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Abstract.  The mechanical characterization of composite materials is nowadays a major interest due to 
their increasing use in the aeronautic industry. The design of most of these materials is based on their 
stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin 
laminated composites, this classical method requires adequate samples with specific orientation and does not 
provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion 
technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This 
paper presents a study of different methods to determine the mechanical properties of transversely isotropic 
carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic 
immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the 
accuracy of these techniques. 
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1. Introduction 

 

Fibre-reinforced composites are widely used for many structural applications. The primary 

benefits of the composite components are the reduction of weight and the simplification of 

assembly (Soutis 2005). The determination of the mechanical properties, specially the stiffness, is 

essential for ensuring performance to the composite structures. In addition, the knowledge of 

complete elastic stiffness matrix is important for modeling and evaluating the mechanical behavior 

of composite materials under loading conditions (El Bouazzaoui et al. 1996). 

For now, tensile test with strain gauge measurements is the technique normalized by ISO 

standards to identify composites elastic properties. Such conventional method is destructive and 

provides only a part of elastic constants when thin plates like laminated composite structures are 

considered. Accordingly, ultrasonic techniques based on the measurement of ultrasonic wave 
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velocities provide an interesting and non destructive way to address such issue. 

First experimental studies based on ultrasonic technique were done by Zimmer and Cost 

(1970). They have used transmission contact technique to obtain dynamic elastic stiffness 

necessary to derive the unidirectional composite elastic behavior. Several ultrasonic bulk wave 

methods have also been developed to obtain phase velocities in anisotropic plates, especially when 

only one or two sides of the sample are accessible (Chu et al. 1994, Vishnuvardhan et al. 2007).  

Immersion ultrasonic technique represents a particularly suitable method in the case of 

composite materials with small thickness (Munoz et al. 2014, Reddy et al. 2005). For a 

transversely isotropic composite, measurements in symmetry planes are sufficient to entirely 

determine the stiffness tensor (that is the five independents constants) (Baste and Hosten 1990). 

Various numerical methods and/or technical devices have then been implemented to interpret 

experimental results (Balasubramaniam and Whitney 1996, Kawashima et al. 1998). 

Generally speaking, two experimental protocols can be used for such immersion technique to 

get velocities measurements, namely through-transmission and back-reflection techniques (Reddy 

et al. 2005). Through-transmission method requires two transducers, one to send the wave through 

the sample and the second one to receive the transmitted wave (Margueres 2000, Franco et al. 

2010). As the ultrasonic wave travels through the test sample, the wave is reflected in part as it 

encounters a medium of different acoustic impedance. Then the transmitted wave is received by 

the transducer and displayed or stored for analyses. The difficulty of this method is that it requires 

a tracking of the arrival wave and therefore difficult to implement in the case of immersion. 

In the back-reflection technique, a transducer working in pulse/echo mode is associated to a 

large flat reflector which is positioned parallel to the transmitter. The back-reflected wave travels 

exactly along the same path as the incident wave in the opposite direction (Rokhlin and Wang 

1992). When the sample angle is changed, the position of the incident wave on the back reflector is 

modified. Compared to through-transmission, such method appears then much relevant in the 

immersion case since it is not necessary to move the reflector or the transmitter/receiver transducer 

due to the large dimensions of the reflector. 

The aim of this paper is to compare the back-reflection immersion ultrasonic method with 

classical mechanical characterizations based on tensile tests. Strain gauges are used to measure the 

axial and lateral strains and stiffness constants are then estimated from the elastic parts of the 

stress-strain response. At the same time, a digital image correlation system is also implemented to 

corroborate the gauge data. Regarding immersion technique, a specific device including a rotation 

system has been set up to study the response of the material under various incident waves. These 

three results of stiffness tensor measurement (strain gauges, digital image correlation during tensile 

tests and ultrasonic characterization) are finally compared and discussed. 

 

 

2. Specimen and experimental procedure 
 

2.1 Specimen 
 

In view of its increasing use in aeronautics, a carbon fibre reinforced laminate is considered for 

this study. The M10R/38%/UD150/CHS composite is made of 14 unidirectional plies of prepreg 

leading to a thickness h=2 mm. Sample fabrication is carried out using the manual lay up 

technique. Then the sample is cured at 125°C during 90 minutes at a pressure of 2 bars as 

recommended by the material manufacturer Hexcel
®
. The plate was checked using ultrasonic C- 
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Fig. 1 Samples for tensile test. Plane 1-2 is the laminate plane 

 

 

Scan and was found to be homogeneous and defect free. 

The dimensions of the single sample used for the ultrasonic characterization are 150×100×2 

mm
3
. The density of this composite is measured experimentally, namely ρ=1449 kg/m

3
. This 

material is representative of a transversely isotropic composite.  

 

2.2 Experimental procedure for the tensile test method 
 

The elastic behavior determination based on mechanical tests requires to apply axial tensile 

load with different orientation regarding the symmetry axis of the material. In this way, laminated 

samples with three axis fibre directions (0°, 90° and 45°), (see Fig. 1) have been cut according to 

the standard ISO 527-5 for unidirectional composites (Standard NF EN ISO 527-5 2009) leading 

to sample dimensions of 250×20×2 mm
3
 for 0° specimens and 250×25×2 mm

3
 for 45° and 90° 

specimens. It is important to note here that samples were obtained from the same cured plate in 

order to limit data scattering. With those tests, only 4 elastics constants can then be determined 

since loading in the direction of axis 3 (orthogonal to the laminate plane) cannot be done for thin 

composites plates. 

Mechanical tests are carried out at ambient temperature in a room thermoregulated at 25°C. 

Uniaxial tensile tests are performed by an electromechanical testing machine INSTRON 5500. 

According to the standard, the displacement rate is 2 mm/min for 0° samples, 1.5 mm/min for 45° 

samples and 1 mm/min for 90° samples. To check the reproducibility of the response, three 

specimens are considered for each loading direction. 

Strain gauges of 350 Ohm (HBM K-LY41-6/350-3-2M, length of 6 mm) are connected to a 

data acquisition system HBM Spider 8.30 and the data processing is made with Catman Easy 

software. Digital Image Correlation (DIC) is also performed during tensile tests. Such technique 

aims at matching two digital images of a surface observed at two different states of load, generally 

in the reference state (unloaded) and in a deformed state (Sutton et al. 2000). The markers used for 

matching the images with the DIC system are done by painting white points on the sample surface 

(see Figs. 2-3); they form a rhombus of 23×20 mm
2
. The processed image with four markers 

allows then to obtain the strain during the load for each direction (axial and lateral). The DIC uses 

an Aramis sensor made of two CCD cameras 1392×1040 pixels definition (displacement 

resolution of 5 µm). However for plane structures, only one camera is needed for measuring the  
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(a) Reference image of DIC (b) DIC Image at σrupture/2 

Fig. 2 DIC images of the 0° sample 

 

 

Fig. 3 Set-up for tensile characterization method 

 

 

2D strain. Displacements over the structure of the object are deduced from gray-level analysis of 

the markers (see Figs. 2-3). The markers quality has been checked in order to ensure recognition 

by the CCD sensor of different gray levels and to allow an accurate tracking of each pixel during 

the deformation process. The calibration of the system is easily done by taking images of a 

calibration panel under different perspective views; moreover, 35 mm focal length has been chosen 

for the camera lens and the distance between the acquisition system and specimen is 700 mm, 

resulting a spatial resolution of about 80×80 µm
2
 (pixel size). Images are acquired from the 

beginning (t=0 s) to the end of the test; according to the important data involved and related 

computational storage difficulties, the acquisition frequency is fixed to one image per second. 

Only visible light has been used to avoid any perturbation due to temperature variations. Gauges 

and monitored markers are positioned on the same face of the specimen. 

252



 

 

 

 

 

 

Determination of the elastic properties in CFRP composites: comparison of different approaches... 

According to standards, elastic constants are calculated for strain states between PR/10 and PR/2 

where PR is the yield strength of the specimen. With the 0° tensile test, Young modulus E1 and 

Poisson ratio v12 are classically deduced from the ratios of axial stress and axial and lateral strains. 

Young modulus E2=E3 is calculated in the same way from 90° tensile test. Finally, Eq. (1) provides 

the shear modulus G12 by calculating Young modulus E45° obtained with the 45° tensile test 

1

𝐺12
=

4

𝐸45°
−

1

𝐸1
−

1

𝐸2
+ 2

𝜈12

𝐸1
                            (1) 

As said before, this procedure does not allow to obtain the last elastic property, namely the 

Poisson ratio v23, that would entirely determine the elastic behavior of the laminated composite. 

 
2.3 Experimental procedure for ultrasonic characterization 

 
2.3.1 General principle 
The elastic stiffness matrix for a transversely isotropic material is given by the following tensor 

written in the coordinate axes described in Fig. 1 

[𝐶𝑖𝑗𝑘𝑙] =

[
 
 
 
 
 
𝐶1111

𝐶1122

𝐶1122

0
0
0
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0
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0
0
0

𝐶2323

0
0

0
0
0
0

𝐶1212

0

0
0
0
0
0

𝐶1212]
 
 
 
 
 

             (2) 

Ultrasonic characterization aims at providing five components representative of the elastic 

behavior of such material, namely C1111, C2222, C1122, C2323 and C1212 (C2233 can be derived from 

C2222 and C2323 based on the elastic relations). This determination relies on the resolution of the 

Christoffel equation (Rose 1999) 

|  𝐶   −   ( ) | = 0                           (3) 

where V(n) is the wave velocity related to the propagation direction of unit vector n, ρ is the 

material density and I is identity second-order tensor. Accordingly, this requires the measurement 

of ultrasonic velocities for different orientations of wave propagation in the sample. For a 

transversely isotropic composite, measurements in planes of symmetry are sufficient to determine 

all five independent elastic constants (Aristégui and Baste 1997, Chu et al. 1994). 

For the immersion ultrasonic technique, water acts as a couplant that transfers the wave from 

the transducer to the sample under inspection (Castagnède et al. 1990, Rokhlin and Wang 1992). 

The transducer is not directly connected with the sample and hence consistent coupling is ensured. 

In this way, it is possible to measure the wave velocities at different angles of propagation either 

by adjusting transducer orientation or by rotating the sample (Reddy et al. 2005). Here the sample 

is held and moved using a rotation system (see Fig. 4). As ultrasonic generator, an Omniscan 32: 

128 PR is used with a mono-element transducer connected to it. The transducer acts at the same 

time as ultrasonic source and receiver (reflection mode). Classical value of frequency is used, 

namely 5 MHz, which allows mainly to avoid inside reflection; back-reflector and specimen were 

checked for alignment at normal incidence. 

The measurements are performed for different angles Ф between plane 2-3 and incident plane 

(see Fig. 5). For a given Ф, the sample is then rotated in the incident plane for different incident 

angles θi between the transducer and axis 3 of the sample. The wave passes through the sample in  
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(a) θi=0° (b) θi≠0° 

Fig. 4 Back-reflection set-up 

 

 
 

(a) Coordinated system (b) Ultrasonic wave path 

Fig. 5 Wave path description. Ф: angle between plane 2-3 and incident plan direction. θi: incident 

angle. θr: refraction angle 

 

 

the direction of n with angle θr, so θr is function of Ф and θi. For each set of angles (Ф and θi) the 

time of flight is measured. 

 

2.3.2 Procedure for the elastic constants estimation 
The determination of the velocity of propagation in a medium requires the exact time of flight 

(TOF) in the specimen for the given angle of propagation. Such time is determined using the 

cross-correlation technique (Rao et al. 1993). It requires a reference signal, which corresponds 

here to the signal recorded without the sample (only water). The time to cross the material is 

obtained by subtracting the TOF along the reference path in the coupling medium (water) to the 

overall TOF along the path in the sample at a given incident angle. This time difference Δt gives 

then the ultrasonic velocity V(θr) [m/s] in the specimen for the refracted angle θr by the following 

relation (Vishnuvardhan et al. 2007) 

 ( ) =  (   𝑖) = (
1

  
2 −

   𝑜   

   
+

(  )2

4 2 )
 1 2

                   (4) 

where V0 is the velocity in water (without sample) and θi the incidence angle (radians). V0depends 

on the water temperature; this velocity has been measured for each test to account for 
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Fig. 6 Reference velocity V0 for the different samples and angles Ф 

 

  

(a) Reference signal at Ф=0° (b) Signal at Ф=0° and θi=0° 

Fig. 7 Determination of times of flight 

 

 

environmental variations (see Fig. 6) and it has been assumed to be constant during each test 

(duration of each test is around 30 minutes). The average value of V0 is 1488.5 m/s. 

Measurements were done by rotating the sample at 1°±0.05° step resolution. Fig. 7 illustrates 

reference signal at Ф=0° without sample (only water, Fig. 7(a)) and the signal at Ф=0° and θi=0 

from which Δt=t1−t0 is derived (Fig. 7(b)). Note that the measured times t0 and t1, and 

consequently the time difference Δt, are classically defined at the most important amplitude of the 

signal (Reddy et al. 2005); this point will be discussed later.  

The transducer senses both longitudinal and quasi-shear waves. Yet, the longitudinal velocity 

VL of the first one is always more important than the quasi-shear velocity VQS of the latter; this 

allows to distinguish their own contribution in the velocity signal (Reddy et al. 2005). These both 

waves are generated when the incident wave encounters the sample. 

In the present case, only two configurations of the incident plane are necessary to derive the 

elastic constants, namely Ф=0° and Ф=90°. Fig. 8 shows the ultrasonic velocities obtained in  
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Fig. 8 Ultrasonic velocity vs. incident angle in plane 2-3 (Ф=0°) 

 

 

Fig. 9 Ultrasonic velocity vs. incident angle in plane 1-3 (Ф=90°) 

 

 

plane 2-3 (that is for Ф=0°). The longitudinal velocity VL and quasi-shear velocity VQS are almost 

constant for all angles of propagation, which stands in agreement with the transverse isotropy of 

the material around axis 1. The slight deviation of velocity VL (only 8% for a range of 28° of 

incident angle) can be explained by some misalignment of plies during the manufacturing process. 

In contrast, regarding the ultrasonic velocities in plane 1-3 (that is for Ф=90°, Fig. 9), both 

longitudinal and shear velocities are clearly affected by the incident angle. This confirms the 

anisotropic character of the material in this plane (Vishnuvardhan et al. 2007). Note finally that, 

for incident angles bigger than 60°, no signal can be detected. 

Ultrasonic measurements in plane 2-3 are directly related to the constants C2222 and C2323. 

Component C2222 is determined from normal incidence longitudinal velocity, that is for θi=0° 

(point G in Fig. 8) 

𝐶2222 =    
2( = 0°  𝑖 = 0°)                          (5) 

On the other hand, C2323 is determined from the average shear velocity )0( mean
QSV  data 

measured in 2-3 plane (part J in Fig. 8)
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𝐶2323 =  ( 𝑄𝑆
𝑚𝑒𝑎𝑛( = 0°))

2
                          (6) 

C1111, C1122 and C1212 are obtained from both longitudinal and shear velocity data measured in 1-

3 plane. Experimental velocity data is fitted in the following two relations obtained from the 

Christoffel equation’s solution (Eq. (3)). This allows then to determine the three unknown 

parameters. 

  ( = 90°  𝑖) = √
𝐴+√𝐴2 4𝐵

2𝜌
                           (7) 

 𝑄𝑆( = 90°  𝑖) = √
𝐴 √𝐴2 4𝐵

2𝜌
                          (8) 

where 

𝐴 = (𝐶1122 cos2  𝑖 + 𝐶1111 sin2  𝑖 + 𝐶1212)                      (9) 

𝐵 = 𝐶2222𝐶1212 𝑐𝑜𝑠4  𝑖 + 𝐶1111𝐶1212 𝑠𝑖 4  𝑖 +
 𝑖𝑛2 2  

4
[𝐶2222𝐶1111 + 𝐶1212

2 − (𝐶1122 + 𝐶1212)
2]  

(10) 

To solve undetermined Eqs. (7)-(8), one can use the nonlinear least-square optimization 

technique which minimizes the deviations between the experimental and theoretical velocities for 

the considered angles of propagation (Reddy et al. 2005) 

min𝐶 𝑗𝑘𝑙∊𝑅
𝑛

1

2
∑ ( 𝑖

𝑒 −  𝑖
 )

2𝑚
𝑖=1                         (11) 

In Eq. (11), n is the number of independent parameters to be extracted (here 5 elastic constants) 

and m is the number of measurements of velocities in different directions (here 137 experimental 

data). V
e
 and V

t
 are the experimental and theoretical phase velocities, respectively. 

In a last step, component C2233 is calculated using this relation between elastic stiffness 

components 

𝐶2233 = 𝐶2222 − 2𝐶2323                           (12) 

Engineering moduli in the coordinate system (E1, E2=E3, v12, v23 and G12) can be deduced by 

inverting the stiffness tensor. 

 
 

3. Results and discussions 
 

Fig. 10 summarizes the elastic constants estimation obtained by means of the three different 

methods used to characterize the carbon fibre/epoxy composite. The arithmetic mean   is 

calculated as the sum of the sampled values divided by the number N of tests (N=3 for each 

method) 

 =
1

 
∑  𝑖

 
𝑖=1                                 (13) 

The standard deviation σ is found by taking the square root of the average of the squared 

differences of the values xi from their average value 

𝜎 = √
1

 
∑ ( 𝑖 −  )2 

𝑖=1                              (14) 
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(a) E1 (b) E2 

  
(c) v12 (d) G12 

Fig. 10 Calculated elastic constants 

 

 

Since tensile test with strain gauge measurements is a technique normalized by ISO standards, 

results are compared to this method. The error on an elastic property P relative to its reference 

value is defined as follow 

%𝐸𝑟𝑟𝑜𝑟 =
(𝑃 𝑃𝑟𝑒𝑓)

𝑃𝑟𝑒𝑓
                            (15) 

Indeed, we can see a good accuracy between the 0° tensile test with strain gauges and the only 

data provided by the manufacturer, namely the axial Young modulus E1. Even if UD composites 

usually exhibit a good reproducibility, especially on E1, dispersion obtained in our case in the 

stress-strain response can be linked to the manufacturing process (since the manual lay-up cannot 

warrant a perfect alignment of the fibres) and also to the misalignment of gauges.  

Regarding DIC technique, we can note a very accurate determination of Young moduli E1 

(error of 5% on the mean) and E2 (error of 2% on the mean). It should be noted that the deviation 

on these moduli is smaller than the one obtained with gauges. Since DIC method ensures the 

measurement of the strain along the vertical axis, this tends to confirm the influence of the sensors 

position in the reproducibility problem observed with gauges. Results are less precise for Poisson 

ratio v12 (error of 15 % on the mean) and shear modulus G12 (error of 8% on the mean). Latter 

moduli are determined from lateral strains measurement. For carbon fibre composite subjected to 

axial tension, these strains exhibit low amplitude and are then more affected by measurement 

inaccuracies. It is also important to note here that calculus of G12 accumulates the errors derived  
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(a) Signal at Φ=0° and θi=81°. Weak amplitude 

of the signal 

(b) Signal-to-noise ratio for different 

measurements 

Fig. 11 Signal at different measurements 

 

 

from the individual measurements of E1, E2, v12 and E45. However, elastic constants obtained by 

DIC clearly stand in the range of standard measurements if we consider the standard deviations of 

each technique. DIC appears then as an interesting alternative to strain gauge, especially as DIC 

avoids contact and is more practical to set-up. 

US technique is the single one that provides Poisson ratio v23. Among elastic properties, the 

value of E1 is the most accurate result in US characterization in regards to the normalized tensile 

test (error of 11% on the mean) and corresponds to a good estimation if the standard deviation is 

taken into account. Results on mean values of E2 (error of 22% on the mean) and Poisson ratio v12 

(error of 23 % on the mean) seem less accurate but, again, they stand in the same range as the 

reference according to the standard deviation of both techniques. The higher error is found for G12 

(error of 76 % on the mean). All these tendencies (especially, better accuracy on E1 compared to 

E2 and important error on shear modulus G12) stand in agreement with works of Reddy et al. 

(2005) and Vishnuvardhan et al. (2007) on graphite-epoxy plates with the same ultrasonic 

technique (immersion back reflection technique). It should be noted that similar trend was also 

found by Reddy et al. (2005) with through-transmission. All these deviations appear then to be 

linked to the estimation of the TOF of the wave inside the material that can be difficult to 

determine with accuracy. In the present study, the device and measurement protocol of times t0 and 

t1 have been optimized to ensure the best reproducibility. As said before, a classical definition of 

the TOF based on the peak of amplitude has been used. Yet, for increasing angle θi, the wave 

amplitude becomes weaker (Fig. 11(a)), so as the signal-to-noise ratio (Fig. 11(b)). In this latter 

case, it may be then hard to distinguish the peak amplitude and other definitions of TOF may be 

employed. As an example, some deviation is obtained between the measurement based on the real 

peak of amplitude and the measurement based on a theoretical peak for that signal derived from 

some polynomial fitting (Fig. 11(b)).  

 

 

4. Conclusions 
 

This paper intended to compare different methodologies to establish the elastic behavior of 

composite materials. Transversely isotropic composites were considered here through the study of 
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unidirectional carbon fibre/epoxy laminates. Two strain measurement techniques (gauge as 

standard, Digital Image Correlation) during tensile tests and the immersion ultrasonic method were 

analyzed. 

Results highlight first the interest of DIC to determine the strain response and its good accuracy 

on the final determination of elastic constants. Yet, tensile tests do not allow to entirely provide the 

elastic stiffness and some indetermination remains for structures calculation. 

This study has shown also the ability of the immersion ultrasonic technique to derive all elastic 

constants of a UD laminated composite through the measurement of time of flight inside a sample. 

The main advantage of this technique is that only one specimen is needed instead of cutting many 

samples with desired size and shape for a classical characterization tensile test. If elastic properties 

estimations are quite encouraging, some limitations on the precision have been noted that would 

require further investigations on the influence of the time of flight. This could be improved by 

adjusting the experimental set-up in such a way that the distance between transducer and reflector 

is fixed during all the acquisition or by using two transducers (through-transmission). Also, several 

signal data processing will be tested for weak amplitude signals in order to estimate the influence 

of the definition of the TOF on the elastic properties. 

Given that, this immersion ultrasonic method could then be extended with the same principle to 

more complex anisotropic materials including orthotropic symmetry. This would need another 

degree of freedom to rotate the sample that will provide the possibility to propagate ultrasonic 

waves along more azimuthal angles/planes with respect to the fibre axis. 
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