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Abstract.  Theoretical and numerical assessments of approximate evaluations and simplified analyses of 
piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) 
are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are 
reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and 
plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are 
derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting 
EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D 
finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is 
conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal 
analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies 
and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce 
drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling 
foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse 
shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy 
harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values 
are very small in particular for the first mode which is the common target of these applications. 
 

Keywords:  piezoceramic materials; shear response; modal effective electromechanical coupling 

coefficient; approximate evaluation; plane-strain; plane-stress; short-circuit; open-circuit; free-vibration; 

finite element 

 
 
1. Introduction 

 

Due to their inherent high material electromechanical coupling coefficients (Benjeddou 2007), 

shear-mode piezoceramic transducers have been often used during the last decade, in particular, for 

structural vibration shunted damping (Kim et al. 2005, Benjeddou and Ranger 2006, Trindade and 

Maio 2008, De Godoy and Trindade 2011, Dos Santos and Trindade 2011) and energy harvesting 

(Ren et al. 2010, Wang and Liu 2011, Zhao et al. 2012, Zhou et al. 2012). A key parameter for 

measuring or optimizing the latter applications performance is therefore the so-called (Deü and 

Benjeddou 2005) modal effective (structural) electromechanical coupling coefficient (EMCC). 
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Indeed, as does the so-called (IEEE 1988) electromechanical coupling factor (EMCF) for a 

piezoelectric material undergoing a given single-mode response, the EMCC measures the amount 

of energy that can be converted from the structural vibration to the transducer electric one 

undergoing multiple modes response. Besides, as shown in (Trindade and Benjeddou 2009), it is a 

non-dimensional parameter that depends approximately on the transducer‟s piezoelectric material 

EMCF of its mode response and the structural ratio of the open-circuit (OC) modal strain energy 

(MSE) stored in the transducer to that of the piezoelectric adaptive structure (host + transducer). 

Thus, once the EMCF is fixed by the choice of the transducer‟s piezoelectric material, the modal 

effective EMCC depends only on the interaction between the piezoelectric transducer and its host. 

Therefore, its accurate numerical evaluation requires specific piezoelectric electromechanically 

coupled modal analyses under short-circuit (SC) and OC, considering the physical constraints of 

equipotential (EP) electrodes, electric boundary conditions (BC).  

Nevertheless, approximate evaluations of the shear modal effective EMCC were proposed for 

their use with equivalent elastic modal analyses only; they use piezoelectric adaptive structures 

geometric and materials properties (Boudaoud et al. 2007, Majidi et al. 2010), modal SC (elastic) 

stiffness (Benjeddou 2006, Benjeddou and Ranger 2006, Benjeddou and Belouettar 2006), 

decoupled and coupled frequencies (Kim et al. 2005) or SC and OC elastic properties-induced 

frequencies (Benjeddou 2009, 2010). Some of these approximations were recently assessed 

numerically and experimentally for the piezoelectric transverse-mode response (Benjeddou 2014); 

in particular, the latter showed that the EMCC approximate evaluations do not see electro-

mechanically uncoupled modes due to their incapacity to consider the physical EP constraints on 

the patch electrodes‟ nodal potential degrees of freedom (DOF). It is then a first objective of the 

present contribution to assess numerically, using three-dimensional (3D) coupled piezoelectric and 

elastic (with SC and OC transducer properties) finite element (FE) analyses, some of the modal 

effective EMCC approximate evaluations (Benjeddou 2014) for the piezoelectric shear-mode 

response of a typical cantilever sandwich beam benchmark (Benjeddou and Ranger 2006).  

Single degree of freedom (SDOF) models are very popular for analyzing vibration shear 

piezoelectric shunted damping (Benjeddou and Ranger 2006) and energy harvesting (Aladwani et 

al. 2013, Zhao et al. 2012, Zhou et al. 2012). They provide high shear-mode performance for these 

applications. However, the MSE (Trindade and Maio 2008)– and 1D sandwich FE with EP 

constraints (Trindade and Benjeddou 2009)– based evaluations provided rather low shear-mode 

performance. This is due to an overestimation, by the SDOF models, of the shear strain energy 

stored in the transducer. Similarly, the analytical approximation of the OC electric condition by a 

nil electric displacement one (Deü and Benjeddou 2005, Boudaoud et al. 2007) provided a high 

shear modal effective EMCC while two-dimensional (2D) plane-strain (PStrain) and 3D 

piezoelectric coupled FE analysis, considering EP constraints on the electrodes nodal potential 

DOFs, showed lower or nil (Trindade and Benjeddou 2009) modal effective coupling performance. 

This is due to the fact that a nil electric displacement corresponds rather to a non-electroded (NE) 

condition while an electroded condition requires enforcing the EP physical constraints which effect 

averages the nodal electric potentials on the transducer electrodes, leading to the reduction of the 

shear strain energy stored in the transducer, hence reducing and even vanishing the resulting shear 

modal effective EMCC. A particular attention, within above first objective, will then be devoted to 

the 3D FE assessment of the EP constraints effect on the shear modal effective EMCC.   

For computational cost efficiency and simplicity reasons, 2D PStrain and PStress analyses are 

often used for the analysis of shear-mode piezoelectric vibration (Baillargeon and Vel 2005a, 

Boudaoud et al. 2007, Majidi et al. 2010). Therefore, recent numerical and experimental 
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assessments (Benjeddou 2014) have shown that, for the piezoceramic materials transverse-mode 

vibration, it is better to use the PStress assumptions than PStrain ones. Moreover, it was proved 

that 3D SC and OC frequencies and resulting modal effective EMCC are bounded from below by 

PStress and from above by PStrain related results. It is then the second objective of the present 

work to check numerically the validity of these results for the piezoelectric shear-mode vibration.  

The piezoelectric shear-mode has been used in a unimorph configuration (shear transducer 

surface-patched on a metallic cantilever beam) for structural vibration energy harvesting (Ren et 

al. 2010, Wang and Liu 2011, Zhao et al. 2012, Zhou et al. 2012) and in a sandwich configuration 

(shear patched core between metallic faces) for structural vibration shunted damping (Benjeddou 

and Ranger 2006, Trindade and Maio 2008, De Godoy and Trindade 2011, Dos Santos and 

Trindade 2011). A major difference between these two configurations is that the piezoceramic 

patches are transversely sheared by the elastic faces of the sandwich configuration; in this case, the 

filling material of the spaces not occupied by the piezoceramic patches plays a crucial role so that 

it renders using popular equivalent single layer (ESL) analytic (Abramovitch 2003, Edery-Azulay 

and Abramovich 2006) and 1D FE (Manjunath and Bandyopadhyay 2006) beam models 

inadequate since they do not consider the deformation along the width direction and the faces 

relative displacements (shearing) against the core. A particular attention, within above two 

objectives, will then be devoted to the assessment of the filling material influence on shear-mode 

modal effective EMCC approximations and simplified 2D PStrain and PStress analyses. 

Notice that the EP constraints and filling material Young modulus only influence on the shear 

modal effective EMCC was investigated in (Trindade and Benjeddou 2009) using 1D PStress–

based sandwich beam FE and an MSE–based EMCC approximation; here, beside the EP 

constraints, different filling materials elastic and inertial properties are varied; they are assessed 

using 3D FE for a typical benchmark of a sandwich beam cantilever (Benjeddou and Ranger 2006) 

equivalent to the bimorph used for assessing numerically the transverse-mode (Benjeddou 2014). 

In the following, the piezoelectric shear modal effective EMCC is first introduced, after the SC 

and OC free-vibration problems corresponding to the 3D piezoelectric shear-mode constitutive 

behavior, and its approximate evaluations are reviewed; then, simplified 2D PStrain and PStress 

piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and 

corresponding expected SC and OC frequencies and resulting EMCC are discussed; next, a 3D FE 

assessment of different evaluation techniques of the shear modal effective EMCC is conducted, 

including the EP constraints effect; i.e., without (w/o) and with (w) EP (reference). Finally, 2D 

PStrain and PStress FE modal analyses are assessed under SC and OC electric conditions. For 

these numerical assessments, a cantilever sandwich beam benchmark from the piezoelectric 

shunted damping literature (Benjeddou and Ranger 2006) is used. It consists of two aluminum 

faces and a core embedding two separate shear piezoceramic patches and different filling 

materials, made of soft foam, hard foam (Baillargeon and Vel 2005b) and glue, for the non-

occupied spaces. The cantilever shear piezoelectric adaptive sandwich beam benchmark is 

modeled using ANSYS
®
 quadratic 2D (8 nodes quadrangular) and 3D (20 nodes hexahedral) 

piezoelectric and elastic FEs. 

 

 

2. Approximate evaluations 
 

This section aims first to derive the OC elastic matrix [C
D
] of a shear-mode piezoceramic patch 

that is polarized along its longer side and has electrodes covering its major surfaces that are 
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perpendicular to its thickness direction; the presence of these electrodes allows assuming a 

dominant unidirectional electric field (UDEF) along the thickness direction so that the above OC  

elastic matrix can be reduced to D[C ] . Then, the electromechanically coupled and uncoupled free- 

vibration problems associated to the host and adaptive structures with considering patch‟s SC and 

OC electric conditions in coupled modal analyses or having SC and OC elastic matrices only in 

uncoupled modal analyses. Finally, the frequencies resulting from the solutions of the different 

free-vibration problems are used for defining some approximate evaluations of the shear modal 

effective EMCC for its later numerical assessment.  

 
2.1 Shear-mode constitutive equations 
 

The electric potential–based piezoelectric FEs implement the e-form constitutive equations 

which write, in the 3D condensed matrix form, as 

E t

S

T C e S

D Ee

    
     

     

                             (1) 

Where, superscript t denotes transpose operation; {T}, {S}, {D} and {E} are the mechanical stress 

and strain, and the electric displacement and field vectors; [C
E
], [e] and [∈S

] are the SC (at 

constant electric field) elastic, stress piezoelectric and blocked (at constant strain) dielectric 

matrices. 

For a nil full electric field, approximating a SC electric condition, the inverse constitutive 

equation (first line) of Eq. (1) reduces to the following SC purely elastic one 

   ET C S                                   (2) 

By condensing the electric field from Eq. (1), the latter transforms into an h-form as 

D t

S

T C h S

E Dh

    
     

      

                           (3) 

Where 

D E t S 1 S 1 S S 1[C ] [C ] [e ][ ] [e],  [h] [ ] [e],  [ ] [ ]                    (4a, b, c) 

This h-form is used in electrically hybrid FEs that use the dominant unidirectional electric 

displacement as an independent variable, for example for piezoelectric shunted damping analysis 

(De Godoy and Trindade 2011). It is also often used for formulating shunted damping (Kim et al. 

2005) or energy harvesting (Zhou et al. 2012) analytical 1D models. 

For a nil full electric displacement, approximating an OC electric condition, the inverse 

constitutive equation (first line) of Eq. (3) reduces to the following OC elastic one 

   DT C S                                  (5) 

Consider now the individual shear piezoceramic patch, shown in Fig. 1(a), which polarization 

lies along the material axis 3, while its electrodes cover the major surfaces lying in plane 2-3. 

Retaining the Voigt engineering notations and denoting E
pqC  (p, q=1…6) the SC elastic constants,  

278



 

 

 

 

 

 

Approximate evaluations and simplified analyses of shear-mode piezoelectric modal... 

  

(a) (b) 

Fig. 1 Individual (a) and sandwiched (b) piezoceramic shear patch electroded on its major surfaces 

 

 

epk (k=1, 2, 3) the stress piezoelectric constants and S
ii  (i=1, 2, 3) the blocked dielectric  

constants, the corresponding shear-mode piezoceramic (having transverse isotropic behavior) 

patch e-form 3D constitutive equations are explicitly 

 

E E E
11 12 13

1 1 31
E E E
12 11 13

2 2 31
E E E
13 13 333 3 33

E
4 455 15

E
5 5 1555

E E E16 6
66 11 122

C C C 0 0 0
T S 0 0 e

C C C 0 0 0T S 0 0 e

C C C 0 0 0T S 0 0 e

T S0 0 0 C 0 0 0 e 0

T S e 00 0 0 0 C 0

T S0 0 0 0 0 C C C

 
    
    
    
       

     
    
    
    
        

 

1

2

3

E

E

E
0

0 0 0

 
 
   
   
   
   

  
 
  

   (6a) 

1

S2
111 15 1

3 S
2 15 11 2

4 S
3 31 31 33 333

5

6

S

S
0 0D 0 0 0 0 e 0 E

S
D 0 0 0 e 0 0 0 0 E

S
D e e e 0 0 0 E0 0

S

S

 
 
        
         

         
                 

 
  

          (6b) 

When the piezoceramic patch is used in a sandwich configuration and when the structural 

coordinate system is different from the material one, as in Fig. 1(b) and the present work, previous 

e-form constitutive equations should be transformed by interchanging the material constants 

subscript 3 to 1 and vice-versa; this leads, in the Cartesian coordinate system having axes x, y and 

z, to the following piezoceramic x-z shear-mode e-form 3D constitutive equations, where the 

electromechanical constants are those of Eqs. 6(a)-(b) and the stress and strain notations have been 

changed to p, q in order to differentiate them from the local ones Tp, Sq. Besides, 1, 2, 3, 4, 5, 6 

Voigt subscripts denote now tensorial ones xx, yy, zz, yz, xz, xy 

 

E E E
33 13 13

1 1 33
E E E
13 11 12

2 2 31
E E E
13 12 113 3 31

E E E1
4 466 11 122

E5 5 15
55

E6 6
55

C C C 0 0 0
e 0 0

C C C 0 0 0 e 0 0

C C C 0 0 0 e 0 0

0 0 00 0 0 C C C 0 0

0 0 e
0 0 0 0 C 0

0
0 0 0 0 0 C

 
     

     
    
        

           
     
    
        

 

x

y

z

15

E

E

E

e 0

 
 
   
   
   
   

  
 
  

   (7a) 
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1

S2
33x 33 31 31 x

3 S
y 15 11 y

4 S
z 15 z11

5

6

0 0D e e e 0 0 0 E

D 0 0 0 0 0 e 0 0 E

D 0 0 0 0 e 0 E0 0

 
 

       
         

                            
 
  

          (7b) 

With these matrices and Eq. 4(a), the full OC elastic matrix can be determined explicitly as 

 

2
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S
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2 2
31 31
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2
3

E E E
33 13 13

E E
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E
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S
33

2
15

S
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e

e 
 
 
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 
 
 
 
      
  
 
 
 
 


 





 
 











 







 (8) 

On the other hand, since the embedded shear-mode piezoceramic patch is electroded on its 

major surfaces, an UDEF along axis z can be assumed so that Eqs. 7(a)-(b) can be reduced to 

 

E E E
33 13 13

1 1
E E E
13 11 12

2 2
E E E
13 12 113 3

E E E1
4 466 11 122

E5 5 15
55

E6 6
55

C C C 0 0 0
0

C C C 0 0 0 0

C C C 0 0 0 0

00 0 0 C C C 0 0

e
0 0 0 0 C 0

0
0 0 0 0 0 C

 
       

       
      
           

              
      
     
          

 

zE





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       (9a) 
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 
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                (9b) 
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Therefore, if the transverse electric field is nullified (Ez=0), as an approximation of the SC 

electric condition, Eq. 9(a) reduces to this purely elastic constitutive equation 

 

E E E
33 13 13

1 1
E E E
13 11 12

2 2
E E E
13 12 113 3

E E E1
4 466 11 122

E5 5
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     
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    
        

 

 Or    EC         (10) 

However, when the transverse electric displacement is nullified (Dz=0), as an approximation of 

the OC electric condition, this reduced OC elastic constitutive equation is obtained after 

condensing the transverse electric field (Ez) between Eqs. 9(a)-(b) 
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e
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     
           




 
  

 Or    
D

C   
  

 (11a) 

Where, the OC x-z shear elastic constant can be also written in terms of the shear EMCF, k15, as 

2 E
D E 15 55
55 55 S 2

11 15

e C
C C

1 k
  

 
                           (11b) 

From this relation, it can be concluded that, under a transverse UDEF assumption (Ex=Ey=0), 

the approximate OC condition (Dz=0) stiffens only the x-z shear elastic constant increasingly with 

the shear EMCF. Finally, the comparison with the full OC elastic matrix, as in Eq. (8), indicates 

that this approximate OC condition filters only the shear-mode response (longitudinal and 

transverse response modes are absent in Eq. (11)), while condensing all electric field components,  

that provides Eq. (8), modifies all the elastic constants, except in-plane shear one (
E
66C ) so that the  

three response modes (longitudinal, transverse and shear) are present. Moreover, as can be seen 

from Eq. 9(b), the in-plane electric displacement components (Dx, Dy) are not nil under UDEF 

assumption; nevertheless, they do not enter into the electric energy contribution to the 

electromechanical enthalpy density, H*=½  (p p - Di Ei), i=x, y, z, since DE=0, =x, y. Besides, 

major surfaces electrodes, of area A
±
=A and outward normal zn


 , allow measuring electric 

charges from only the transverse electric displacement through this expression 

 zA A A

1
Q D.n dS D.z dS D  dS

2


                            (12) 
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Therefore, if the transverse electric displacement is uniform on the electrodes, an accurate OC 

electric condition (Q=0) is similar to approximating it by a nil transverse electric displacement 

(Dz=0). The latter assumption is often used in analytic modeling (Boudaoud et al. 2007). However, 

this is only true for NE case; thus, this approximation does not account for the physical EP 

constraints and leads to an overestimated modal effective EMCC (Trindade and Benjeddou 2009). 

 
2.2 Free-vibration problems 
 

For formulating a potential-based 3D FE model of a piezoceramic structure of total domain  

(=
hs

 of the host structure +
p
 of piezoceramic transducers), materials generic mass density  (hs 

for host, p for piezoceramics) and in harmonic free-vibration of circular frequency , this 

piezoelectric-extended Lagrange functional (Benjeddou 2000) has to be made stationary (L=0) 

               hs p

t t t t21 1 1
2 2 2

L d ( E D )d u u d
  

                    (13) 

Where, the first, second and third integral terms represent, respectively, the host elastic strain 

energy U, electromechanical enthalpy H and kinetic energy V; the stress and electric displacement 

vectors are coupled to the strain and electric field ones through Eqs. 7(a)-(b). 

For transducers full nil electric field (approximate SC) or displacement (approximate OC), the 

electromechanical enthalpy of the host (hs) plus piezoceramics reduces, respectively, to 

       hs p

t tE hs E1 1
2 2

H [C ] d [C ] d
 

                         (14a) 

       hs p

t tD hs D1 1
2 2

H [C ] d C d
 

                         (14b) 

Where, the OC (D) and SC (E) transducers elastic matrices are as in Eqs. (8), (10), respectively. 

Under the UDEF assumption, the electromechanical enthalpy of the piezoceramics reduces to 

   p

p t1
z z2

H ( E D )d


                             (15a) 

Where, the stress vector and transverse electric displacement are coupled to the strain vector and 

transverse electric field through the reduced constitutive equations, Eq. 9(a)-(b), that simplify to 

 

E E E
33 13 13

1 1
E E E
13 11 122 2
E E E
13 12 113 3

E E E1
4 466 11 122

E6 6
55

C C C 0 0

C C C 0 0

C C C 0 0

0 0 0 C C C 0

0 0 0 0 C

 
     

     
       
      
          
        

 

 Or    
E

[C ]        (15b) 

E
5 55 5 15 zC e E                                 (15c) 

S
z 15 5 11 zD e E                                (15d) 

Substituting Eqs. 15(b)-(d) into Eq. 15(a), transforms the latter to 

p p
m deH U 2U U                              (16a) 
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Where the piezoceramics elastic, mutual and dielectric energies are defined by 

       p p

t E tp E 2 E1 1
e 55 52 2

U ( [C ] C )d  [C ] d  
 

           ,          (16b) 

p

1
m 15 z 52

U e E d


   , 
p

S 21
d 11 z2

U E d


                  (16c, d) 

Hence, for approximate SC (Ez=0) and OC (Dz=0) electric conditions and using Eqs. 15(c)-(d), 

the corresponding reduced electromechanical enthalpies (see Eq. (16)) become 

pE pD pDp
eeH U , H U                             (17a) 

With the approximate OC-modified elastic energy having this form 

       p p

tpD E t2 DD1
5

1
e 52 25C [C ]U ( [C ] )d d

 
                       (17b) 

And the piezoceramic reduced OC elastic matrix and OC-modified elastic x-z shear constant are 

given in Eq. 11(a) and (b), respectively. 

Applying Ulitko‟s formula (Benjeddou 2010) to the adaptive structure with the piezoceramics 

under UDEF and with the help of Eqs (16b), (17b), (11b), the quasi-static effective EMCC is 

       

p p

hs p

E 2 2pDD E 1 1pE
55 5 52 2e2 e

D t ths1 1

D D
55 552

15D pD pDD
e

hs hs
2 e2e e

C C
k

[

( C ) d dU UH H
K

C ]H U U[C ] d dU U

 

 

    
   

      

 

   
(18) 

Since once the shear transducer piezoceramic material is chosen its shear properties (OC shear 

modulus D D
xz 55G C and EMCF k15) are known, Eq. (18) shows that the quasi-static shear effective 

EMCC depends only on the shear OC strain energy stored in the transducer. Thus, the only way 

that remains for optimizing the shear effective EMCC is to optimize its size, particularly its 

polarization-side length-to-thickness ratio (Cao et al. 1998) and its position on the host structure 

(Trindade and Benjeddou 2009). Besides, Eq. (18) confirms the interpretation of its modal version 

proved in (Benjeddou and Trindade 2009, Benjeddou 2010), in the sense that the shear effective 

EMCC depends on the material shear EMCF and the strain energy fraction stored in the 

transducer. 

In piezoelectric shunted damping (Benjeddou and Ranger 2006), the used EMCC definition has 

rather a SC (E) energy in the denominator of Eq. (18) leading to (after Eqs. (16b), (17b), (11b)) 

       

p p

hs p

D E 2 2pDD E 1 1pE
2 55 55 5 52 2e e
E

t t hsh

E2
5515

E pE 2 pEs1 1hs
e2 2e 15 ee

(C C ) d dU UH H
K

U[C ]

Ck

1 kd dU U[C ]H U

 

 

    
   

      

 

 
 (19) 

Compared to the expression at the end of Eq. (18), the last of Eq. (19) has the advantage to use 

only SC (E) properties; hence, it can be computed using purely elastic FEs. Nevertheless, it can be 

shown that both expressions are linked via these relations 

2 2
2 2E D
D E2 2

E D

K K
K  or  K

1 K 1 K
 

 
                         (20) 
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Hence, since either Eq. (18) or (19) can be used for evaluating the quasi-static shear effective 

EMCC, the use of the SC (E) energy in the denominator is preferred. Notice that the shear quasi-

static EMCC expressions, as in Eqs. (18)-(20), are new; they are presented here for the first time. 

For FE assessment of the modal effective EMCC approximate evaluations, detailed in the sub-

sequent sub-section, the following numerical modal analyses (see details in Benjeddou 2014) have 

to be conducted separately for the: 

• Host structure, which discrete elastic free-vibration problem is 

hs 2 hs
hs([K ] [M]){U } {0}                           (21) 

Where, [K] and [M] state for the stiffness and mass matrices. Here, foams replace transducers. 

• Adaptive structure, which discrete elastic free-vibration problem, that uses the transducers‟ 

full SC (E) elastic matrix, is 

E 2 E
E([K ] [M]){U } {0}                            (22) 

• Adaptive structure, which discrete elastic free-vibration problem, that uses the transducers‟ 

full OC (D) elastic matrix, is 

D 2 D
D([K ] [M]){U } {0}                            (23) 

• Adaptive structure, which SC piezoelectric coupled discrete free-vibration problem is 

SC 2 SC
SC([K ] [M]){U } {0}                           (24) 

• Adaptive structure under OC electric condition but w/o EP constraints (equivalent to a NE 

electric condition), which piezoelectric coupled discrete free-vibration problem is 

NE 2 NE
NE([K ] [M]){U } {0}                          (25) 

• Adaptive structure under OC electric condition with EP constraints (reference solution), 

which piezoelectric coupled discrete free-vibration problem is 

EP 2 EP
EP([K ] [M]){U } {0}                          (26) 

The frequencies resulting from the solutions of these six free-vibration problems, of which half 

of them (Eqs. (21)-(23)) are purely elastic and need only standard elastic FE modal analyses, will 

be used for post-processing the modal effective EMCC according to the hereafter presented 

different approximate and reference evaluation formulas. 

  
2.3 Modal effective EMCC 
 

An implementation of the shear modal effective EMCC, as given in Eq. (19), requires 

approximating the shear MSE stored in the piezoceramic transducers by the difference between the 

MSE of the adaptive sandwich structure with SC piezoceramics and the elastic host one only; the 

latter is considered here made of the elastic faces sandwiching a foam or glue core. Using mass-

normalized modal shapes, the shear modal effective EMCC can be written in terms of the 

frequencies of the adaptive sandwich structure with SC piezoceramics, solution of Eq. (24), and 

those of the corresponding elastic host only, solution of Eq. (21), as follows 
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2 2 2
2 15 SC hs
15 2 2

15 SC

k f f
K

1 k f





                           (27) 

It‟s worthy to mention that the numerator of the frequencies ratio can be negative although the 

shear modal effective EMCC should be positive; in this case, either an absolute value or simply 

squared maximum minus minimum over minimum values can be used (Benjeddou 2014). 

Hereafter, eventual negative sign presence is kept in order to detect the corresponding mode(s). 

After solving the elastic free-vibration problems of Eqs. (22) and (23), that use full SC (E) and 

OC (D) elastic matrices of transducers, the modal effective EMCC can be approximated by 

2 2
2 D E
D 2

E

f f
K

f


                               (28) 

After solving the coupled piezoelectric free-vibration problems of Eqs. (24) and (25), the 

following expression can be used for evaluating the modal effective EMCC when the electrodes 

physical EP constraints are not enforced during the OC modal analysis for solving Eq. (25) 

2 2
2 NE SC
NE 2

SC

f f
K

f


                              (29) 

Finally, the solutions of the coupled piezoelectric free-vibration problems of Eqs. (24) and (26) 

allow the following reference evaluation of the modal effective EMCC when the electrodes 

physical EP constraints are enforced during the OC modal analysis for solving Eq. (26) 

2 2
2 EP SC
EP 2

SC

f f
K

f


                              (30) 

Notice that shear subscripts „15‟ have been used only for the modal effective EMCC in Eq. (27) 

because this approximation uses explicitly the shear modal EMCF k15. However, the other two 

approximations by Eqs. (28) and (29) and by the reference evaluation of Eq. (30) provide a modal 

effective EMCC that may involve not only the shear modal EMCF but also the longitudinal k33 and 

transverse k31 EMCF; i.e., evaluations (28)-(30) consider multimode responses, while Eq. (27) can 

be seen as a single-mode (shear) response (approximate) evaluation. The three approximate 

evaluations of Eq. (27)-(29) will be later numerically assessed against the reference one of Eq. 

(30). 

 

 

3. Simplified analyses 
 

All commercial FE codes use a PStrain/PStress 2D work plane lying in the global coordinate 

system plane x-y. Therefore, since the shear piezoceramic patches to be used here are poled along 

their length, the polarization remains then as in the 3D case (Fig. 1(b)) parallel to the x-axis (Fig. 

2). 

Therefore, the 3D e-form constitutive equations, as in Eqs. 7(a)-(b), can be used as a starting 

point of their reduction to the x-y 2D work plane. The first reduction step is common to both 

PStrain and PStress models; it assumes a dominant UDEF along the y axis since the major surfaces 

electrodes are now perpendicular to the latter direction (see orange lines in Fig. 2); i.e. 
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Fig. 2 FE 2D modeling plane of a sandwiched major surfaces electroded shear piezoceramic transducer 

 

 

x zE E 0                                  (31) 

This assumption reduces the 3D e-form constitutive equations, as in Eqs. 7(a)-(b), to 

 

E E E
33 13 13

1 1
E E E
13 11 12

2 2
E E E
13 12 113 3

E E E1
4 466 11 122

E5 5
55

E6 6 15
55

C C C 0 0 0
0

C C C 0 0 0 0

C C C 0 0 0 0

00 0 0 C C C 0 0

0
0 0 0 0 C 0

e
0 0 0 0 0 C

 
       

       
      
           

              
      
     
          

 

yE







      (32a) 

1

2

x 33 31 31

3 S
y 15 11 y

4

z 15

5

6

0D e e e 0 0 0

D 0 0 0 0 0 e E

D 0 0 0 0 e 0 0

 
 

     
       

                     
 
  

            (32b) 

These equations can also be re-written so that to isolate the electromechanically coupled ones 

 

 

E E E
33 13 13

1 1
E E E
13 11 122 2
E E E
13 12 113 3

E E E1
4 466 11 122

E5 5
55

C C C 0 0

C C C 0 0

C C C 0 0

0 0 0 C C C 0

0 0 0 0 C

 
     

     
       
      
          
        

 

 Or    
E

2D[C ]        (33a) 

E
6 55 6 15 yC e E                               (33b) 

S
y 15 6 11 yD e E                              (33c) 

Notice that the piezoelectric shear response in hand is now an in-plane (x-y) one. Also, Eqs. 

33(a-c) allow using the same quasi-static shear effective EMCC evaluations as in Eq. (18)-(19), 

provided that 6 replaces 5 and 2D PStrain/PSress domain integrals are handled adequately.  
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3.1 Plane strain behaviors 
 

PStrain behavior results here from assuming nil transverse (to the work plane) strains; that is 

3 4 5 0                                    (34) 

While Eqs. 33(b)-(c) are not affected by these relations, substituting the latter in Eq. 33(a) 

reduces it, after removing its last three lines and columns, to 

E E
33 131 1

E E
2 213 11

C C

C C

     
     

      

                          (35) 

Notice that although the transverse normal stress is not nil ( E E
3 13 1 12 2C C     ), its product with 

the dual transverse normal strain is nil; hence, it does not intervene in the 2D variational 

formulation (VF) and related 2D FE one. For this reason, this stress component is dropped 

hereafter. Therefore, the 2D PStrain constitutive behavior is defined by Eqs. (35) and 33(b)-(c); 

these equations can be also written in this electromechanical condensed matrix form 

E E
33 131 1

E E
2 13 11 2

E
6 655 15

S
y y

15 11

C C 0 0

C C 0 0

0 0 C e

D E0 0 e

     
    

     
         

        

                    (36) 

Under a nil electric field (Ey=0), approximating a SC electric condition, Eq. (36) reduces to 

E E
33 131 1

E E
2 13 1

E
55

1 2

6 6

C C 0

C C 0

0 0 C

     
    

      
          

                        (37) 

Notice that the transverse electric displacement is not nil (Dy=e15ε6) but does not intervene in 

the approximate SC 2D PStrain VF and related FE one, since its product with the electric field is 

nil; however, it can be post-treated and used for computing the electric charges produced on the 

electrodes of the transducer which can be seen here as a charge sensor 

2D y 15 6x x
Q D  dx e  dx                            (38) 

When the electric displacement is now considered nil (Dy=0) as an approximation of the OC 

electric condition, the electric field can be condensed between Eqs. 33(b)-(c) so that an 

approximate OC-modified shear elastic constant, as in Eq. (11b), is obtained; grouping the 

modified Eq. 33(a) with Eq. (35) provides these approximate OC constitutive equations 

E E
33 131 1

E E
2 13 1

D
55

1 2

6 6

C C 0

C C 0

0 0 C

     
    

      
          

                      (39) 
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Where, here, the electric field is not nil ( 15

S
11

e

y 6E


   ) but does not intervene in the approximate 

OC 2D PStrain VF and related FE one, since its product with the electric displacement is nil; 

however, it can be post-treated and used for quantifying the electric potential produced between 

the electrodes of the transducer which can be seen here as a potential sensor. 

15

S
11

e

2D y 6y y
E  dy  dy


                              (40) 

From Eqs. (37) and (39), it is clear that the SC electric condition provides a purely elastic 2D 

PStrain constitutive behavior, while the OC one leads to the same elastic behavior but with a 

modified shear elastic constant (as in Eq. 11(b)) only. 

 
3.2 Plane stress behaviors 
 

PStress behavior results here from assuming nil transverse (to the work plane) stresses; that is 

3 4 5 0                                    (41) 

While Eqs. 33(b)-(c) are also not affected here by these relations, substituting the latter in Eqs. 

33(a) provides nil transverse shear strains (ε4=ε5=0) but a non-nil transverse normal strain 

E
11

E E1
3 13 1 12 2C

(C C )                                 (42) 

Substituting back this relation into the first two lines of Eq. 33(a) reduces the latter to 

E E
33 131 1

E E
2 213 11

C C

C C

     
     

      

                          (43a) 

Where 

E E E 2E 2
E E E E E E13 12 1312
11 11 13 13 33 33E E E

11 11 11

C C (C )(C )
C C ,   C C ,  C C

C C C
                (43b) 

Notice that although the transverse normal strain is not nil (see Eq. (42)), its product with the 

dual transverse normal stress is nil; hence, it does not intervene in the 2D VF and related 2D FE 

one. For this reason, this strain component is dropped hereafter. Therefore, the 2D PStress 

constitutive behavior is defined by Eqs. (43) and 33(b)-(c); these equations can be also written in 

this electromechanical condensed matrix form 

E E
33 131 1

E E
2 13 11 2

E
6 655 15

S
y y

15 11

C C 0 0

C C 0 0

0 0 C e

D E0 0 e

     
    

     
         

        

                   (44) 

Under a nil electric field (Ey=0), approximating a SC electric condition, Eq. (44) reduces to 

E E
33 131 1

E E
2 13 1

E
55

1 2

6 6

C C 0

C C 0

0 0 C

     
    

      
          

                         (45) 
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Approximate evaluations and simplified analyses of shear-mode piezoelectric modal... 

Notice that the transverse electric displacement is again not nil (Dy=e15ε6) but does not 

intervene in the approximate SC 2D PStress VF and related FE one, since its product with the 

electric field is nil; however, it can be post-treated and used for computing the electric charges 

produced on the electrodes (see Eq. (38)) of the transducer which is a charge sensor. 

When the electric displacement is now considered nil (Dy=0) as an approximation of the OC 

electric condition, the electric field can be condensed between Eqs. 33(b)-(c) so that an 

approximate OC-modified shear elastic constant, as in Eq. (11b), is obtained; grouping the 

modified Eq. 33(a) with Eq. 43(a) provides these PStress approximate OC constitutive equations 

E E
33 131 1

E E
2 13 1

D
55

1 2

6 6

C C 0

C C 0

0 0 C

     
    

      
          

                         (46) 

Where, here also, the electric field is not nil ( 15

S
11

e

y 6E


   ) but does not intervene in the 

approximate OC 2D PStress VF and related FE one since its product with the electric displacement 

is nil; however, it can be post-treated and used for quantifying the electric potential between the 

electrodes (see Eq. (40)) of the transducer which is here also a potential sensor. 

From Eqs. (45)-(46), it is clear that the SC electric condition provides a purely elastic 2D 

PStress constitutive behavior, while the OC one leads to the same elastic behavior but with a 

modified shear elastic constant (as in Eq. 11(b)) only. 

 

3.3 Expected responses 
 

The 3D potential-displacement VF, retained for formulating commercial coupled piezoelectric 

FE harmonic free-vibration analysis of an adaptive structure, results from vanishing the virtual 

variation of the extended Lagrange functional of Eq. (13) so that this indicial form is obtained 

p

2
p p i i i id E D d u u d 0

  
                            (47) 

Where, the stresses and electric displacements are related to strains and electric fields via Eq. (7). 

In order to use 3D SC (E), Eq. (7a), and full OC (D), Eq. (8), elastic properties for 

corresponding approximate SC (Eq. (22)) and OC (Eq. (23)) modal analyses, Eq. (47) is reduced 

to 

2
p p i id u u d 0

 
                               (48) 

Notice that Eq. (48) is also used for host structure free-vibration analysis via solving Eq. (21). 

However, since either transverse strains or stresses and in-plane electric fields vanish under 2D 

UDEF, PStrain and PStress assumptions, Eq. (47) reduces to 

p

2
6 6 y y( )d E D d u u d 0     

                         (49) 

Where, in-plane stresses and transverse electric displacement are related to in-plane strains and 

transverse electric field via Eqs. (36) and (44) for PStrain and PStress analyses, respectively.  

However, for approximate SC (Ey=0) and OC (Dy=0) free-vibration analyses, the middle 

integral term of Eq. (49) vanishes, leading to this classical 2D elastic VF 
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2
6 6( )d u u d 0    

                              (50) 

Where, in-plane stresses are related to their dual strains via elastic Eqs. (37) and (39) for SC and 

OC PStrain analyses and Eqs. (45)-(46) for SC and OC PStress ones.  

As the electric conditions (SC or OC) do not influence the inertial term, the corresponding 

frequencies resulting from solving electromechanically coupled 3D and 2D VF and related free-

vibration problems will be influenced only by the elastic stiffness parameters. In fact, the EP 

condition is also an important factor but its global influence cannot be predicted from the local 

constitutive behaviors. Therefore, it is expected that: 

• SC conditions do not affect much piezoelectric structures modal analysis; thus, using 

transducers SC (E) elastic matrix of Eq. (10) within purely elastic or electromechanically coupled 

FE free-vibration analysis should provide similar frequencies;   

• Use of full OC (D) elastic matrix of Eq. (8) within a purely elastic FE modal analysis should 

provide close or similar frequencies to those resulting from coupled piezoelectric one under OC 

conditions but w/o EP constraints (denoted here NE); 

• Use of the EP constraints for OC coupled piezoelectric FE modal analysis should provide 

lower frequencies, hence lower modal effective EMCC, than those from NE (w/o EP) coupled or 

OC modified elastic properties – based modal analyses. Also, for electrodes asymmetrically 

distributed transverse electric displacement, EP constraints should have the effect to cancel 

produced electric charges as can be seen from Eq. (38) for the 2D analysis; this shall result in 

electromechanically uncoupled corresponding modes;  

• Either from 3D or 2D modal analysis, OC frequencies are expected to be higher than SC ones; 

this is due to the stiffening effect of OC conditions as can be seen from Eqs. (8) and (11). 

• Frequencies resulting from UDEF 2D PStress-based FE modal simplified analysis should be 

lower than those from 3D and from UDEF 2D PStrain-based ones. As can be seen from Eq. 43(b), 

this is due to the PStress decreased elastic constants. Hence, the same shall happen for the 

resulting shear modal effective EMCC; 

• UDEF assumption influence on the OC piezoelectric behavior is limited to the transverse 

shear (x-z for 3D, x-y for 2D) elastic constant modification only, as can be seen from Eq. (11). 

Hence, approximate OC frequencies should differ only slightly from SC ones, leading to low 

modal shear effective EMCC. Indeed, as can be seen from the latter‟s approximation by Eqs. (18)-

(19), the performance will depend only on the shear MSE stored in the transducers when their 

positions, dimensions, transverse shear elastic constant and EMCF are known. 

These predictions from the shear modal effective EMCC approximate evaluations and UDEF 

2D PStrain and PStress simplified analyses shall be numerically assessed in the subsequent 

section. 

 
 
4. Numerical assessment 
 

For a typical shear piezoceramic sandwich cantilever beam benchmark, adapted from 

(Benjeddou and Ranger 2006), this section aims to assess numerically the: (i) performance of 

shear modal effective EMCC approximate evaluations requiring sandwich host (whole core made 

of transducers space filling material) and SC adaptive sandwich structure frequencies (Eq. (27)), 

and SC (E) and OC (E) transducers‟ elastic properties-induced ones (Eq. (28)); (ii) EP constraints 

influence on the modal effective EMCC evaluation with NE (w/o EP) conditions (Eq. (29)); (iii)  
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Approximate evaluations and simplified analyses of shear-mode piezoelectric modal... 

 

Fig. 3 2D sketch of the shear piezoceramic sandwich cantilever beam benchmark (dimensions in mm) 

 

 

Fig. 4 3D geometric model of the shear piezoceramic sandwich cantilever beam benchmark 

 

 

shear modal effective EMCC reference evaluation (uses OC with EP constraints) using modal 

UDEF 2D PStrain and PStress simplified analyses; (iv) sandwich core filling material of the 

transducers spaces influence on the shear modal effective EMCC approximate evaluations and its 

UDEF 2D PStrain and PStress simplified analyses. 

 

4.1 Shear-mode benchmark and models 
 

For the numerical (FE) assessment of the shear modal effective EMCC approximate 

evaluations and simplified analyses, the benchmark proposed earlier for shear piezoelectric 

shunted damping numerical evaluation (Benjeddou and Ranger 2006) is adapted as in Fig. 3. It 

consists of a sandwich cantilever beam with aluminum faces and hybrid core made of filling 

material and two piezoceramic (PZT-5A) patches which polarization is along the beam length. The 

patches are covered on their major surfaces with electrodes perpendicular to their thickness 

direction so that they work in the shear-mode response. They have the same thickness (2.55 cm) as 

the host beam. Three materials, made of soft foam, hard foam and glue, are considered for filling 

the core spaces non-occupied by the transducers. Materials properties are given in the Appendix. 

The corresponding 3D geometric model was generated within ANSYS
®
 by connecting key 

points of Fig. 3 sections in order to get lines, from which areas are created; the latter were then 

extruded in the width direction in order to create the volumes shown in Fig. 4. This simple basic 

procedure helps automatic enforcing the interfacial nodes coincidence during the FE mesh phase. 

ANSYS
®

 SOLID5 element has been used for the FE mesh. It has three displacement 

translations (Ux, Uy, Uz) as nodal DOFs for elastic analyses; these are augmented by the electric 

potential (VOLT) as a fourth nodal DOF for SC and OC, with or without (NE) EP constraints 

enforcing, piezoelectric coupled analyses. Each patch was meshed using 3 FEs along thickness  
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Table 1 First six x-z bending modes frequencies of the adaptive sandwich beam with soft foam filled spaces 

x-z bending modes fhs (Hz) fE (Hz) fSC (Hz) fEP (Hz) fNE (Hz) fD (Hz) 

1 36.443 37.483 37.483 37.484 37.487 37.513 

2 191.87 213.21 213.21 213.23 213.26 213.35 

3 461.72 538.38 538.38 538.44 538.57 538.78 

4 795.4 972.59 972.6 972.82 972.91 973.15 

5 1200.5 1434.7 1434.7 1434.9 1435.7 1436.4 

6 1683.9 2101 2101 2101.1 2103 2104.5 

 

 

and 15 ones along in-plane sides, while each face was meshed with 69×15×3 FEs along x, y and z 

directions, resulting in an adaptive sandwich hexahedral mapped mesh of 9315 FEs. For SC modal 

analyses, all electrodes have imposed nil electric potential, while for OC ones, the electric DOFs 

are coupled when EP constraints are enforced, but let free when they are not (NE condition). The 

2D FE models, lying mandatory in the x-y plane with y-axis being in the thickness direction, have 

the same mesh as that of the 3D length-thickness plane. 

 

4.2 Approximate evaluations 
 

This sub-section assesses the shear modal effective EMCC approximate evaluations using Eqs. 

(27)-(29) against the reference (Eq. (30)) through 3D elastic and coupled piezoelectric FE modal 

analyses of above shear sandwich cantilever beam benchmark; only the first ten 3D modes 

characterizing beam-like modal shapes are retained; this leads to the first six x-z bending modes. 

The frequency results corresponding to the soft foam filling material case are given in Table 1. 

They show that host structure frequencies are lower than adaptive structure ones; this is due to the 

core softness. Interesting is the observed identical fSC (coupled piezoelectric computations – 

induced) and fE (elastic computations – induced) values. Table 1 5
th
 and 6

th
 columns comparison 

indicates that EP constraints have the effect to decrease OC frequencies. Also, frequencies 

resulting from using full (fD) elastic properties overestimate OC (EP, NE) ones. All these 

observations confirm the frequency predictions made in above expected results section. 

From modal shapes visualizations, it was noticed that the bending modes computed order of the 

host structure (1, 2, 5, 6, 8, 10) is different from that (1, 2, 4, 6, 9, 10) of the adaptive structures 

with SC, OC (EP, NE) electrodes and with the patches having elastic properties under constant 

electric fields (E) only, while the modes computed using the patches properties with constant 

electric displacements (full D) have another order (1, 2, 4, 6, 8, 10). Hence, care should be taken 

since the 3D FE modes order is shown to depend on the analyzed configuration. Here, this 

concerns the 3
rd

 and 5
th
 x-z bending modes (in bold in Table 1) which have to be identified 

carefully from the 3D FE computed modal shapes. Another important observation is that the 

electric conditions (SC, EP, NE) do not influence the modes order. The same order as the latter is 

obtained when simulating the adaptive structure with only the patches elastic properties under 

constant electric fields (E). However, care should be taken when replacing the patches properties 

by the filling materials ones (host structure case) and when using constant electric displacements 

(full D). The visualizations show also local 3D foam effects like „in-plane shear‟, as in Fig. 5(a), 

that is due to the faces‟ relative displacements along the width direction against the core, or the 

foam „thickness crushing‟ as in Fig. 5(b); these effects appear first at the second mode but become  
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(a) Faces in-plane shear against soft foam core (b) Core‟s soft foam thickness crashing 

Fig. 5 Out-of-plane 3D deformations phenomena for mode 10 of the soft foam core sandwich beam 

 

  
(a) Electrode‟s potential distribution w/o EP (b) Electrode‟s potential distribution w EP 

Fig. 6 EP averaging effect (b) of transducer electrodes electric potential distribution (a) 

 

 
 

 
 

(a) All results (Eqs. (27)-(30)) (b) Zoom on results w/o Eq. (27) ones 

Fig. 7 Shear modal effective EMCC of the sandwich beam with soft foam as filling material 

 

 

crucial starting from the third mode. These out-of-working plane 3D phenomena cannot be catched 

by ESL and sandwich 1D beam, 2D PStrain or PStress and SDOF models.  

The EP averaging effect of the electrode‟s electric potential non-uniform distribution when 

these constraints are not enforced is also illustrated in Fig. 6. 

Shear modal effective EMCCs, post-treated from frequencies of Table 1, are shown in Fig. 7. 

Fig. 7(a) indicates clearly that the approximate evaluation by Eq. (27) overestimates greatly the  

0

5

10

15

20

25

30

35

1 2 3 4 5 6

K
2
 (

%
) 

Bending (x-z) modes  

Eq. (27) Eq. (28) Eq. (29) Eq. (30)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6

K
2
 (

%
) 

Bending x-z modes 

Eq. (28) Eq.(29) Eq. (30)

293



 

 

 

 

 

 

Ayech Benjeddou 

Table 2 First six x-z bending modes frequencies of the adaptive sandwich beam with hard foam filled spaces 

x-z bending modes fhs (Hz) fE (Hz) fSC (Hz) fEP (Hz) fNE (Hz) fD (Hz) 

1 37.06 37.594 37.594 37.595 37.598 37.624 

2 206.56 217.25 217.25 217.27 217.29 217.39 

3 511.83 566.38 566.38 566.45 566.56 566.77 

4 892.32 1040.4 1040.4 1040.6 1040.7 1041 

5 1342 1537.3 1537.3 1537.4 1538.3 1539.2 

6 1863.2 2229.9 2229.9 2230 2231.9 2233.3 

 

  
(a) All results (Eqs. (27)-(30)) (b) Zoom on results w/o Eq. (27) ones 

Fig. 8 Shear modal effective EMCC of the sandwich beam with hard foam as filling material 

 

 

reference one (Eq. (30)) and is much higher than that by the other approximations (Eqs. (28)-(29)). 

However, its results are in line with those obtained using 1D hybrid sandwich/ESL beam FE and 

modal stiffness (instead of frequency) ratio-based approximation for the shear piezoceramic 

shunted damping evaluation (Benjeddou and Ranger 2006), where obtained shear modal effective 

EMCCs were excessively promising (10 times higher) compared to reference (Eq. (30)) ones. The 

latter and approximate (Eq. (28)-(29)) evaluations show clearly (Fig. 7(b)) that the shear modal 

effective EMCC is very low, predicting a low performance of vibration shear piezoceramic shunted 

damping (Trindade and Maio 2008) and energy harvesting applications. Fig. 7(b) shows also that, 

while the reference (Eq. (30)) evaluation shows an optimum modal effective EMCC value (for 

mode 4), approximate (Eqs. (28)-(29)) ones provide increasing modal effective EMCC values with 

increasing modes order. Besides, comparison of the latter approximations results indicates that the 

EP constraints have the effect to decrease drastically the shear modal effective EMCC. 

Hard foam filling material case frequencies are listed in Table 2. They share comments on soft 

foam filling material results concerning lower host structure frequencies than adaptive ones and 

equality of fSC and fE frequencies. However, EP and NE frequencies are here very close for the first 

four modes. 

From modal shapes visualizations, it can be noticed here that bending modes computed order of 

host structure (1, 2, 5, 6, 8, 10) is different from that (1, 2, 4, 6, 8, 10) of adaptive structures with 

SC and OC (EP, NE) electrodes and with patches having elastic properties (at constant electric 

fields E and displacements D), but this concerns only the 3
rd

 x-z bending mode (in bold in Table 2)  
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Table 3 First six x-z bending modes frequencies of the adaptive sandwich beam with glue filled spaces 

x-z bending modes fhs (Hz) fE (Hz) fSC (Hz) fEP (Hz) fNE (Hz) fD (Hz) 

1 37.04 36.87 36.87 36.871 36.873 36.899 

2 232 220.59 220.59 220.61 220.62 220.71 

3 650.17 617.84 617.84 617.93 617.97 618.16 

4 1276.5 1214.5 1214.5 1214.8 1215 1215.4 

5 2116 1977.7 1977.7 1977.9 1978.5 1979.3 

6 3171.3 3000.7 3000.7 3001.2 3002.7 3003.7 

 

  

(a) All results (Eqs. (27)-(30)) (b) Zoom on results w/o Eq. (27) ones 

Fig. 9 Shear modal effective EMCC of the sandwich beam with glue as filling material 

 

 
which has to be identified carefully from 3D FE computed modal shapes. The same local 3D foam 

effects as discussed above (see Fig. 5) are also observed here. 

Post-treated modal effective EMCCs from Table 2 are shown in Fig. 8. The same comments, as 

for the soft foam filling material case, can be said for the present hard foam one. 

Glue filling material‟s frequencies are listed in Table 3. They are very different from those of 

foam (soft or hard) filling materials. In particular, host structure frequencies are higher than those 

of adaptive structures. However, fSC and fE frequencies equality still holds. As for the hard foam 

case, EP and NE frequencies are very close to each other for the first four modes; however, EP 

constraints affect now mainly highest modes (last two ones) but almost not the lowest four ones. 

Here, modal shapes visualizations indicate that the bending modes computed order of the host 

structure (1, 2, 4, 6, 8, 10) is similar to that of adaptive structures with SC and OC (EP, NE) 

electrodes and with the patches having elastic properties (at constant electric fields E) and 

displacements D). Besides, there are no local 3D foam effects in this case. 

Modal effective EMCCs, post-treated from Table 3, are shown in Fig. 9. Here, host structure- 

based EMCC values are negative (Fig. 9(a)) due to the glue higher stiffness than foams ones. 

While EMCC variations with increasing modes are similar to those of previous foam cases, their 

values are much lower, since they do not exceed 0.2% for the most overestimating approximation. 
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4.3 Simplified analyses 
 

This sub-section investigates the suitability of UDEF 2D PStrain and PStress models for 

simulating modal analysis of the benchmark (Fig. 3) with the three filling materials; the modal 

effective EMCC reference evaluation (Eq. (30)) is used as a coupled modes indicator. Here also, 

only beam-like bending (x-z) modes are considered for 2D simplified analyses assessments. 

Soft foam filling material case frequencies are presented in Table 4 which shows that PStrain 

frequencies are higher than PStress ones for both SC and OC (with EP) electric conditions. 

Compared to 3D frequencies (considered hereafter as reference), as in Table 1 columns 4 (SC) and 

5 (EP), PStress values are closer to references than PStrain ones. Also, 3D frequencies are bounded 

from below by PStress frequencies and from above by PStrain ones; these results confirm those 

obtained for the corresponding transverse –mode response setup (Benjeddou 2014). 

Post-treated modal effective EMCCs from frequencies of Table 4 are shown in Fig. 10. The 

latter does not confirm totally results obtained for the extension setup (Benjeddou 2014) 

equivalent to the present shear one concerning the fact that 3D modal effective EMCC is, as 

frequencies, bounded from below by PStress EMCC and from above by PStrain one. Noticeably 

here are the very low EMCC values which do not exceed 0.05% for the optimum 4
th
 mode. 

Besides, PStrain analysis provides nil EMCC for the first mode in contrary to 3D and PStress ones. 

Table 5 lists hard foam case frequencies. Comments on the previous case are valid also here. 

Post-treated modal effective EMCCs from Table 5 frequencies are shown in Fig. 11. Here, the 

first mode effective EMCC resulting from PStrain analysis is not nil and the other results change 

only for modes 5 and 6, where there is a performance exchange of PStrain and PStress analyses. 

 

 
Table 4 2D first six x-z bending frequencies of the adaptive sandwich beam with soft foam filled spaces 

2D 

modes 

UDEF Plane Strain UDEF Plane Stress 

fSC (Hz) fEP (Hz) fSC (Hz) fEP (Hz) 

1 39.435 39.435 37.258 37.259 

2 222.99 223.01 211.52 211.54 

3 557.21 557.28 532.2 532.26 

4 999 999.24 956.43 956.64 

5 1459.3 1459.4 1395.7 1395.9 

6 2115.7 2115.8 2019.5 2019.6 

 

 

Fig. 10 2D vs. 3D modal effective EMCC of the sandwich beam with soft foam filling material 
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Table 5 2D first six x-z bending frequencies of the adaptive sandwich beam with hard foam filled spaces 

2D 

modes 

UDEF Plane Strain UDEF Plane Stress 

fSC (Hz) fEP (Hz) fSC (Hz) fEP (Hz) 

1 39.566 39.567 37.368 37.369 

2 227.61 227.63 215.51 215.53 

3 587.98 588.06 560.16 560.23 

4 1070.2 1070.5 1023.4 1023.6 

5 1563.8 1564 1498 1498.1 

6 2247.1 2247.2 2150.7 2150.8 

 

 

Fig. 11 2D vs. 3D modal effective EMCC of the sandwich beam with hard foam filling material 

 
Table 6 2D first six x-z bending frequencies of the adaptive sandwich beam with glue filled spaces 

2D 

modes 

UDEF Plane Strain UDEF Plane Stress 

fSC (Hz) fEP (Hz) fSC (Hz) fEP (Hz) 

1 38.826 38.826 36.644 36.644 

2 231.85 231.87 218.84 218.86 

3 647.25 647.36 611.05 611.14 

4 1264.6 1265 1194.2 1194.5 

5 2043.6 2043.8 1930.549 1930.8 

6 3073.7 3074.3 2904.8 2905.3 

 

 

Table 6 shows Glue induced frequencies; it confirms comments on foams materials.  

Modal effective EMCC results post-treated from Table 6 are illustrated in Fig. 12. Here, the 

first mode effective EMCC resulting from both PStrain and PStress analyses is nil and the other 

results also change for modes 5 and 6, where PStrain and PStress analyses exchange performance 

(closeness to 3D reference results). 

It‟s worthy to notice that the shear modal effective EMCC reference evaluation performance 

depends on the filling material stiffness, as can be seen from Fig. 13, so that its increase enhances 

the modal effective EMCC. Fig. 13 shows also that, while soft and hard foams provide the same 

variations with increasing the bending (x-z) modes order, the glue behaves differently in the sense  
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Fig. 12 2D vs. 3D modal effective EMCC of the sandwich beam with glue filling material 

 

 

Fig. 13 Sandwich core filling material‟s influence on 3D shear modal effective EMCC reference evaluation 

 

 

that the highest mode order (6) performance is not lower than the preceding mode one (5). 

 

 

5. Conclusions, recommendations and perspectives 
 

Shear modal effective EMCC approximate evaluations and UDEF PStrain and PStress 

simplified analyses have been theoretically presented for the first time and numerically assessed. 

For this purpose, 3D SOLID (hexahedral) ANSYS
®
 piezoelectric and elastic FEs simulations have 

been presented for a typical sandwich cantilever beam benchmark. Soft foam, hard foam and glue 

were used as filling materials of the core spaces non-occupied by two shear piezoceramic patches 

under different electric conditions or for replacing them when considering a host structure.  

It was found that the shear modal effective EMCC is highly sensitive to both EP constraints for 

OC electric conditions and to the stiffness of the material filling the spaces non-occupied by the 

transducers. Besides 2D PStrain and PStress simplified analyses comparison to 3D simulations 

confirmed that 3D SC and OC frequencies are bounded from below by PStress values and from 
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above by PStrain ones. However, for the modal effective EMCC, this was only true for few modes; 

hence, equivalent transverse-mode setup results (Benjeddou 2014) are only partially confirmed. 

Another important result is that the shear modal effective EMCC reference values were found too 

low, in particular for its potential use in shunted damping and energy harvesting applications. 

As recommendations to researchers and engineers, it is mandatory to enforce the physical EP 

constraints in any OC analysis; also, the popular host-structure based approximate evaluation has 

to be avoided for the shear modal effective EMCC. Besides, when coupled piezoelectric FE 

analysis is not available, elastic one can be used together with the transducers‟ elastic properties (at 

constant electric fields or displacements). However, it should be kept in mind that this 

approximation cannot see electromechanically uncoupled modes and the resulting modal effective 

EMCC are overestimated; this is also true for piezoelectric FE analysis without enforcing EP 

constraints which are equivalent to NE conditions. Hence, these approximate evaluations are 

helpful only for preliminary or pre-design analysis. As a simplified analysis, prefer PStress one. 

Immediate extension and application of the present work could be directed, respectively, to 

EMCC experimental measurements for shear-mode benchmarks (Berik et al. 2011) and to 

structural vibration shear energy harvesting theoretical and practical investigations. 
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Abbreviations 
 
1D: One-dimensional 

2D: Two-dimensional 

3D: Three-dimensional 

BC: Boundary condition 

D: Superscript used for piezoelectric material elastic matrix at constant electric displacements 

DOF: Degree of freedom 

E: Superscript used for piezoelectric material elastic matrix at constant electric fields 

EMCC: Electromechanical coupling coefficient (structural) 

EMCF: Electromechanical coupling factor (material) 

EP: equipotential 

ESL: Equivalent single layer 

FE: Finite element 

hs: host structure 

MSE: Modal strain energy 

NE: non-electroded 

OC: Open circuit 

PStrain: Plane strain 

PStress: Plane stress 

SC: Short circuit 

SDOF: Single degree of freedom 

UDEF: Unidirectional electric field 

VF: Variational formulation 

w: with 

w/o: without 
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Appendix 
 

The beam and filling materials are elastic and isotropic; their assumed properties are 

summarized in Table 7. 

 

 
Table 7 Properties of the beam faces and core filling materials 

Material 

Constants 

 

Beam faces 

Sandwich core filling material 

Soft foam Hard foam Glue 

Young‟s modulus (MPa) 73,000 35.3 62 10,000 

Poisson‟s ratio 0.33 0.38 0.35 0.3 

Mass density (Kg/m
3
) 2,790 32 80 1,100 

 

 

SC properties of PZT-5A with polarization along x-axis are obtained from the rotation of those 

which polarization is along the thickness (Benjeddou 2009) 

E
p// x

86.856 50.778 50.778 0 0 0
50.778 99.201 54.016 0 0 0
50.778 54.016 99.201 0 0 0

C
0 0 0 22.593 0 0
0 0 0 0 21.1 0
0 0 0 0 0 21.1

 
 
      
 
  

 (GPa)        (51a) 

p // x

15.118 7.209 7.209 0 0 0
e 0 0 0 0 0 12.322

0 0 0 0 12.322 0

  
     

  

 (C/m
2
)        (51b) 

S
p // x

6.880 0 0
0 8.104 0
0 0 8.104

 
     

  

 (nF/m)                (51c) 

The PZT-5A mass density is =7700 Kg/m
3
 and its shear EMCF is k15=0.69 (Benjeddou 2009). 

From Eqs. (51a)-(51c), the PZT-5A full OC elastic matrix is also obtained by rotation of that 

corresponding to the thickness poled case (Benjeddou 2009) as (only non-nil terms are given) 

D
p// x

120.07 34.94 34.94
34.94 106.75 61.57
34.94 61.57 106.75

[C ]
22.59

39.83
39.83

 
 
 

  
 
  

 (GPa)        (52) 
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