design variables 

 

 

constraints on buckling parameter, crippling, and von Mises stress. Next, with the size parameters 

fixed as obtained in size optimization, the shape optimization is performed. In shape optimization, 

the optimal shape (layout) is obtained which is best for resisting critical constraints with fixed 

values of size variables. These two sub-optimizations must be iterated, as size parameters obtained 

in size optimization may not be optimal for the shape variables obtained in shape optimization. For 

this iterative optimization procedure, the error in the mass of two successive iterations is observed 

to terminate the optimization procedure. 

The RBDO problem can be formulated mathematically as follows 

{
 
 

 
 
       (                               )

       ( )

     [ (   )   ]   
     [  (   )   ]   

     [(   (   )   ]   

        

 (3) 

where λ, KS, and σcc are buckling parameter (1/buckling eigenvalue), Kreisselmeier and 

Steinhauser (KS) stress, and the crippling, respectively. The shape and size design variables (d) are 

listed in Table 1 and shown in Fig. 4. 

Using the sequential RBDO, as explained in Fig. 3, the optimization and reliability assessment 

are separated, and the optimization is defined as  

{
 
 

 
 
       (                               )

       ( )

 (        )   

  (        )   

   (        )   

        

 (4) 

The optimization problem, Eq. (4), is divided into two step optimization. The two-step 

optimization formulation of layout and size of structure can be expressed as follows. First, perform 

size optimization for fixed values of shape design variables. In this step, the optimizer optimizes 

the mass using size design variables while satisfying the buckling, stress, and crippling constraints 
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 (5) 

Although the mass is optimized and optimal size variables are obtained after the size 

optimization, some constraints might become critical. The critical constraints can be improved by 

changing the structural layout. Thus, the framework moves onto the second step, shape 

optimization, which optimizes the layout with respect to the critical constraints. At this stage the 

critical constraints and the constraint on structural weight ratio (    
   

         
          

                                                 ) are defined as the objective functions by 

using the weighted-sum or scalarization method (Wang et al. 1997, Marler and Arora 2010). The 

multiple objectives are represented as a single composite function 

   ∑     
 

 

   
      

 
                                               

                                  

                                   
           

  

 (6) 

The constraints (λ(dv, XMPP1), (dv, XMPP2), KS(dv, XMPP2), and σcc(dv, XMPP3)) that reach their 

critical values are included in fc
j
. The multiple objectives shape design optimization problem is 

stated as  

{
 

 
                            (  )  

                           (  )              
     

  
       

 

 (7) 

With the improvement of critical constraints as the result of shape optimization, the structural 

weight can be further reduced in the following size optimization. The final optimal result is 

achieved by using an iterative size and shape optimization procedure. Using global optimization 

methods, such as genetic algorithms, for both shape and size optimization prevents the optimizer 

from getting stuck into a local optimum.  

 
 

5. Results 
 

In this section, results for a test case, optimum design of a short column, two cases of 

curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two 

cases of curvilinearly stiffened panels subjected to linearly and parabolically varying shear and 

compression are presented. The test case considers RBDO of a rectangular short column with 

cross-section design variables, and the applied loads and the yield stress as random variables.  
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A multilevel framework for decomposition-based reliability shape and size optimization 

 
Fig. 5 Iteration history of the sequential optimization and reliability analysis of short column 

 

 

Finally, the application of developed RBDO framework for curvilinearly stiffened panels is 

demonstrated. The design variables include the shape and size variable of stiffened panels, and the 

in-plane loads and young modulus are defined as random variables. To determine the effect of in-

plane load variations on the optimal mass of the panel, four sets of in-plane load distributions are 

considered. The computations are performed on a computer with dual four-core 3.00 GHz Intel 

Xeon processors with 20 GB of RAM. Parallel processing is used for all cases, resulting in eight 

simultaneous analyses for each iteration of the optimization process. 

 

 

6. Short column 
 

This test problem involves the plastic analysis and design of a short column with rectangular 

cross section (width b and depth h) having uncertain material properties (yield stress Y) and 

subject to uncertain loads (bending moment M and axial force F) (Kuschel and Rackwitz 1997). 

The objective and limit state functions are defined as 

{

 ( )     

 (   )    
  

    
 

  

(   ) 
 (8) 

The distributions for F, M, and Y are normal (500, 100), normal (2000, 400), and lognormal (5, 

0.5), respectively, with a correlation coefficient of 0.5 between F and M. An objective function of 

cross-sectional area and a target reliability index of 2.5 (cumulative failure probability Pf≤0.00621) 

are used in the design problem 

{

     ( )

         
          
           

 (9) 

First, the reliability analysis of the initial design is performed to find the MPP corresponding to 

the desired target reliability index of 2.5 (see iteration zero in Fig. 5). Starting from the initial  
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Table 2 Reliability design optimization of short column 

 
Objective function Reliability index Iter.num *NFE 

Outer Approximations RBDO  

(Kirjner-Neto et al. 1998, Cheng et al. 2006) 
- - 14 277 

Bi-level Approach (Cheng et al. 2006) 216.82 2.503 5 136 

Sequential Approximate Programming  

(Cheng et al. 2006) 
216.83 2.503 9 116 

Performance Measure Bi-level Approach  

(Yi et al. 2008) 
216.69 - 5 154 

Performance Measure Sequential Approximate 

Programming (Yi et al. 2008) 
216.73 - 6 98 

Sequential RBDO 216.75 2.501 3 72 

*NFE is the number of function evaluation 
 

 

variables (b, h)=(5 mm, 15 mm), the reliability index is -3.07 and the MPP corresponding to the 

desired reliability index of 2.5 is (P, M, Y)=(697.2 MPa, 2523 MNm, 4.286 MPa). The random 

variables in  (   )    
  

    
 

  

(   ) 
 are replaced with the calculated MPP, and the 

optimization is performed to find the optimum b and h for the shifted constraint. The optimal sizes 

variables (b, h) are (8.65, 25). The reliability index at the current optimum (8.65, 25) is 2.491, and 

the MPP corresponding to the reliability index of 2.5 is (690.5 MPa, 2583 MNm, 4.278 MPa). 

Next, the constraints, G(d,X) are evaluated at MPP, and used as equivalent deterministic 

constraints in optimization, G(d, XMPP). Once the optimum is found (b, h)=(8.67, 25), the reliability 

analysis is performed at the current optimum to find the updated MPP and to calculate the 

reliability index. The MPP and reliability index at second iteration are (690.4 MPa, 2583 MNm, 

4.278 MPa) and 2.501, respectively. It is noted from Fig. 5 that the difference in the value of the 

reliability index is less than 0.4% after the second iteration, and the third iteration is conducted to 

guarantee the convergence of the objective function. The optimal sizes variables, MPP and 

reliability index at third iteration are (8.67, 25), (690.4 MPa, 2583 MNm, 4.278 MPa) and 2.501, 

respectively. The Sequential RBDO requires 3 iterations and 72 function evaluations. The optimal 

design from sequential reliability design optimization and the comparison of performance with 

other algorithms is shown in Table 2. 

 
 

7. Curvilinearly stiffened panels subjected to uniform shear and compression in-plane 
loads 
 

A simply supported rectangular plate of size 0.4064×0.5080 m with material properties listed in 

Table 3 is studied under combined uniform shear and compression. The baseline panel 

configuration, loading, material properties, and design constraints are representative of typical 

aircraft structure for this design optimization study. All panel analyses, with or without stiffeners, 

are performed with NASTRAN using EBF3PanelOpt. The stiffened panel geometry and mesh are 

regenerated for each design point analysis during optimization. Reliability based design minimizes 

the mass of courvilinearly stiffened panel subjected to the constraints on buckling (λ), 

Kreisselmeier and Steinhauser (KS) and the crippling (σcc). The desired probability of safety (R)  
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Table 3 Material properties of curvilinearly stiffened plate 

Modulus of Elasticity 73×10
9
 Pa 

Density 2795 kg/m
3 

Poisson’s Ratio 0.33 

Yield stress 427.4 MPa 

 

 
Fig. 6 Panel dimensions and loading conditions 

 

 

for all cases is 0.9998. 

The first load case (L1) studied is a stiffened panel under combined shear and compression 

with dominant compression (NY/NXY=4.36), as shown in Fig. 6. NY and NXY are normally distributed 

and uncorrelated with a mean of 308 kN/m and 71 kN/m, respectively and 15% coefficient of 

variation (COV). The distribution for E is lognormal with a mean of 73 GPa and 1% COV. The 

second load case (L2) has smaller ratio of shear and compressive load magnitudes (NY/NXY=1.13). 

In this load case, NY and NXY are normally distributed and uncorrelated with a mean of 152 kN/m 

and 134 kN/m, respectively, and 15% COV. The distribution, mean, and covariance for E are 

similar to the previous case.  

Following the sequential RBDO scheme presented in the previous section, the iteration 

histories for load case one are shown in Fig. 7 (L1). It is shown that both the optimization and 

reliability analysis converges after two iterations. The panel’s mass is 2.031 kg, which is slightly 

lighter than the deterministic optimum of 2.032 kg. The applied loads for deterministic 

optimization are obtained after applying a factor of safety of 1.5 to the limit loads and the panels 

are designed for that loads. The deterministic optimum configuration is shown in Fig. 8 (L1). The 

optimum objective, probability of safety, and shape and sizing design variable values for RBDO 

and deterministic optimization are shown in Table 4 (L1). A few observations are of interest here. 

First, since in the studied case the compression is the dominant load, using an appropriate safety 

factor (here it is 1.5) can give the desired probability of failure, as can be seen in Table 4. When 

there is only one important random variable, the safety factors can be directly expressed by the 

required reliability levels. However, in many cases, there does not exist a relationship between the 

safety factor and reliability levels. Furthermore, the buckling constraint is active for both 

configurations, which yield closely optimal results. 

The optimum configuration and iteration histories for the second load case are shown in Fig. 7 

(L2). The shape and sizing design variable values obtained from the sequential RBDO and the 

related final optimum mass, and the probability of safety for three constraints are shown in Table 4 

(L2). The deterministic optimization result for the second load case using a factor of safety of 1.5 

is presented in Fig. 8 (L2). The optimum mass of the panel is 1.746 kg, which is lighter than the  
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Table 4 Optimum mass, constraint and design variable obtained for (L1) NY/NXY=4.36 (L2) NY/NXY=1.13 

Variable No. 

Deterministic 

Optimization 

(L1) 

Sequential RBDO 

(L1) 

Deterministic 

Optimization 

(L2) 

Sequential RBDO 

(L2) 

x1 0.0861 0.5806 0.6417 0.6393 

x2 0.2052 9.8569 0.0361 0.7125 

x3 0.2484 0.6736 0.2437 0.3899 

x4 0.6403 0.1479 0.0651 0.0480 

x5 0.1412 0.6481 0.1339 0.5619 

x6 0.6613 03642 0.8111 0.3642 

x7 0.7401 0.3123 0.7497 0.6698 

x8 0.5812 0.0725 0.5701 0.1392 

x9, m 0.0321 0.0318 0.0325 0.0318 

x10, m 0.0428 0.0324 0.0317 0.0390 

x11, m 0.0031 0.0031 0.0027 0.0026 

x12, m 0.0024 0.0025 0.0021 0.0021 

x13, m 0.0021 0.0021 0.0020 0.0020 

Mass, kg 2.0324 2.0316 1.7941 1.7455 

Prob[λ(d,X)≤1] 0.9998 0.9998 0.9999 0.9998 

Prob[KS(d,X)≤1] 0.9999 0.9999 0.9999 0.9999 

Prob[(σcc(d,X)≤1] 0.9999 0.9999 0.9999 0.9999 

Number of evaluations 10447 20849 11637 33270 

 

  

(L1) (L2) 

Fig. 7 Iteration history of mass and probability of safety (L1) NY/NXY=4.36 (L2) NY/NXY=1.13 
 

 

deterministic optimum of 1.794 kg with the probability of safety 0.9999. For the second load case, 

the compression and shear are both important and neither one can be ignored. Therefore, using the 

same safety factor for both loads may not result in the desired probability of failure and optimum 

mass obtained using RBDO. By comparing the sequential RBDO Fig. 7 (L2) and deterministic 

optimization Fig. 8 (L2), it further becomes evident that the deterministic optimization using  
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(L1) (L2) 

Fig. 8 Deterministic optimum configuration (L1) NY/NXY=4.36 (L2) NY/NXY=1.13 
 

  
(L3) (L4) 

Fig. 9 Iteration history of mass and probability of safety for linearly (L3) and parabolically (L4) varying load 

cases 
 

 

safety factor did not yield the RBDO final configuration. It is important to note that changing the 

safety factor would change the shear and compression loads, but it does not change their ratio, and 

consequently it only changes the size variables while having no effect on the shape variables. The 

final configuration of curvilinear stiffeners is governed by the ratio of the shear and compression 

loads, rather than their magnitudes. 

 

 

8. Curvilinearly stiffened panels subjected to non-uniform shear and compression in-
plane loads 
 

It is seen from the results shown in the previous subsection that the influence of the ratio of 

shear and compression loads on the final results is substantial. Furthermore, it is also important to 

understand the influence of the additional random variables, such as the linearly and parabolic 

varying loads, and to study their effect on the optimal mass and probability of safety. In this 

subsection, the curvilinearly stiffened panels under shear and compression loads with linearly and  
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Table 5 Optimum mass, constraint and design variable obtained for linearly (L3) and parabolically (L4) 

varying load cases 

Variable/Response 
Sequential 

RBDO (L3) 

Sequential 

RBDO (L4) 
Variable/Response 

Sequential 

RBDO (L3) 

Sequential 

RBDO (L4) 

x1 0.6363 0.6337 x10, m 0.0324 0.0322 

x2 0.6956 0.6258 x11, m 0.00266 0.0027 

x3 0.3524 0.3727 x12, m 0.0022 0.0020 

x4 0.0518 0.034 x13, m 0.0020 0.0021 

x5 0.1339 0.1284 Mass, kg 1.7334 1.7404 

x6 0.4556 0.5768 Prob[λ(d,X)≤1] 0.9998 0.9998 

x7 0.6910 0.7586 Prob[KS(d,X)≤1] 0.9999 0.9999 

x8 0.5530 0.5550 Prob[(σ_cc (d,X)≤1] 0.9999 0.9999 

x9, m 0.0321 0.0325 Number of evaluations 33632 36557 

 

 

parabolically varying random distributions is studied. The rectangular panel has the same 

dimensions and boundary conditions as discussed in the previous subsection, but is subjected to 

different loading condition. The linearly load distribution (L3) and parabolic load distribution (L4) 

are  
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As can be seen in Eq. (10), in the linear load case, two random variables are defined for each of 

shear and compression loads. NY1 and NXY1 are normally distributed with a mean of 152 kN/m and 

134 kN/m, respectively, and 15% COV, and NY2 and NXY2 are normally distributed with a mean of 

zero, and the standard deviation is 5% of means of NY1 and NXY1, respectively.  

The distribution, mean, and covariance for E are similar to that in the previous subsection. 

Starting from an initial design that satisfies all the constraints, the sequential multilevel RBDO is 

carried out for the third load case and converges in three iterations with 33270 analyses. The 

history of the objective function and reliability constraints with respect to the iteration number are 

shown in Fig. 9 (L3), and the optimal design variable values and the mass of the structure along 

with the probability of safety are presented in Table 5 (L3). 

By comparing Fig. 8 (L1) and Fig. 9 (L3), it is seen that the optimal design for linearly varying 

load case and those obtained for the uniform load case are similar to each other, due to the small 

influence of load variation on structural response. 
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Table 6 Optimum mass, constraint and design variable obtained for panel with four curvilinear stiffeners 

Variable/Response  Variable/Response  Variable/Response  

x1 0.0896 x11 0.4527 x21, m 0.0020 

x2 0.1980 x12 0.0259 x22, m 0.0022 

x3 0.0095 x13 0.5827 x23, m 0.0020 

x4 0.6652 x14 0.3191 x24, m 0.0020 

x5 0.1721 x15 0.5516 x25, m 0.0021 

x6 0.4365 x16 0.1167 Mass, kg 1.4501 

x7 0.8158 x17, m 0.0233 Prob[λ(d,X)≤1] 0.9999 

x8 0.5238 x18, m 0.0220 Prob[KS(d,X)≤1] 0.9999 

x9 0.6117 x19, m 0.0237 Prob[(σ_cc (d,X)≤1] 0.9999 

x10 0.4443 x20, m 0.0228 Number of evaluations 62040 

 

 
Fig. 10 Iteration history of mass and probability of safety for panel with four curvilinear stiffeners 

 

 

As for the parabolic load distribution (Eq. (10)), three random variables are defined for each of 

the shear and compression loads. Both NY1 and NXY1 are normally distributed and uncorrelated with 

a mean of 152 kN/m and 134 kN/m and 15% COV. Similarly, NY2 and NXY2 are also normally 

distributed and uncorrelated with a mean of zero, and the standard deviation is 5% of means of NY1 

and NXY1, and NY3 and NXY3 are normally distributed and uncorrelated with a mean of zero, and the 

standard deviation is 2% of the mean values of NY1 and NXY1. 

Table 5 compares the optimal design variables, the objective function, the probability 

constraints, and the number of iterations of two load cases (L3 and L4), all achieved by using 

sequential RBDO. Note that, as expected, the parabolically varying load case has objective 

function values larger than linearly varying load case, due to the effect of third variable in the 

parabolic load distribution. However as shown in Fig. 9, the stiffener layouts obtained for two load 

cases are similar to each other. This can be explained by the fact that the first variable in the 

compression and shear loads (NY1 and NXY1) are dominant, and they appear to be governing the 

final optimal layout while the other parameters (NY2, NXY2, NY3, and NXY3) change the size variables 

and consequently the weight of the stiffened panel. 
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9. Panels with four curvilinear stiffeners subjected to uniform shear and compression 
in-plane loads 
 

The final test case is a panel with four curvilinear stiffeners with nine size and 16 shape design 

variables, under combined shear and compression (NY/NXY=1.13). Both NY and NXY are normally 

distributed and uncorrelated with mean values of 152 kN/m and 134 kN/m, respectively, and 15% 

COV. The distribution for E is lognormal with a mean of 73 GPa and 1% COV.  

Using the sequential RBDO framework, the optimal design of panel and stiffeners is obtained 

and the final design and iteration histories are presented in Fig. 10. As can be seen in Fig. 10, the 

convergence is monotonic. Having 16 shape design variables makes the RBDO of stiffened panel 

a complex engineering design and a demanding computational problem. The successful 

convergence of the developed framework after four iterations of deterministic optimization clearly 

shows its capability in solving complex engineering uncertainty design problems. 

The optimum weight, probability of safety, and shape and sizing design variable values for 

RBDO are shown in Table 6. The panel weight is 1.450 kg (Table 6), which is about 17% lighter 

than the two stiffeners case of 1.746 kg (Table 4), while the probability of safety of the former is 

slightly higher than the latter. As was discussed earlier, the rate of convergence highly depends on 

the initial design. Higher convergence rate is achieved by finding the MPP corresponding to the 

desired reliability and using it to find the equivalent deterministic constraints in the initial design 

optimization stage. Additionally, to reduce the number of optimization iterations, the optimum 

design obtained in the previous iteration is given as the initial design for the current optimization 

cycle. 

Although not at a commercial level yet, curvilinear-stiffened structures such as those presented 

in Fig. 10 can be manufactured with emerging methodologies and techniques in manufacturing 

technologies, such as electronic beam freeform fabrication and friction stirwelding (Kapania et al. 

2013). 

 

 

10. Conclusions 
 

An efficient reliability based design optimization framework is studied. A sequential 

optimization and reliability analysis methodology is developed. The sequential multilevel RBDO, 

first, conducts the reliability analysis to find MPPs and the probability of satisfying the given 

constraints. Next, each probability constraint is converted to an equivalent deterministic constraint 

by using its MPP of previous iteration. Since the changes in size and shape variables during the 

optimization process result in different kinds of changes to the structure’s performance, a method 

for decomposing the shape and size optimization problem is utilized to improve the efficiency and 

accuracy of the developed framework. In the two-step optimization algorithm, the shape and size 

optimization process is divided into two parts; the first part involves a sizing optimization while 

keeping the shape variables unchanged to minimize the mass while satisfying the buckling, stress, 

and crippling constraints, and the second step consists of calculating the best structural layout that 

minimizes the constraints on buckling, stress, and crippling. The present study includes an 

evaluation case, the reliability based design optimization of a short column, and more complex 

cases related to stiffened panels subjected to uniform, linearly, and parabolically varying shear and 

compression in-plane loads. It is shown that the optimal configuration of curvilinear stiffeners is 

governed by the ratio of the shear and compression loads rather than their magnitudes, which 

484



 

 

 

 

 

 

A multilevel framework for decomposition-based reliability shape and size optimization 

requires imposing various safety factors for shear and compression loads. This makes the 

requirement for an RBDO further evident. The stiffened panel test cases include up to 25 shape 

and size design variables, which makes them complex engineering designs and demanding 

computational problems. The successful convergence of the proposed methodology after a few 

iterations of deterministic optimization clearly shows its capability in solving complex engineering 

uncertainty design problems. 
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