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Abstract.  This study develops a size-dependent model based on modified nonlocal strain gradient theory to 
examine the effects of flexoelectricity and porosity distribution on the electromechanical bending behavior of 
piezoelectric functionally graded (FG) nanocomposite beams on Winkler-Pasternak foundations under different 
loading conditions. The nanocomposite comprises a porous FG core with piezoelectric face layers, using a nonlinear 
power law for thorough-thickness FG material gradation. Various porosity distribution patterns are considered, and 
closed-form solutions for electromechanical bending deflection are derived and validated. Results show that 
nonclassical bending behavior can be optimized by adjusting FG gradation, porosity, flexoelectricity, and foundation 
parameters, providing insights for MEMS and NEMS applications. 
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1. Introduction 
 

In recent years, piezoelectric materials and smart structures have garnered significant attention 
due to their ability to convert mechanical energy into electrical energy and vice versa. This 

electromechanical coupling mechanism has enabled their widespread application in various 
engineering and technological fields, including sensors, actuators, and energy harvesters, (Zhang et 
al. 2022, Zheng et al. 2023, Alessi et al. 2023, Abdelrahman et al. 2023b). To further enhance the 
performance of these structural systems and devices, researchers have explored the integration of 
functionally graded materials, (Zhao et al. 2020, 2022, Alnujaie et al. 2023, Zheng et al. 2024). To 
effectively capture the mechanical performance of piezoelectric nanostructural systems, advanced 
continuum theories, such as nonlocal elasticity, strain gradient theory, and surface elasticity 
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theory, have been employed. These nonclassical approaches account for size-dependent influences 
that become increasingly important at the nanoscale. By incorporating these theories into the 
analysis of piezoelectric nanostructural systems, researchers can design and optimize devices with 
enhanced performance and functionality, (Selvamani et al. 2022, Abdelrahman et al. 2023c, 
Abdelrahman et al. 2024a). 

Microelectromechanical and nanoelectromechanical systems, (MEMS) & (NEMS) have 

garnered significant research interest due to their promising features, such as small size, low power 
consumption, high reliability, and precision. The performance of MEMS and NEMS are 
significantly dependent on material characteristics and actuation mechanisms, Zhao et al. (2023). 
Functionally graded materials (FGMs), a class of advanced modern composite materials with 
continuously varying material properties, offer several promising advantages for MEMS and 
NEMS applications, including improved temperature tolerance, fracture toughness, and stress 
intensity factor, (Dang and Do 2021, Melaibari et al. 2022). By combining the benefits of FGMs 

and electrostatic actuation, researchers can further advance the field of NEMS, enabling the 
development of novel devices with enhanced performance and functionality, (Al‐Furjan et al. 
2022, Zhao et al. 2023). 

Regarding the mechanical behavior of smart functionally graded nanobeam structures, Tadi 
Beni, (2016) employed consistent size-dependent theory in the framework of the Euler-Bernoulli 
beam theory to analyze the bending, buckling, and free vibration behaviors of functionally graded 
(FG) piezoelectric nanobeams. Based on Eringen's nonlocal elasticity theory, Yan and Jiang 
(2017) provided a comprehensive review of the size-dependent mechanical analysis of 

piezoelectric nanostructures, incorporating surface elasticity, flexoelectricity influences. Chu et al. 
(2018) investigated the impact of flexoelectricity on the bending as well as vibration behaviors of 
FG piezoelectric nanobeams based on modified strain gradient theory (MNSGT). Nan et al. (2020) 
investigated the size-dependent static bending and free vibration behaviors of porous FG 
piezoelectric nanobeams. Ebrahimi et al. (2020) provided a comprehensive review of 
nanostructures exhibiting piezoelectric activity, focusing on their mechanical and electrical 
properties. Zhao et al. (2020) explored the combined effects of size-dependency, porosity, and 

axial gradation of FG materials on the behavior of flexoelectric modified couple stress Euler-
Bernoulli nanobeams. Zhao et al. (2022) presented a comprehensive overview of size dependent 
dynamic behavior of piezoelectric micro/nanostructures. Ren et al. (2022) proposed strain/stress-
driven integral nonlocal gradient piezoelectric models to analyze the bending behavior of FG 
piezoelectric nanobeams. In the framework of the generalized differential quadrature 
methodology, Zhao et al. (2022) analyzed the bending, free vibration, and buckling of axially 
functionally graded flexoelectric strain gradient nanobeams. Wang et al. (2023) investigated the 

electric response of piezoelectric curved beams, considering both direct piezoelectric and 
flexoelectric effects. Alshenawy et al. (2023) studied the nonlinear dynamics of micro-scale strain 
gradient piezoelectric bridge-type energy harvesters using a meshless collocation approach. Zou et 
al. (2023) explored the effects of thickness stretching and multi-field loading on the bending 
response of sandwich piezoelectric/piezomagnetic MEMS. Van Minh et al. (2023) reviewed the 
static and dynamic analysis of the flexoelectric effect in nanostructures, highlighting the major 
challenges and suggesting future research directions. 

Zeng et al. (2020) developed a nonlocal strain gradient model to explore the dynamic behavior 

of piezoelectric sandwich nanobeam. Thongchom et al. (2022) investigated acoustic and fluid 
loading effects on multilayer cylindrical nanoshell with a functionally graded (FG) material core 
and PZ layers. Abdelrahman et al. (2023b) investigated the size dependent bending behavior of 
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piezoelectric composite beam with perforated core on elastic foundation. The nonclassical 
buckling behavior of piezoelectric layered nanobeam with perforated core is analyzed by 
Abdelrahman et al. (2024a)   

 A literature survey reveals a significant gap in the understanding of the size-dependent 
electromechanical bending behavior of piezoelectric composite nanobeams with functionally 
graded porous cores, particularly when considering the combined effects of flexoelectricity and 

elastic foundation interactions. This study aims to fill this gap by developing a nonclassical model 
based on the modified nonlocal strain gradient theory to accurately analyze the size-dependent 
bending performance of these complex nanostructures. The primary objective of this research is to 
investigate the electromechanical bending behavior of piezoelectric layered nanobeams 
incorporating porous functionally graded cores and the influence of flexoelectricity. The study will 
explore the effects of various factors, such as material properties, geometric parameters, and 
loading conditions, on the electromechanical response of these nanostructures. The remainder of 

this paper is organized as follows: Section 2 presents the detailed modeling and formulation of the 
problem, including the development of the governing equations. Section 3 derives the 
electromechanical equilibrium equation, which incorporates the effects of nonlocality, strain 
gradients, and flexoelectricity. Section 4 outlines the proposed analytical solution strategy, which 
involves solving the governing equations using appropriate numerical techniques. Section 5 
validates the accuracy of the developed solution procedure by comparing the results with existing 
analytical and numerical solutions. Section 6 presents the numerical results and a detailed 
discussion of the effects of various parameters on the electromechanical bending behavior of the 

nanobeam. Finally, Section 7 summarizes the key findings of the study and provides concluding 
remarks. 

 
 

2. Modelling and formulation 
 
A piezoelectric functionally graded porous (PFGP) nanocomposite beam structure with a span, 

L, width Wb, and height ht is embedded in an elastic media and subjected to a partially distributed 
load of intensity, Q(t), as shown in Fig. 1. 
 

2.1 Functionally graded porous materials (FGPMs) 
 

To model the nonhomogeneity distribution of the functionally graded material (FGM) 
properties of graded structures, there are different proposed distribution patterns in the literature, 

Eltaher et al. (2014), Wattanasakulpong and Chaikittiratana (2015), throughout this work study the 
Voigt model is employed, Attia and Abdelrahman (2018). According to this model the material 
property, Γ(z) and volume fractions, Vc (z), Vm (z) of ceramic (c) and metal (m) constituents of 
FGM at any coordinate z is defined according to the rule of mixture as, Almitani et al. (2021), 
Abdelrahman et al. (2021)  

{

Γ(𝑧)

𝑉𝑐(𝑧)

𝑉𝑚(𝑧)
} = {

(Γ𝑐 −Γ𝑚)𝑉𝑐 + Γ𝑚

(
𝑧

ℎ𝑐
+
1

2
)
𝑛

1− 𝑉𝑐(𝑧)

},  (1) 

To explore the impact of the material porosity distribution, three different types of porosity  
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(a) Composite piezoelectric sandwich beam with Evenly distributed porosity (EDP) of porous FG core 

 
(b) Composite piezoelectric sandwich beam with Centrally distributed porosity (CDP) of porous FG core 

 
(c) Composite piezoelectric sandwich beam with High porosity distribution near the top and bottom 

surface (HTBDP) of porous FG core 

Fig. 1 Piezoelectric functionally graded porous (PFGP) nanocomposite beam, with different porosity 

distribution patterns, embedded in an elastic media and subjected to partially distributed load, Q(t) 

 
 

distribution patterns are considered, as shown in Fig. 1. According to Eq. (1) and the considered 
porosity distribution profiles, the physical as well as the mechanical properties of the functionally 
graded porous (FGP) nanobeam including Young’s modulus, E(z), Poisson’s ratio, ν(z), shear 
modulus, G(z), and mass density, ρ(z), can be defined according to the porosity distribution profile 

type (1) (Evenly distributed porosity (EDP)) as, Mirjavadi et al. (2018), Alasadi et al. (2019), 
Dang and Do (2021), Nabawy et al. (2022), Assie et al. (2023), Esen et al. (2023), HS (2022), 
Yadav et al. (2023) 

{

𝐸(𝑧)

𝑣(𝑧)

𝐺(𝑧)

𝜌(𝑧)

} =

{
 
 
 

 
 
 𝐸𝑚 + (𝐸𝑐 −𝐸𝑚) (

𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝐸𝑐 + 𝐸𝑚)

𝑣𝑚 + (𝑣𝑐 − 𝑣𝑚) (
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝑣𝑐 + 𝑣𝑚)

𝐺𝑚 + (𝐺𝑐 −𝐺𝑚) (
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝐺𝑐 + 𝐺𝑚)

𝜌𝑚 + (𝜌𝑐 −𝜌𝑚)(
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝜌𝑐 +𝜌𝑚)}

 
 
 

 
 
 

  (2a) 
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On the other hand, according to the porosity distribution profile of type 2 (Centrally distributed 
porosity (CDP)), spatial variations of the FG core material properties throughout the thickness 
direction can be expressed as 

{

𝐸(𝑧)

𝑣(𝑧)

𝐺(𝑧)

𝜌(𝑧)

} =

{
 
 
 

 
 
 𝐸𝑚 + (𝐸𝑐 −𝐸𝑚) (

𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ𝑐
)

𝑣𝑚 + (𝑣𝑐 − 𝑣𝑚) (
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝑣𝑐 + 𝑣𝑚) (1 −

2|𝑧|

ℎ𝑐
)

𝐺𝑚 + (𝐺𝑐 −𝐺𝑚) (
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝐺𝑐 + 𝐺𝑚)(1 −

2|𝑧|

ℎ𝑐
)

𝜌𝑚 + (𝜌𝑐 −𝜌𝑚)(
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝜌𝑐 +𝜌𝑚) (1 −

2|𝑧|

ℎ𝑐
)}
 
 
 

 
 
 

  (2b) 

Furthermore, according to the porosity distribution profile of type 3 (High porosity distribution 
near the top and bottom surface (HTBDP)), variations of the FG core material characteristics 
through the transverse direction can be given by the following relations 

{

𝐸(𝑧)

𝑣(𝑧)

𝐺(𝑧)

𝜌(𝑧)

} =

{
 
 
 

 
 
 𝐸𝑚 + (𝐸𝑐 −𝐸𝑚) (

𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝐸𝑐 + 𝐸𝑚) (

2|𝑧|

ℎ𝑐
)

𝑣𝑚 + (𝑣𝑐 − 𝑣𝑚) (
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝑣𝑐 + 𝑣𝑚) (

2|𝑧|

ℎ𝑐
)

𝐺𝑚 + (𝐺𝑐 −𝐺𝑚) (
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝐺𝑐 + 𝐺𝑚)(

2|𝑧|

ℎ𝑐
)

𝜌𝑚 + (𝜌𝑐 −𝜌𝑚)(
𝑧

ℎ𝑐
+
1

2
)
𝑛
−
𝛼

2
(𝜌𝑐 +𝜌𝑚) (

2|𝑧|

ℎ𝑐
)}
 
 
 

 
 
 

  (2c) 

In which the subscripts 𝑐  and 𝑚  refer to ceramic and metal constituents of FG core, 
respectively. While n and α are the material gradation and porosity parameters, respectively.  
 

2.2 The modified nonlocal strain gradient theory (MNSGT) 
 

According to the modified nonlocal strain gradient theory MNSGT, the nonclassical 
constitutive equations for the components of the stress tensor, the higher order nonlocal stress 
tensor, and the nonlocal electric potential are expressed as, Mehralian et al. (2017), Basha et al. 
(2022), Esen et al. (2022) 

(1 − (𝑒0𝑎)
2∇2)𝜎𝑖𝑗

𝑡 = 𝐶𝑖𝑗𝑘𝑙 (1− 𝑙
2 𝜕2

𝜕𝑥2
) 𝜀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘   (3a) 

(1 − (𝑒0𝑎)
2∇2)𝜎𝑖𝑗𝑙 = −𝜇𝑘𝑖𝑗𝑙𝐸𝑘  (3b) 

(1 − (𝑒0𝑎)
2∇2)𝐷𝑖 = 𝑎𝑖𝑗𝐸𝑗 + 𝑒𝑖𝑗𝑘𝜀𝑗𝑘 +𝜇𝑖𝑗𝑘𝑙𝜀𝑗𝑘,𝑙 (3c) 

 

2.3 Piezoelectric nanobeams with flexoelectricity effect 
 

Based on the EBBT, the displacement field and the associated kinematic relations can be 

expressed as, Zhao et al. (2020), Alazwari et al. (2022), Mohamed et al. (2024) 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
  (4a) 
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𝑢𝑧(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) (4b) 

𝜀𝑥𝑥(𝑥, 𝑧, 𝑡) =
𝜕𝑢𝑥(𝑥,𝑧,𝑡)

𝜕𝑥
=

𝜕𝑢(𝑥,𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
  (4c) 

where ux (x, z, t), uz (x, z, t) are the displacement field components in the spatial coordinate 

directions x and z, respectively. While 𝑢(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) are the axial mid plane displacement 

and the transverse bending deflection. 𝜀𝑥𝑥(𝑥, 𝑧, 𝑡)  represents the normal strain component. 
Including Poisson's effect, the constitutive relation of functionally graded materials can be written 
as, Abdelrahman et al. (2023a) 

{

𝜎𝑥𝑥(𝑥, 𝑧, 𝑡)

𝜎𝑦𝑦(𝑥, 𝑧, 𝑡)

𝜎𝑧𝑧(𝑥, 𝑧, 𝑡)

} = {
�̂�(𝑧)𝜀𝑥𝑥(𝑥, 𝑧, 𝑡)

𝜆(𝑧)𝜀𝑥𝑥(𝑥, 𝑧, 𝑡)

𝜆(𝑧)𝜀𝑥𝑥(𝑥, 𝑧, 𝑡)

} =

{
 
 

 
 (2𝜇(𝑧) + 𝜆(𝑧))(−𝑧

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)

𝜆(𝑧)(−𝑧
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)

(
𝜈

1−𝜈
)𝜎𝑥𝑥(𝑥, 𝑧, 𝑡) }

 
 

 
 

  (5a) 

where �̂�(𝑧) is the equivalent modulus of elasticity, E(z) is the material elasticity modulus, v is the 
Poisson’s ratio, σxx (x, z, t), σyy (x, z, t), and σzz (x, z, t) are respectively the components of the 
Cauchy normal stress tensor, λ(z) and μ(z) are Lame's constants in classical elasticity theory which 
are evaluated in terms of the material elasticity modulus, E(z) and the Poisson’s ratio, v as follows 

[𝜇(𝑧) 𝜆(𝑧)] = [
𝐸(𝑧) 

2(1+𝜈)

𝜈𝐸(𝑧) 

(1+𝜈)(1−2𝜈)
]  (5b) 

Regarding the electrical relations, the electric enthalpy energy density function is given by, 

Ansari et al. (2021), Ali et al. (2022) 

𝐻 = −
1

2
𝑎𝑘𝑙𝐸𝑘𝐸𝑙 +

1

2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 − 𝑒𝑖𝑗𝑘  𝐸𝑘  𝜀𝑖𝑗 −𝑢𝑖𝑗𝑘𝑙  𝐸𝑖  𝜀𝑗𝑘,𝑙  (6) 

Additionally, the electric displacement is expressed in terms of the electric enthalpy energy 
density, as Eftekhari et al. (2022), Liang et al. (2014) 

𝐷𝑖 = −
𝜕𝐻

𝜕𝐸𝑖
= 𝑎𝑖𝑗𝐸𝑗 + 𝑒𝑖𝑗𝑘  𝜀𝑗𝑘 +𝑢𝑖𝑗𝑘𝑙  𝜀𝑗𝑘,𝑙  (7) 

with Ei refers to the electric fields is given by Ali et al. (2022) 

𝐸𝑖 = −
𝜕𝜙𝑖

𝜕𝑥𝑖
  (8) 

where 𝑎𝑘𝑙 , 𝑐𝑖𝑗𝑘𝑙 , 𝑒𝑖𝑗𝑘 , and 𝑢𝑖𝑗𝑘𝑙  respectively refer to the 2nd order permittivity tensor, the fourth 

order elasticity tensor, the piezoelectric coefficient tensor, and the electric field strain gradient 
coupling coefficient which denotes the higher order electromechanical coupling induced by strain 
gradients. The Cartesian component of the electric displacement can be evaluated as, Zeng et al. 
(2020), Abdelrahman et al. (2024a) 

𝐷𝑧(𝑥, 𝑧, 𝑡) = 𝑎33𝐸𝑧(𝑥, 𝑧, 𝑡) + 𝑒311 𝜀𝑥𝑥(𝑥, 𝑧, 𝑡) + 𝑢3111𝜀𝑥𝑥,𝑥(𝑥, 𝑧, 𝑡) + 𝑢3113𝜀𝑥𝑥,𝑧(𝑥, 𝑧, 𝑡) (9) 

Based on the Gaussian theorem, the following condition is verified:-  

𝐷𝑧,𝑧(𝑥, 𝑧, 𝑡) = 0 ⇒ 𝑎33𝐸𝑧,𝑧(𝑥, 𝑧, 𝑡) + 𝑒311𝜀𝑥𝑥,𝑧(𝑥, 𝑧, 𝑡)  + 𝑢3111𝜀𝑥𝑥,𝑥𝑧(𝑥, 𝑧, 𝑡) +
𝑢3113𝜀𝑥𝑥,𝑧𝑧(𝑥, 𝑧, 𝑡) = 0  

(10) 

Rearranging terms in Eq. (10) one can write 
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𝐸𝑧,𝑧(𝑥, 𝑧, 𝑡) =
−1

𝑎33
{𝑒311𝜀𝑥𝑥,𝑧(𝑥, 𝑧, 𝑡)  + 𝑢3111𝜀𝑥𝑥,𝑥𝑧(𝑥, 𝑧, 𝑡) + 𝑢3113𝜀𝑥𝑥,𝑧𝑧(𝑥, 𝑧, 𝑡)}  (11) 

Integrating Eq. (11) w.r.t z yields 

𝐸𝑧(𝑥, 𝑧, 𝑡) − 𝐸𝑧0 =
−1

𝑎33
{𝑒311𝜀𝑥𝑥(𝑥, 𝑧, 𝑡) + 𝑢3111𝜀𝑥𝑥,𝑥(𝑥, 𝑧, 𝑡) + 𝑢3113𝜀𝑥𝑥,𝑧(𝑥, 𝑧, 𝑡)}  (12) 

Considering only the bending effect, Eq. (12) can be expressed in terms of 𝑤(𝑥, 𝑡) as  

𝐸𝑧(𝑥, 𝑧, 𝑡) = 𝐸𝑧0 +
𝑧

𝑎33
[𝑒311  (

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
) + 𝑢3111 (

𝜕3𝑤(𝑥,𝑡)

𝜕𝑥3
)]  (13) 

with 𝐸𝑧0 refers to the initial electric field in the z-direction. 
 
 

3. Estableshment of the electromechanical equilibrium equation  
 
Applying Hamilton's principle, the electromechanical equilibrium equation can be expressed as, 

Abdelrahman et al. (2014), Abdelrahman et al. (2024b)  

−∫ [𝛿Π+ 𝛿𝑊𝑒𝑥]
𝑡2
𝑡1

𝑑𝑡 = 0  (14) 

where Ω refers to the volume of the composite beam, Π is the electroelastic strain energy which 
could be expressed for Euler Bernoulli beam theory (EBBT) as, Eltaher et al. (2021) 

Π =
1

2
∫ (𝜎𝑥𝑥

𝑡 (𝑥, 𝑧, 𝑡)𝜀𝑥𝑥(𝑥, 𝑧, 𝑡) − 𝐷𝑧(𝑥, 𝑧, 𝑡)𝐸𝑧(𝑥, 𝑧, 𝑡) + 𝜎111𝜀𝑥𝑥,𝑥(𝑥, 𝑧, 𝑡) +Ω

 𝜎113𝜀𝑥𝑥,𝑧(𝑥, 𝑧, 𝑡))𝑑Ω =
1

2
∫ (�̅�𝜀𝑥𝑥0 + �̅�

′𝜀𝑥𝑥0,𝑥)𝑑𝑥
𝐿

0
  

(15) 

in which  

[𝜀𝑥𝑥0 �̅� �̅�′] = [−
𝜕2𝑤

𝜕𝑥2
𝑀 +

𝑒311

𝑎33
𝑀𝐷 + 𝑁113  

𝜇3111

𝑎33
𝑀𝐷 +𝑁111]  (16) 

Utilizing Eq. (16), the electroelastic strain energy can be expressed as 

Π =
1

2
∫ [(𝑀 +

𝑒311

𝑎33
𝑀𝐷 +𝑁113) (−

𝜕2𝑤

𝜕𝑥2
)+ (

𝜇3111

𝑎33
𝑀𝐷 + 𝑁111) (−

𝜕3𝑤

𝜕𝑥3
)] 𝑑x

𝐿

0
  (17) 

Recalling the modified nonlocal strain gradient theory, the resultant forces and moments can be 
given by the following relations, Hosseini et al. (2020) 

(1 − (𝑒0𝑎)
2 𝜕2

𝜕𝑥2
){

𝑀
𝑁113
𝑀111
𝑀𝐷

} =

{
 
 

 
 (1 − 𝑙

2 𝜕2

𝜕𝑥2
) {𝒟 − 𝐸𝑝𝐼𝑝}𝜀𝑥𝑥0 +

𝑒311
2

𝑎33
𝐼𝑝𝜀𝑥𝑥 +

𝑒311𝜇3111𝐼𝑝

𝑎33

𝜕𝜀𝑥𝑥0

𝜕𝑥
− 𝑒311𝐼1𝐸𝑧0

0

𝑤𝑏 {
𝜇3111

𝑎33
𝐼𝑝 (𝑒311𝜀𝑥𝑥0 +𝜇3111

𝜕𝜀𝑥𝑥0

𝜕𝑥
) − 𝜇3111𝐼1𝐸𝑧0}

𝑤𝑏𝑎33𝐼1𝐸𝑧0 }
 
 

 
 

  

(18) 

in which 
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[𝒟 𝐼𝑝 𝐼1  𝐴𝑐 𝐴𝑝] =

[∫ (𝑧 − 𝑒𝑛)
2𝑤𝑏𝐸(𝑧)𝑑𝑧

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
(
ℎ3

12
− 𝐼𝑐) (

ℎ2

4
−
ℎ𝑐
2

4
)  ℎ𝑐𝑤𝑏 ℎ𝑝𝑤𝑏]  

(19) 

with wb is the beam width, 𝑒𝑛 locates the shift distance of the neutral plane from the geometric mid 
plane. This shift could be obtained for evenly distributed porosity (EDP) from the following 
relation 

𝑒𝑛  
𝐸𝐷𝑃

=
∫ 𝑧𝐸(𝑧)𝐸𝐷𝑃𝑑𝐴
 

𝐴

∫ 𝐸(𝑧)𝐸𝐷𝑃𝑑𝐴
 

𝐴

=
∫ 𝑧𝐸(𝑧)𝐸𝐷𝑃𝑑𝑧
ℎ𝑐 2⁄

−ℎ𝑐 2⁄

∫ 𝐸(𝑧)𝐸𝐷𝑃𝑑𝑧
ℎ𝑐 2⁄

−ℎ𝑐 2⁄

=
ℎ𝑐𝑛(𝐸𝑐−𝐸𝑚)

2(𝑛+2)(𝑛𝐸𝑚+𝐸𝑐−
𝛼

2
(𝑛+1)(𝐸𝑐+𝐸𝑚))

  (20) 

for centrally distributed porosity (CDP) the neutral plane is located by the following relation 

𝑒𝑛  
𝐶𝐷𝑃

=
∫ 𝑧𝐸(𝑧)𝐶𝐷𝑃𝑑𝐴
 

𝐴

∫ 𝐸(𝑧)𝐶𝐷𝑃𝑑𝐴
 

𝐴

=
∫ 𝑧𝐸(𝑧)𝐶𝐷𝑃𝑑𝑧
ℎ𝑐 2⁄

−ℎ𝑐 2⁄

∫ 𝐸(𝑧)𝐶𝐷𝑃𝑑𝑧
ℎ𝑐 2⁄

−ℎ𝑐 2⁄

=
ℎ𝑐𝑛(𝐸𝑐−𝐸𝑚)

2(𝑛+2){𝑛𝐸𝑚+𝐸𝑐−
𝛼

4
(𝑛+1)(𝐸𝑐+𝐸𝑚)}

  (21) 

On the other hand considering the high porosity distribution near the top and bottom surface 
(HTBDP), the neutral plane is expressed as follows 

𝑒𝑛  
𝐻𝑇𝐵𝐷𝑃

=
∫ 𝑧𝐸(𝑧)𝐻𝑇𝐵𝐷𝑃𝑑𝐴
 

𝐴

∫ 𝐸(𝑧)𝐻𝑇𝐵𝐷𝑃𝑑𝐴
 

𝐴

=
∫ 𝑧𝐸(𝑧)𝐻𝑇𝐵𝐷𝑃𝑑𝑧
ℎ𝑐 2⁄

−ℎ𝑐 2⁄

∫ 𝐸(𝑧)𝐻𝑇𝐵𝐷𝑃𝑑𝑧
ℎ𝑐 2⁄

−ℎ𝑐 2⁄

=
ℎ𝑐𝑛(𝐸𝑐−𝐸𝑚)

2(𝑛+2)[𝑛𝐸𝑚+𝐸𝑐−
𝛼

4
(𝑛+1)(𝐸𝑐+𝐸𝑚)]

  (22) 

On the other hand, the equivalent bending stiffness of the porous FG core for evenly distributed 

porosity (EDP), 𝒟𝐸𝐷𝑃 can be expressed as follows 

𝒟𝐸𝐷𝑃 = ∫ (𝑧 − 𝑒𝑛𝐸𝐷𝑃)
2
𝑤𝑏𝐸𝐸𝐷𝑃(𝑧)𝑑𝑧

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
= 𝑤𝑏 [

𝐸𝑚

3
((
ℎ𝑐

2
− 𝑒𝑛𝐸𝐷𝑃)

3
+ (

ℎ𝑐

2
+ 𝑒𝑛𝐸𝐷𝑃)

3
) +

{
ℎ𝑐(𝐸𝑐−𝐸𝑚)

(𝑛+1)
} {(

ℎ𝑐

2
− 𝑒𝑛𝐸𝐷𝑃)

2
− {

2ℎ𝑐

(𝑛+2)
} (

ℎ𝑐

2
− 𝑒𝑛𝐸𝐷𝑃) + {

2(ℎ𝑐)
2

(𝑛+2)(𝑛+3)
}}−

𝛼

6
(𝐸𝑐 + 𝐸𝑚) {(

ℎ𝑐

2
−

𝑒𝑛𝐸𝐷𝑃)
3
+ (

ℎ𝑐

2
+ 𝑒𝑛𝐸𝐷𝑃)

3
}]  

(23) 

Further, for centrally distributed porosity (CDP), the equivalent bending stiffness, 𝒟𝐶𝐷𝑃 can be 
expressed as follows 

𝒟𝐶𝐷𝑃 = ∫ (𝑧 − 𝑒𝑛𝐶𝐷𝑃)
2
𝑤𝑏𝐸𝐶𝐷𝑃(𝑧)𝑑𝑧

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
= 𝑤𝑏 [

𝐸𝑚

3
((
ℎ𝑐

2
− 𝑒𝑛𝐶𝐷𝑃)

3
+ (

ℎ𝑐

2
+ 𝑒𝑛𝐶𝐷𝑃)

3
) +

{
ℎ𝑐(𝐸𝑐−𝐸𝑚)

(𝑛+1)
} {(

ℎ𝑐

2
− 𝑒𝑛𝐶𝐷𝑃)

2
− {

2ℎ𝑐

(𝑛+2)
} (

ℎ𝑐

2
− 𝑒𝑛𝐶𝐷𝑃) + {

2(ℎ𝑐)
2

(𝑛+2)(𝑛+3)
}} −

𝛼

12

(𝐸𝑐+𝐸𝑚)

ℎ𝑐
{(
ℎ𝑐

2
+

𝑒𝑛𝐶𝐷𝑃)
4
+ (

ℎ𝑐

2
− 𝑒𝑛𝐶𝐷𝑃)

4
−2(𝑒𝑛𝐶𝐷𝑃)

4
}]  

(24) 

Furthermore, considering the high porosity distribution near the top and bottom surface 

(HTBDP), the equivalent bending stiffness, 𝒟𝐻𝑇𝐵𝐷𝑃 can be derived as follows 

𝒟𝐻𝑇𝐵𝐷𝑃 = ∫ (𝑧 − 𝑒𝑛𝐻𝑇𝐵𝐷𝑃)
2
𝑤𝑏𝐸𝐻𝑇𝐵𝐷𝑃(𝑧)𝑑𝑧

ℎ𝑐 2⁄

−ℎ𝑐 2⁄
= 𝑤𝑏 [

𝐸𝑚

3
((
ℎ𝑐

2
− 𝑒𝑛𝐻𝑇𝐵𝐷𝑃)

3
+ (

ℎ𝑐

2
+

𝑒𝑛𝐻𝑇𝐵𝐷𝑃)
3
) + {

ℎ𝑐(𝐸𝑐−𝐸𝑚)

(𝑛+1)
} {(

ℎ𝑐

2
− 𝑒𝑛𝐻𝑇𝐵𝐷𝑃)

2
− {

2ℎ𝑐

(𝑛+2)
} (

ℎ𝑐

2
− 𝑒𝑛𝐻𝑇𝐵𝐷𝑃) +  
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2(ℎ𝑐)
2

(𝑛+2)(𝑛+3)
}−

𝛼

6
(𝐸𝑐 + 𝐸𝑚) {(

ℎ𝑐

2
+ 𝑒𝑛𝐻𝑇𝐵𝐷𝑃)

3
+ (

ℎ𝑐

2
− 𝑒𝑛𝐻𝑇𝐵𝐷𝑃)

3
} +

𝛼

12
(
𝐸𝑐+𝐸𝑚

ℎ𝑐
) {(

ℎ𝑐

2
+

𝑒𝑛𝐻𝑇𝐵𝐷𝑃)
4
+ (

ℎ𝑐

2
− 𝑒𝑛𝐻𝑇𝐵𝐷𝑃)

4
−2(𝑒𝑛𝐻𝑇𝐵𝐷𝑃)

4
}]  

(25) 

The work done by the applied external transverse loads and the elastic foundation could  be 
expressed as follows (Siam et al. 2023, Mohamed et al. 2024) 

𝑊𝑒𝑥 = −𝑤𝑏 ∫ {𝑞(𝑥, 𝑡)𝐷𝑠(𝑥 − 𝑥𝑝) + [𝑘𝑤𝑤(𝑥, 𝑡) − 𝑘𝑝
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
]}𝑤(𝑥, 𝑡)

𝐿

0
𝑑𝑥  (26) 

with Ds(.) refers to the Dirac delta function, and x is the abscissa, measured from the left end of the 
beam, q(x,t) is the applied external shear force, kw, kp are  respectively refer to the Winkler and the 
Pasternak foundation parameters. 

Recalling Eqs. (17) & (26) into Eq. (14) and evaluate the integrals, the coupled equilibrium 
equation can be expressed as follows 

−∫ [𝛿Π+ 𝛿𝑊𝑒𝑥]
𝑡2
𝑡1

𝑑𝑡 = −∫ [∫ [(𝑀 +
𝑒311

𝑎33
𝑀𝐷 + 𝑁113) 𝛿 (−

𝜕2𝑤

𝜕𝑥2
) + (

𝜇3111

𝑎33
𝑀𝐷 +

𝐿

0

𝑡2
𝑡1

𝑁111) 𝛿 (−
𝜕3𝑤

𝜕𝑥3
)] 𝑑x +𝑤𝑏 ∫ {𝑞(𝑥, 𝑡)𝐷𝑠(𝑥 − 𝑥𝑝) + [𝑘𝑤𝑤(𝑥, 𝑡) −

𝐿

0

𝑘𝑝
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
]} 𝛿𝑤(𝑥, 𝑡)𝑑𝑥] 𝑑𝑡 = 0  

(27a) 

Evaluating integrals yields 

𝜕2�̅�

𝜕𝑥2
−
𝜕3�̅�′

𝜕𝑥3
= {𝑞(𝑥, 𝑡) + [𝑘𝑤𝑤(𝑥, 𝑡) − 𝑘𝑝

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
]} (27b) 

For convenience, the coupled equilibrium equation is expressed in terms of normalized 
variables. For this purpose the following nondimensional parameters are defined 

[𝑊 𝑋 𝑞] = [
𝑤

ℎ𝑡

𝑥

𝐿

𝑞𝐿3

([𝐸𝑐𝐼𝑐]𝑒𝑞+𝐸𝑝𝐼𝑝)
]  (28a) 

[𝑑𝑥
𝑑𝑤

𝑑𝑋

𝑑4𝑤

𝑑𝑥4
𝑑6𝑤

𝑑𝑥6
] = [𝐿𝑑𝑋 (

ℎ𝑡

𝐿
)
𝑑𝑊

𝑑𝑋
(
ℎ𝑡

𝐿4
)
𝑑4𝑊

𝑑𝑋4
(
ℎ𝑡

𝐿6
)
𝑑6𝑊

𝑑𝑋6
]  (28b) 

Substituting Eqs. (18) and (28) into Eq. (27b) the coupled equilibrium equation can be 
expressed in terms of the normalized bending deflection as follows 

−[{𝒟 +𝐸𝑝𝐼𝑝} + 𝐼𝑝
𝑒311
2

𝑎33
] (

ℎ

𝐿4
) [

𝑑4𝑊(𝑋)

𝑑𝑋4
] + (𝑙2[𝒟 − 𝐸𝑝𝐼𝑝] + 𝐼𝑝

𝜇3111
2

𝑎33
) (

ℎ

𝐿6
)
𝜕6𝑊(𝑋)

𝜕𝑋6
=

(1 −
(𝑒0𝑎)

2

𝐿2
𝜕2

𝜕𝑋2
)[𝑞(𝑋) + [ℎ𝑘𝑤𝑊(𝑋) −

ℎ𝑘𝑝

𝐿2
𝑑2𝑊(𝑋)

𝑑𝑋2
]]  

(29) 

 
 

4. Solution technique 
 
The coupled electromechanical system defined by the equilibrium Eq. (29) is to be solved to 

investigate the size dependent electromechanical bending behavior of composite nanobeam with 
porous functionally graded core layered with two symmetrical piezoelectric face layers embedded 
in an elastic medium. Considering the simply supported beam, the following boundary conditions 
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are to be satisfied 

{
𝑊(𝑋)
𝑑2𝑊(𝑋)

𝑑𝑋2

}

𝑎𝑡 𝑋=0

= {
𝑊(𝑋)
𝑑2𝑊(𝑋)

𝑑𝑋2

}

𝑎𝑡 𝑋=1

= 0  (30) 

The transverse bending deflection, its derivatives w. r. to X as well as the applied external load 
can be expanded by Fourier expansion in the following forms, Alazwari et al. (2022), 
Abdelrahman and Eltaher (2022) 

{
 
 

 
 𝑊(𝑋)

𝑑2𝑊(𝑋)

𝑑𝑋2

𝑑4𝑊(𝑋)

𝑑𝑋4
𝑑6𝑊(𝑋)

𝑑𝑋6

𝑞(𝑋)
𝑑2𝑞(𝑋)

𝑑𝑋2 }
 
 

 
 

= {

∑ 𝑊𝑛 sin(𝑛𝜋𝑋)
∞
𝑛=1 −∑ (𝑛𝜋)2𝑊𝑛 sin(𝑛𝜋𝑋)

∞
𝑛=1

∑ (𝑛𝜋)4𝑊𝑛 sin(𝑛𝜋𝑋)
∞
𝑛=1 −∑ (𝑛𝜋)6𝑊𝑛 sin(𝑛𝜋𝑋)

∞
𝑛=1

∑ 𝑄𝑛 sin(𝑛𝜋𝑋)  
∞
𝑛=1 −∑ (𝑛𝜋)2𝑄𝑛 sin(𝑛𝜋𝑋)  

∞
𝑛=1

}  (31) 

where Qn is the Fourier expansion coefficients which depends on the applied loading profile. For 
uniformly distributed load 

𝑄𝑛 = {

2𝑞0

(𝑛𝜋)
(1 − cos𝑛𝜋)     Uniformly distributed load with intensity 𝑞0

2𝑃

𝐿
𝑠𝑖𝑛(𝑛𝜋�̅�𝑝)  Point load of intensity 𝑃𝐷(𝑋 − �̅�𝑝) applied at a distance �̅�𝑝 

  (32) 

Substituting Eqs. (34), (35), (36) and (37) into Eq. (33) yields 

[∑ {[{𝒟 + 𝐸𝑝𝐼𝑝} + 𝐼𝑝
𝑒311
2

𝑎33
](

ℎ

𝐿4
) (𝑛𝜋)4 + (𝑙2[𝒟 −𝐸𝑝𝐼𝑝] + 𝐼𝑝

𝜇3111
2

𝑎33
) (

ℎ

𝐿6
) (𝑛𝜋)6 +∞

𝑛=1

{(𝑘𝑤ℎ +
ℎ𝑘𝑝

𝐿2
(𝑛𝜋)2) (1+

(𝑒0𝑎)
2

𝐿2
(𝑛𝜋)2)}}𝑊𝑛 sin(𝑛𝜋𝑋)] = −∑ (1 +∞

𝑛=1

(𝑒0𝑎)
2

𝐿2
)𝑄𝑛 sin(𝑛𝜋𝑋)    

(33) 

Simplifying Eq. (33) the nondimesional size dependent electromechanical bending deflection 

profile, 𝑊𝑁𝐸𝐿𝐸𝐶𝑀(𝑋) is derived as  

𝑊𝑁𝐸𝐿𝐸𝐶𝑀(𝑋) =

∑
−(1+

(𝑒0𝑎)
2

𝐿2
(𝑛𝜋)2)𝑄𝑛 sin(𝑛𝜋𝑋)

{(
ℎ

𝐿4
)(𝑛𝜋)4([{𝒟+𝐸𝑝𝐼𝑝}+𝐼𝑝

𝑒311
2

𝑎33
]+(𝑙2[𝒟+𝐸𝑝𝐼𝑝]+𝐼𝑝

𝜇3111
2

𝑎33
)(
𝑛𝜋

𝐿
)
2
)+(1+

(𝑒0𝑎)
2

𝐿2
(𝑛𝜋)2)(𝑘𝑤ℎ+

ℎ𝑘𝑝

𝐿2
(𝑛𝜋)2)}

∞
𝑛=1   (34) 

Neglecting the electrical effects, the nonclassical mechanical transverse bending deflection 

profile, 𝑊𝑁𝑀𝐸𝐶(𝑋) could be expressed as 

𝑊𝑁𝑀𝐸𝐶(𝑋) = ∑
−(1+

(𝑒0𝑎)
2

𝐿2
(𝑛𝜋)2)𝑄𝑛 sin(𝑛𝜋𝑋)

{(
ℎ

𝐿4
)(𝑛𝜋)4([{(𝐷2)𝑒𝑞}]+(𝑙

2[(𝐷2)𝑒𝑞])(
𝑛𝜋

𝐿
)
2
)+(1+

(𝑒0𝑎)
2

𝐿2
(𝑛𝜋)2)(𝑘𝑤ℎ+

ℎ𝑘𝑝

𝐿2
(𝑛𝜋)2)}

∞
𝑛=1   (35) 

 

 

5. Validation of the developed strategy 
 
The accuracy of the developed model and the solution strategy is validated through this section.  
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Table 1 The nonlocal strain gradient maximum nondimensional deflection parameter, 𝑤𝑞 = 102 ×

𝑤𝑞𝑚𝑎𝑥 (
𝐸𝐼

qL4
) of homogeneous elastic simply supported beam at different values of normalized size and local 

parameters, (l/h), (e0a/h) and different beam slenderness ratio for uniformly distributed load of intensity q 

for E=70 GPa, ν=0.3, b=h=1 nm 

L/h 

Normalized 
nonlocal 

parameter (e0a/h) 

Normalized size parameter, (l/h) 

0 1 2 

Present Lu et al. (2017) Present Lu et al. (2017) Present Lu et al. (2017) 

10 

0 1.302083 1.3021 1.186949 1.1870 0.935992 0.9360 

1 1.427083 1.4271 1.302083 1.3021 1.027515 1.0275 

2 1.802083 1.8021 1.647488 1.6475 1.302083 1.3021 

20 

0 1.302083 1.3021 1.271458 1.2715 1.186949 1.1870 

1 1.333333 1.3333 1.302083 1.3021 1.215732 1.2157 

2 1.427083 1.4271 1.393959 1.3940 1.302083 1.3021 

50 

0 1.302083 1.3021 1.297099 1.2971 1.282339 1.2823 

1 1.307083 1.3071 1.302083 1.3021 1.287275 1.2873 

2 1.322083 1.3221 1.317035 1.3170 1.302083 1.3021 

 
 

Four different validation cases are presented. The 1st case compared the nonlocal strain gradient 

maximum nondimensional transverse bending parameters, 𝑤𝑞  of SS homogeneous elastic 

nanobeam under uniformly distributed load of intensity q. Additionally, the 2nd validation case 

concerns with comparison of the nonlocal maximum nondimensional bending parameter, 𝑤𝑞  of 

SS FG nanobeam under uniformly distributed load. Further, the 3rd case aims to compare the 

maximum classical nondimensional bending parameter, 𝑤𝑃 of SS porous FG beam under point 

load. Furthermore, the 4th case compared the maximum nondimensional bending deflection, 𝑤𝑞 of 

SS homogeneous beam rested on an elastic foundation under uniformly distributed load.    
Comparison of the nonlocal strain gradient maximum nondimensional bending parameter, 

𝑤𝑞 = 102 × 𝑤𝑞𝑚𝑎𝑥 (
𝐸𝐼

qL4
)  of SS homogeneous nanobeams at different values of normalized 

microstructure size and nonlocal parameters, (l/h) and (e0a/h) for different beam slenderness ratio, 
(L/h) is depicted in Table 1. It is demonstrated that, for the three considered sets of beam 
slenderness ratios, an excellent agreement is revealed between the results of the present strategy 
and the corresponding cases obtained by Lu et al. (2017) which outlines the high accuracy and 
reliability of the present model in predicting size dependent flexural behavior of isotropic 

nanobeams. 
Results of the present procedure for the nonlocal maximum nondimensional deflection 

parameter, wq for SS FG nanobeam at different values of normalized nonlocal parameter, ea/h, 
material gradation index, n and beam slenderness ratio, (L/h) for uniformly distributed load are 
compared with the corresponding results reported by Simsek and Yurtcu, (2013) in Table 2. It is 
seen that there is an excellent agreement for the considered cases with the corresponding cases 
detected by Simsek and Yurtcu, (2013) which demonstrates the accuracy of the developed 

procedure.   
The accuracy of the developed procedure to accurately investigate the bending behavior of 

porous FG beam is demonstrated in Table 3. Comparison of the maximum nondimensional  
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Table 2 The nonlocal maximum nondimensional deflection parameter, 𝑤𝑞 = 102 ×𝑤𝑚𝑎𝑥 (
𝐸𝑚𝐼

𝑞𝐿4
) of simply 

supported FG nanobeam at different values of material gradation index, n, normalized nonlocal parameter, 

(e0a/h), and different beam slenderness ratio, (L/h) for uniformly distributed load for E1=1 TPa, E2=0.25 

TPa, ν1=ν2=0.3, b=h=1 nm  

L/h 

Grad.  
Index, 

n 

Normalized nonlocality parameter, (e0a/h) 

0 0.5 1.0 1.5 2 

Present 

Simsek 
and 

Yurtcu 

(2013) 

Present 

Simsek 
and 

Yurtcu 

(2013) 

Present 

Simsek 
and 

Yurtcu 

(2013) 

Present 

Simsek 
and 

Yurtcu 

(2013) 

Present 

Simsek 
and 

Yurtcu 

(2013) 

10 

0 5.208333 5.2083 5.333333 5.3333 5.708333 5.7083 6.333333 6.3333 7.208332 7.2083 

0.3 3.1387 3.14.1 3.214029 3.2154 3.440016 3.4415 3.816659 3.8183 4.343961 4.3459 

1 2.367424 2.3674 2.424242 2.4242 2.594697 2.5946 2.878788 2.8787 3.276515 3.2765 

3 1.884976 1.8849 1.930215 1.9302 2.065933 2.0659 2.29213 2.2921 2.608806 2.6088 

10 1.545035 1.5450 1.582116 1.5821 1.693358 1.6933 1.878762 1.8787 2.138328 2.1383 

30 

0 5.208333 5.2083 5.222222 5.2222 5.263889 5.2638 5.333333 5.3333 5.430555 5.4305 

0.3 3.1387 3.14.1 3.14707 3.1484 3.17218 3.1736 3.214029 3.2154 3.272618 3.2740 

1 2.367424 2.3674 2.373737 2.3737 2.392677 2.3926 2.424242 2.4242 2.468434 2.4684 

3 1.884976 1.8849 1.890002 1.8900 1.905082 1.9095 1.930215 1.9302 1.965401 1.9654 

10 1.545035 1.5450 1.549155 1.5491 1.561515 1.5615 1.582116 1.5821 1.610956 1.6109 

100 

0 5.208333 5.2083 5.209583 5.2095 5.213333 5.2133 5.219583 5.2195 5.228333 5.2283 

0.3 3.1387 3.14.1 3.139454 3.1408 3.141714 3.1431 3.14548 3.1468 3.150753 3.1521 

1 2.367424 2.3674 2.367992 2.3679 2.369697 2.3696 2.372538 2.3725 2.376515 2.3765 

3 1.884976 1.8849 1.885428 1.8854 1.886785 1.8876 1.889047 1.8890 1.892214 1.8922 

10 1.545035 1.5450 1.545406 1.5454 1.546518 1.5465 1.548372 1.5483 1.550968 1.5509 

 

Table 3 The maximum nondimensional deflection parameter, 𝑤𝑃 = 10
3 ×w𝑚𝑎𝑥 (

E𝑚I

PL3
) of porous FG simply 

supported beam for (EPD) at different values of material gradation index, n and porosity parameter, (α) and 

different beam aspect ratio for point load for Em=70 GPa, Ec=380 GPa, νm=νc=0.3, b=h 

L/h 
Grad. Index, 

n 

Porosity parameter, α 

0 0.1 0.2 

Present 
Rahmani et al. 

(2020) FE 
Present 

Rahmani et al. 
(2020) FE 

Present 
Rahmani et al. 

(2020) FE 

5 

0.2 4.680874 4.659 5.051442 5.027 5.48615 5.458 

1 7.699451 7.692 8.933856 8.938 10.657851 10.743 

2 9.867064 9.873 12.24319 12.323 16.197004 16.864 

5 11.667709 11.702 15.172483 ---- 21.795661 ----- 

20 

0.2 4.680874 4.660 5.051442 5.027 5.48615 5.458 

1 7.699451 7.692 8.933856 8.938 10.657851 10.743 

2 9.867064 9.873 12.24319 12.323 16.197004 16.864 

5 11.667709 11.702 15.172483 ----- 21.795661 ----- 

   

280



 

 

 

 

 

 

Electromechanical bending of Porous Functionally Graded Piezoelectric (PFGP) nanobeams… 

Table 4 Comparison of the maximum nondimensional central bending deflection 𝑤 for simply supported 

(SS) beam rested on an elastic foundation under uniformly distributed load of intensity q for beam aspect 

ratios, L/h =120, 15, 5 at different values of the elastic foundation parameters for v=0.3, E=70 GPa, b=h 

Slenderness 

ratio, (L/h) 

Foundation 

Parameters 

Method of Solution 

Present 
Chen et al. 

(2004) 

Ying et al. 

(2008) 

Fahsi et al. 

(2019) 

Atmane et al. 

(2017) Kw 𝐾𝑝 

120 

0 

0 1.302083 1.302290 1.30229 1.30218 1.30090 

10 0.644771 0.644827 0.64483 0.64483 0.64461 

25 0.366091 0.366111 0.36611 0.36612 0.36621 

10 

0 1.180396 1.180567 1.18057 1.18048 1.17944 

10 0.613275 0.613325 0.61333 0.61333 0.61315 

25 0.355649 0.355668 0.35567 0.35568 0.35578 

102 

0 0.64002 0.640074 0.64007 0.64005 0.63987 

10 0.425557 0.425582 0.42558 0.42559 0.42563 

25 0.282834 0.282846 0.28285 0.28360 0.28302 

15 

0 

0 1.302083 1.31528 1.31527 1.30840 1.30226 

10 0.644771 0.64835 0.64830 0.64853 0.65329 

25 0.366091 0.36742 0.36735 0.36742 0.37968 

10 

0 1.180396 1.19140 1.19134 1.19140 1.18173 

10 0.613275 0.61656 0.61649 0.61673 0.62233 

25 0.355649 0.35692 0.35684 0.35780 0.36944 

102 

0 0.64002 0.64377 0.64343 0.64217 0.64864 

10 0.425557 0.42741 0.42716 0.42744 0.43801 

25 0.282834 0.28380 0.28360 0.28428 0.29812 

5 

0 

0 1.302083 1.420261 1.42024 1.35992 1.31338 

10 0.644771 0.678202 0.67451 0.68980 0.72171 

25 0.366091 0.381703 0.37667 0.38980 0.48428 

10 

0 1.180396 1.282598 1.27731 1.22991 1.20032 

10 0.613275 0.646391 0.64025 0.64678 0.69452 

25 0.355649 0.372064 0.36568 0.37818 0.47554 

102 

0 0.64002 0.696100 0.66848 0.65950 0.71779 

10 0.425557 0.459267 0.43881 0.44373 0.53449 

25 0.282834 0.305161 0.28944 0.29791 0.41489 

 

 
bending parameter for SS porous FG beam, with uniform porosity distribution model, under 
concentrated central point load for different porosity and material gradation parameters at L/h= 5, 
20 is shown in Table 3. It is observed that good agreement is found between the present model 

results and the corresponding cases reported by Rahmani et al. (2020).         
Regarding the validation of bending behavior of beams embedded in an elastic media, Table 4 

presents a comparison of the obtained maximum normalized bending deflection parameter with the 
corresponding results reported in the literature. The following nondimensional parameters are  
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Table 5 The piezoelectrically layered functionally graded nanobeam geometrical and material parameters 

(Zeng et al. 2020, Hosseini-Hashemi et al. 2014) 

Parameters 
Thickness 

(nm) 

Length 

(nm) 

Width 

(nm) 

Young’s 

Modulus 

(GPa) 

Mass 

Density 

(Kg/m3) 

Poisson’s 

ratio 

e311 

(C/m2) 

μ3111 

(C/m) 

a33 

N/(m2.K) 

FGM Core 
Metal 

1.6 40 2 
70 2700 0.3 ---- ---- ------ 

Ceramic 210 2370 0.3 ---- ---- ------ 

Piezoelectric Layer 0.2 40 2 132 7500 0.27 -4 5×10-8 7.124×10-9 

 

 

utilized: the central deflection parameter is defined: 𝑤 = 𝑤𝑚𝑎𝑥 (
𝐸𝑒𝑞𝐼

𝑞𝐿4
) where Eeq is the equivalent 

elasticity modulus which can be expressed as, 𝐸𝑒𝑞 =
𝜈𝐸

(1+𝜈)(1−2𝜈)
+

𝐸

(1+𝜈)
.   The nondimensional 

elastic foundation parameters are defined as, 𝐾𝑤 =
𝑘𝑤𝐿

4

𝐸𝑒𝑞𝐼
 and 𝐾𝑝 =

𝑘𝑝𝐿
2

𝐸𝑒𝑞𝐼
 . with q is the intensity of 

the distributed load, I is the 2nd moment of area of the beam cross section, L is the beam length. By 
comparing the maximum nondimensional central deflection of simply supported beams subjected 
to a uniformly distributed load for various foundation parameter values, it is noticed that there is 
an excellent agreement with the results reported in the literature by (Chen et al. 2004, Ying et al. 
2008, Fahsi et al. 2019, Atmane et al. 2017). This strong correlation validates the developed 
analytical strategy. 

 
 

6. Results and discussions 
 
To demonstrate the effectiveness of the verified proposed solution strategy to efficiently 

investigate the size dependent bending behavior of piezoelectrically layered sandwich nanobeam 
with porous functionally graded core embedded in an elastic medium, consider a simply supported 
(SS) beam with the geometrical and material characteristics presented in Table 5. Both uniformly 

distributed load with intensity, q=1 N/m and concentrated central point load of intensity P=q×L are 
considered and analyzed. Intensive numerical experiments are conducted to comprehensively 
investigate the impacts of the different mechanical as well as the electrical parameters on the 
nonclassical electromechanical as well as the mechanical bending responses of porous functionally 
graded composite nanobeams layered with piezoelectric layers embedded in an elastic medium.  

The normalized parameters presented in Table 6 are utilized through presentation of numerical 
results. 

 
 
Table 6 The normalized parameters  

 w𝑞 × 10
2 w𝑝 × 10

2 𝐾𝑤 𝐾𝑝 

Electromechanical 

(Elecmech) 
𝑤𝑚𝑎𝑥𝑞 (

(𝐸𝑒𝐼)𝑐𝑐𝑒𝑞+(𝐸𝑒𝐼)𝑝

𝑞𝐿4
)  𝑤𝑚𝑎𝑥𝑝 (

(𝐸𝑒𝐼)𝑐𝑐𝑒𝑞+(𝐸𝑒𝐼)𝑝

𝑝𝐿3
)  

𝑘𝑤𝐿
4

(𝐸𝑒𝐼)𝑐𝑚𝑒𝑞+(𝐸𝑒𝐼)𝑝
  

𝑘𝑝𝐿
2

(𝐸𝑒𝐼)𝑐𝑚𝑒𝑞+(𝐸𝑒𝐼)𝑝
  

Mechanical 

(Mech) 

(hp=0, h=hc) 

𝑤𝑚𝑎𝑥𝑞 (
(𝐸𝑒𝐼)𝑐𝑚𝑒𝑞

𝑞𝐿4
)  𝑤𝑚𝑎𝑥𝑝 (

(𝐸𝑒𝐼)𝑐𝑚𝑒𝑞

𝑝𝐿3
)  

𝑘𝑤𝐿
4

(𝐸𝑒𝐼)𝑐𝑚𝑒𝑞
  

𝑘𝑝𝐿
2

(𝐸𝑒𝐼)𝑐𝑚𝑒𝑞
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with 𝑤𝑞 and 𝑤𝑝  are respectively the normalized bending parameter due to uniformly and 

concentrated loads. 𝐾𝑤 and 𝐾𝑝  are the normalized elastic foundation parameters,  𝐸𝑒  is the 

equivalent elasticity modulus, (𝐸𝑒𝐼)𝑚𝑐𝑒𝑞  and (𝐸𝑒𝐼)𝑐𝑐𝑒𝑞 are respectively the equivalent rigidity of 

the metallic and ceramic materials.    
 

6.1 Effect of the material porosity 
 
Porosity of the functionally graded materials significantly affects the bending behavior of 

nanobeams. To capture this effect, different porosity distribution models with different porosity 
index are investigated.  Dependency of the bending behavior on the material porosity parameter, α 
at different material gradation index for different material porosity distribution models for 
uniformly distributed and point loading conditions is depicted in Fig. 2. It is observed that, due to 
the decrement of the overall system stiffness, the bending deflection parameters increase with 

increasing the porosity parameter for both electromechanical and mechanical behaviors. 
Additionally, because of increasing the core material metal content, increasing the material  
 
 

   

 
 

 

Fig. 2 Variation of the electromechanical and mechanical nondimensional bending parameter with the 

material porosity parameter, α at different values of the material gradation index, n for different porosity 

distribution models for uniformly distributed and central point loading conditions at beam slenderness ratio, 

L/ht=20, Kp=2.5, Kw=5, e0a/ht=0.25, l/ht=4, e311=-4 C/m2, μ3111=5×10-8 C/m,  and a33=7.124×10-9 C/m2 K 
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Fig. 3 Variation of the electromechanical and mechanical nondimensional bending parameter with the 

material gradation index, n at different values of the material porosity parameter, α for different porosity 

distribution models for uniformly distributed and central point loading conditions at beam slenderness ratio, 

L/ht=20, Kp=2.5, Kw=5, e0a/ht=0.25, l/ht=4, e311=-4 C/m2, μ3111=5×10-8 C/m, and a33=7.124×10-9 C/m2 K 

 
 
grading index produces larger values of the bending deflection parameters. Further, comparing the 

different material porosity models shows that the EDM results in larger drop in the overall system 
stiffness compared with CDM and TBDM models while the CDM porosity model produces 
smaller drop in the overall system stiffness. Furthermore, application of central concentrated load 
results in larger values of the bending deflection compared with the corresponding uniformly 
distributed loading cases.    

 

6.2 Effect of the material grading index 
 

Nonhomogeneity distribution of the functionally graded material characteristics through certain 
spatial coordinate has a significant impact on the bending behavior of nanobeam structures. To 
investigate the nonlinear relation between the bending deflection parameter and material grading 
index, the developed procedure is applied to detect the bending behavior over grading index 
interval [0,10]. Variation of the bending deflection parameters on the material gradation index for  

284



 

 

 

 

 

 

Electromechanical bending of Porous Functionally Graded Piezoelectric (PFGP) nanobeams… 

  
 

  
 

Fig. 4 Dependency of the electromechanical and mechanical nondimensional bending parameters of SS 

PFGNB under uniformly distributed load on the nondimensional elastic foundation parameter, Kw for 

nonclassical and classical analyses at different values of material gradation and porosity parameters for 

different porosity distribution models for L/ht=20,n=0.25, 4, α=0, 0.1, 0.3, e0a/ht=0.25, l/ht=4, e311=-4 C/m2, 
μ3111=5×10-8 C/m, and a33=7.124×10-9 C/m2K 

 

 
different material porosity distribution models at different values of material porosity parameter 
for both uniformly distributed and central point loading conditions is shown in Fig. 3. It may be 
seen that, according to the proposed material gradation, larger values of the maximum bending 
deflection parameters are produced by increasing the material grading index due to increasing the 
overall system flexibility for both electromechanical and mechanical behaviors. Additionally, 
incorporating the electrical effect leads to increasing the overall system stiffness which results in 

smaller values of the electromechanical bending deflection parameters compared with the 
corresponding mechanical parameters. Moreover, incorporating the size dependency effects 
significantly affects the static bending behavior, using larger values of the normalized size 
parameter, (l/ht) over the normalized nonlocal parameters, (e0a/ht), (l/h)>(e0a/ht), leads to 
stiffening effect and produces smaller values of the nonclassical (NCL) normalized deflection 
parameters compared with the corresponding classical (CL) behavior. Furthermore, the applied 
loading condition significantly affects the detected bending deflection, it is noticed that the point 

loading condition produces larger values of the bending deflection parameters compared with the 
corresponding uniformly distributed load with the same equivalent load intensity. 
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Fig. 5 variation of the electromechanical and mechanical nondimensional bending parameters of SS PFGNB 

under central point load with the nondimensional elastic foundation parameter, Kw for nonclassical and 

classical analyses at different values of material gradation and porosity parameters for different porosity 

distribution models L/ht=20,n=0.25, 4, α=0, 0.1, 0.3, e0a/ht=0.25, l/ht=4, e311=-4 C/m2, μ3111=5×10-8 C/m, and 

a33=7.124×10-9 C/m2K 

 
 

6.3 Effect of the Winkler-Pasternak elastic foundation parameters, Kw and Kp 
 

The bending performance of the composite nanobeams embedded in an elastic environment 
could be controlled by controlling the parameters of this environment. The considered elastic 
environment is modeled as the Winkler-Pasternak elastic foundation. The bending deflection 

parameter dependency on the normalized elastic foundation parameters for porous functionally 
graded composite nanobeam layered with two identical piezoelectric layers are respectively 
depicted in Figs. 4-7. It is seen that the normalized bending deflection parameter is nonlinearly 
dependent on the elastic foundation parameters, Kw and Kp. Introduction of either Winkeler or 
Pasternak elastic environment parameters leads to increasing the overall system stiffness which 
results in nonlinear decaying of the normalized deflection parameters at all values of the material 
grading indices for both uniformly distributed and central point loads. Additionally, the Pasternak 

elastic foundation parameter has a more significant effect on the bending behavior. Larger  
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Fig. 6 Variation of the electromechanical and mechanical nondimensional bending parameters of SS PFGNB 

under uniformly distributed load with the nondimensional elastic foundation parameter, Kp   for nonclassical 

and classical analyses at different values of material gradation and porosity parameters for different porosity 

distribution models for L/ht=20, n=0.25, 4, α=0, 0.1,0.3, e0a/ht=0.25, l/ht=4, e311=-4 C/m2, μ3111=5×10-8 C/m, 

and a33=7.124×10-9 C/m2K 

 
 

decrement in the normalized deflection parameters is obtained due to the Pasternak parameter, Kp 
compared with that of Kw.  

Incorporating the material porosity effect significantly affects the bending behavior. Bending 
behavior is dependent on the porosity distribution and porosity parameter. Increasing the porosity 

parameter increases material flexibility and produces larger values of the bending deflection 
parameter. Additionally, the EDM porosity distribution model produces more flexible systems 
while the CDM porosity distribution profile results in less system flexibility compared with EDM 
and TBDM patterns. Further, introducing the nonlocal strain gradient effect with, (e0a/ht)=0.25 and 
(l/ht=4), (l/ht>e0a/ht) provides stiffening effect which produces smaller values of the normalized 
bending deflection parameters compared with the corresponding classical cases. Also, 
incorporating the piezoelectric as well as the flexoelectric effects provides more stiffening effects 
thus resulting in smaller values of the normalized electromechanical bending parameters compared 

with the corresponding mechanical cases. Furthermore, because of the Saint-Venant effect, 
application of central concentrated loads produces larger values of the electromechanical and the  
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Fig. 7 Dependency of the electromechanical and mechanical nondimensional bending parameters of SS 

PFGNB central point load on the nondimensional elastic foundation parameter, Kp for nonclassical and 

classical analyses at different values of material gradation and porosity parameters for different porosity 

distribution models L/ht=20,n=4, α=0, 0.1, 0.3, e0a/ht=0.25, l/ht=4, e311=-4 C/m2, μ3111=5×10-8 C/m, and 

a33=7.124×10-9 C/m2K 

 
 

mechanical bending parameters compared to the corresponding uniformly distributed loading 
condition for nonclassical and classical behaviors.  

 

6.4 Effect of the normalized size parameter (l/ht) 
 

Influence of the normalized size parameter, (l/ht) on the size dependent electromechanical as 
well as mechanical behaviors for different porosity models at different values of the material 
grading and porosity indices for uniformly distributed and concentrated loads is depicted in Fig. 8.   
It may be indicated that the nonclassical bending deflection parameters are nonlinearly decayed 
with increasing the normalized strain gradient parameter, (l/ht) for both electromechanical and 
mechanical behaviors. Additionally, increasing the material grading index increases the overall 

system flexibility due to increasing the material metal content thus larger values of the bending 
deflection parameters are detected. On the other hand, increasing the material porosity parameter 
also reduces the overall system stiffness this increases the bending deflection parameters.    
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Fig. 8 Variation of the size dependent electromechanical and mechanical nondimensional bending parameter 

of SS nanobeam with the nondimensional size parameter, l/ht, at different values of material gradation, 

porosity parameters and porosity distribution models for uniformly distributed and point loads for n=0.25, 4, 

α=0, 0.1, 0.3, e0a/ht=2, L/ht=20, Kw=5, Kp=2.5, e311=-4C/m2, μ3111=5×10-8C/m, and a33=7.124×10-9 C/m2K 

 

 
6.5 Effect of the normalized nonlocal parameter (e0a/ht) 

 
Impact of the normalized nonlocal parameter, (e0a/ht) on the size dependent bending deflection 

for electromechanical as well as mechanical behaviors at different values of material grading and 
porosity parameters for different porosity distribution profiles are depicted in Fig. 9.  It is noticed 
that the nonclassical bending deflection parameters are nonlinearly dependent on the normalized 
nonlocal parameter. Due to the associated softening effect with increasing(e0a/ht), larger values of 

the normalized bending deflection parameters are detected for electromechanical as well as 
mechanical behaviors. Additionally, flexibility effect is provided by increasing the material 
grading index, n as well as the material porosity parameter, α due to reduction of the overall 
system stiffness. 

 

6.6 Effect of the electric field-strain gradient coupling coefficient, (μ3111) 
 
Keeping constant value of the piezoelectric coefficient, e311, the influence of electric field-strain  
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Fig. 9 Variation of the nonclassical electromechanical and mechanical nondimensional bending parameter of 

SS nanobeam with the normalized nonlocal parameter, ea/ht, at different values of material gradation, 

porosity parameters and porosity distribution models for uniformly distributed and point loads for n=0.25, 4, 

α=0, 0.1, 0.3, e0a/ht=2, L/ht=20, and Kw=5, Kp=2.5, e311=-4C/m2, μ3111=5×10-8C/m, and a33=7.124×10-9 

C/m2K 

 
 

gradient coupling coefficient, μ3111 on the size dependent and classical electromechanical bending 

behaviors of piezoelectric composite FG nanobeams for different porosity distribution models at 
different values of material grading and porosity parameters is detected for interval [-5,5] ×10-8 in 
Fig. 10. It may be observed that, according to the material and geometrical characteristics, the 
electromechanical normalized bending deflection is nonlinearly dependent on the electric field-
strain gradient coupling coefficient. The normalized bending deflection is decreased by increasing 
the absolute value of μ3111 for classical and nonclassical behaviors at all values of material 
gradation and porosity parameters. Further, an increase in the normalized bending deflection is 

detected with increasing the material gradation and porosity indices due to decreasing the overall 
system stiffness. Additionally, the porosity distribution significantly affects the bending behavior, 
EDM results in more system flexibility while CDM leads to low system flexibility. Also, 
application of concentrated load results in larger values of bending deflection compared with the 
corresponding cases of uniformly distributed load.   

290



 

 

 

 

 

 

Electromechanical bending of Porous Functionally Graded Piezoelectric (PFGP) nanobeams… 

 
  

  
 

Fig 10 Dependency of the classical and nonclassical electromechanical normalized bending parameter of SS 

nanobeam on the electric field-strain gradient coupling coefficient, μ3111, at different values of material 

gradation, porosity parameters and porosity distribution models for uniformly distributed and point loads at 

n=0.25, 4, α=0, 0.1, 0.3, lc/ht=4, e0a/ht=0.25, L/h=20, Kp=2.5, Kw=5, e311=-4C/m2, and a33=7.124×10-9 C/m2K 

 

 
6.7 Effect of the piezoelectric coefficient, (e311) 

 
To demonstrate the impact of the piezoelectric coefficient, e311 on the electromechanical 

bending deflection behavior of piezoelectric porous functionally graded composite nanobeams 

embedded in an elastic environment at constant value of the electric field-strain gradient coupling 
coefficient, μ3111, dependency of the electromechanical bending behavior is detected over e311 
interval [-5,5], as illustrated in Fig. 11. As stated previously for the impact of the electric field-
strain gradient coupling coefficient, μ3111, the electromechanical bending parameter is also 
nonlinearly dependent on the piezoelectric coefficient. The electromechanical bending deflection 
parameters decay with increasing the absolute value of the piezoelectric coefficient due to the 
associated stiffening effect. Additionally, increasing material grading or porosity parameters 
results in more system flexibility thus produces larger values of the normalized bending 

parameters for both size dependent and classical behaviors.   
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Fig. 11 Dependency of the classical and nonclassical electromechanical normalized bending parameter of SS 

nanobeam on the piezoelectric coefficient, e311, at different values of material gradation, porosity parameters 

and porosity distribution models for uniformly distributed and point loads at n=0.25, 4, α=0, 0.1, 0.3, lc/ht=4, 

e0a/ht=0.25, L/h=20, Kp=2.5, Kw=5, μ3111=5×10-8C/m, and a33=7.124×10-9 C/m2K 

 

 
7. Conclusions 
 

In the frameworks of modified nonlocal strain gradient theory, the size-dependent bending 
performance of a piezoelectrically layered composite nanobeam with a porous functionally graded 
core, resting on an elastic foundation, and incorporating flexoelectricity is investigated and 

analyzed. Key findings include: 
• Porosity distribution patterns and porosity indicator have a significant impact on the bending 
performance of piezoelectric composite nanobeams with piezoelectric layers. This performance 
could be enhanced by controlling the porosity indicator and the porosity distribution 
configuration. 
• The porosity distribution profiles significantly affect the bending performance of 
piezoelectrically layered composite nanobeams with porous functionally graded core. The 
CDM porosity distribution pattern provides less system flexibility thus producing smaller 
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values of the bending deflection parameters compared with EDM and TBDM porosity 
distribution profiles. On the other hand, EDM porosity distribution model results in more 
system flexibility compared with CDM and TBDM models. 
• The porosity indicator has a significant influence on the bending behavior of pours 
functionally graded composite nanobeams layered with piezoelectric layers. Growing up this 
indicator provides more system flexibility leading to producing larger values of the bending 

deflection parameters. 
• The material distribution and gradation significantly influence the bending behavior. 
Increasing the metal content in the porous functionally graded core leads to greater flexibility 
and larger bending deflections. 
• The elastic foundation provides additional support to the nanobeam, reducing its deflection 
and stress. 
• The modified nonlocal strain gradient theory effectively captures the size-dependent behavior 

of the nanobeam, leading to significant deviations from classical elasticity theory. Both 
stiffening and softening effects can be provided by controlling the sized and nonlocality 
parameters. 
• The flexoelectric effect plays a crucial role in the electromechanical coupling of the 
nanobeam, influencing its bending response. 
• The applied loading profile significantly affects the detected bending behavior. Point loading 
conditions result in larger bending deflections compared to uniformly distributed loads. 
• The proposed model and the developed analytical solution strategy provide valuable insights 

for the design and optimization of nanobeam-based devices, such as sensors, actuators, and 
energy harvesters. 
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