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Abstract.  In the first part of this study, a numerical simulation model was developed using the mechanical APDL 
software to validate the results of the 3D-elastisity theory on the laminated sandwich plate developed by Panago. The 
numerical simulation model showed a good agreement to the results of Pagano’s theory in terms of deflection, normal 
stresses, and shear stresses. In the second part of this study, the developed numerical simulation model was used to 
define different plates dimensions and fibers layup orientations to examine the load response in terms of deflection and 
stresses. Further analysis was implemented on the natural frequencies of laminated xxx plates of the plates. The layup 
configurations include Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), the linear bio-inspired known as 
Linear-Helicoidal (LH), and the nonlinear bio-inspired known as Fibonacci-Helicoidal (FH). The following numerical 
simulation model can be used for the design and study of novel, sophisticated bio-inspired composite structures in a 
variety of configurations subjected to sinusoidal or constant loads. 
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1. Introduction 
 

Composite materials are a combination of two or more materials that have different properties 

and characteristics. Composite materials offer considerable potential and design flexibility for high-

performance structures. They are widely used in various industries, including marine structures, 

energy harvesters, automotive, spacecraft, aerospace, etc. (Melaibari et al. 2021). The demand for 

lightweight and high-performance structures in different industrial applications has provided a 

strong demand for the continuous development of composite materials. Composites consisting of a 

polymer matrix (e.g., epoxy) reinforced by fibers (e.g., glass, carbon) are among the common 

advanced composites that are classified as polymer matrix composites (PMCs). Carbon fiber 

reinforced polymer (CFRP) is most popular in advanced composites used in the industry due to its 

specific strength and excellent mechanical properties. The advantages of CFRP over conventional 

metals such as steel including; High Strength-to-Weight Ratio, Corrosion Resistance, Fatigue 
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Resistance, Design Flexibility (CFRP can be molded into complex shapes and designs), and Low 

Thermal-Conductivity (the thermal conductivity of CFRP ranges from 0.1 to 0.5 W/mK depending 

on the fiber orientation and resin matrix used, while the thermal conductivity of steel ranges from 

15 to 50 W/mK depending on the alloy composition and temperature). Several arthropods, such as 

the Homarus americanus (American lobster), Callinectes sapidus (Atlantic blue crab), and Popillia 

japonica (the Japanese beetle), have hard exoskeletons that frequently exhibit exceptional structural 

qualities and multi-functional capabilities, including the ability to support the body weight, filter 

chemicals, and withstand external loads. Due to their potential to produce outstanding mechanical 

properties and adaptability for exoskeletons, the intrinsically complex hierarchical structures of 

various exoskeletons have recently attracted a lot of interest (Cheng et al. 2011).  

Despite there being a lot of bio-inspired man-made structures studies, relatively little has been 

done to incorporate the design principles found in arthropod exoskeletons into the creation of useful 

materials and structures. It has been noticed that bio-inspired composite structures with helicoidal 

schemes have high-impact energy absorption. Thus, can result in better mechanical performance and 

load response. The study of shell theories enables one to comprehend plates, curved beams, and flat 

beams as special cases. Shells are curved structures with increased structural stiffness in comparison 

to plates in carrying loads and moments by a combined membrane and bending action because of 

their curvature (Mantari et al. 2011). Although the performance of the component can be obtained 

by analytical or experimental methods, it is more expensive and time-consuming. Therefore, 

numerical simulation can be a powerful tool in load response analysis and virtual design. Numerous 

review articles that describe the research on the analysis of laminated composite plates, beams, and 

shells under various loading circumstances related to this study can be found in the literature.  

For the study of laminated structures, Reddy (1990) offered a comprehensive overview of shear 

deformation theories and their historical development. Carrera (2003) reviewed the theories that 

have been created for the analysis of multilayered structures, paying particular attention to the so-

called "Zig-Zag" theories, which describe a piecewise continuous displacement field in the direction 

of plate thickness and fulfill interlaminar continuity of transverse stresses at each layer interface. 

Mantari et al. (2011) developed a new higher order shear deformation theory of sandwich composite 

plates and shells that accounts for an adequate distribution of the transverse shear strains through 

the plate thickness and the tangential stress-free boundary conditions on the plate boundary surface. 

Zhang and Yang (2009) published a literature review to the developed finite elements based on the 

various laminated plate theories for the free vibration and dynamics, buckling and post buckling 

analysis, geometric nonlinearity and large deformation analysis, and failure and damage analysis of 

composite laminated plates. Liew et al. (2011) reviewed various element-free or meshless methods 

and their applications in the analysis of laminated composite structures. Haldar and Bruck (2014) 

resulted that, due to the longitudinal reinforcement of pultruded carbon rod in foam core, a sandwich 

with a bio-inspired core offers better flexural strength and elastic energy absorption than a sandwich 

with a conventional un-reinforced core.  

Bar-On et al. (2015) stated that different insect cuticles, osteons in mammalian bones, some plant 

cell walls, and DNA's structure are only a few examples of helical-shaped biologically laminated 

natural phenomena. It is well known that biological composite materials have properties such as 

creep, energy recovery, and vibration filtering. They are also strong, stiff, stable, and viscoelastic 

materials. Jayatilake et al. (2016) studied dynamic analysis of multilayer fibre composite sandwich 

plates with interlayer delaminations by using finite element method. Kaci et al. (2017) developed a 

finite element formulation to investigate the fracture toughness of composite aluminum plate under 

impact loads. Rachid et al. (2018) exploited classical version h and the version p of the finite element 
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method in analysis of dynamic response of tapered shaft rotor made of composite materials. Through 

numerical modeling, Abir et al. (2019) demonstrated how helicoidal architecture laminated plates 

improved impact resistance and energy absorption during the ballistic impact test. Bhaskar et al. 

(2019) developed the finite element model for geometrically nonlinear analysis of laminated plates 

using a new plate theory. Bahmani et al. (2019) developed 3D micromechanical assessment of bio-

inspired composites with non-uniformly dispersed inclusions, which revealed the necessity to use 

3D micromechanical models with realistic inclusion dispersions for accurately assessing the 

response of high inclusion volume fraction bio-inspired composites.  

Han et al. (2020) investigated experimentally impact and bending properties of a novel dactyl-

inspired sandwich honeycomb with carbon fiber. They found that the quasi-isotropic helicoidal 

arrangement of carbon fiber has an effective way to improve the impact resistance and bending 

energy absorption. Yang et al. (2020) provided a systematic analysis of the low-velocity impact 

response and energy absorption capacity of biomimetic architected CFRP laminates. Amorim et al. 

(2021) presented comprehensive review on bio-inspired approaches to enhance the toughening of 

fiber reinforced polymer composites and to give manufacturing solutions capable of mimicking 

biological material structures. Moosazadeh et al. (2021) studied the vibration and flutter og Two-

dimensional curved panel in the frequency and time domain under thermal and in-plane load. Yang 

and Xie (2022) demonstrated the biomimetic Bouligand structure's strong thermal buckling 

behavior, opening the prospect of creating biomimetic composites with a favorable trade-off 

between mechanical and thermal performance. Lee et al. (2022) developed a high-throughput 

computer simulation that can be used to identify the best features incorporated in nacre-like 

structures and offer special design recommendations for the development of new impact-resistant 

materials.  

Inspired by the non-linear helical structure of lobster, Han et al. (2022) designed and 

manufactured bioinspired fiber metal laminate with Janus helical structure through the method of 

hot press forming.  

Magrini et al. (2022) examined the fracture behavior of hierarchical multi-layered bio-inspired 

composites comprising a polymer phase, which were inspired by the robust and durable hierarchical 

architecture of mollusk shells. By utilizing the Taguchi-Response surface approach, Sojobi and Liew 

(2022) were able to get excellent performance from bio-inspired prefabricated composites for 

durable and sustainable building. Mohamed et al. (2022a) studied numerically the bending, buckling 

and linear vibration of bio-inspired composite plates including Fibonacci sequence and got the 

optimum scheme of layer’s orientation. Mohamed et al. (2022b) employed the bernstein 

polynomials in solving of the nonlinear bending and snap-through instability phenomena of curved 

bio-inspired composite beams with helicoidal orientation scheme.  Almitani et al. (2022) provided 

the exact solutions for the nonlinear bending problem, the buckling loads, and postbuckling 

configurations of a perfect and an imperfect bio-inspired helicoidal composite beam with a linear 

rotation angle. Han et al. (2023), Zhang et al. (2023) designed and manufactured biomimetic 

laminated basalt fiber-reinforced composite through a method combining linear helicoidal layup and 

hot press forming. They investigated superior mechanical properties and microwave-transmissibility 

of these biomimetic laminated structures. Garg et al. (2023) investigated the buckling and free 

vibration response of bio-inspired laminated sandwich plates with helicoidal face sheets 

incorporating softcore using the finite element approach and higher-order zigzag theory.  

According to previous works, the static and dynamic vibration behaviors of bioinspired 

composite plate using a finite element formulation have not been considered before. Therefore, the 

main objective of this study is to fill this gap. Accordingly, A FEA model will be constructed by  
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Fig. 1 Three-layered rectangular plate under static doubly sinusoidal load 

 

 

utilizing the mechanical APDL software to numerically analyze the bending, natural frequencies, 

and vibration modes of bioinspired composite laminated plates. Different load profiles have been 

addressed. The rest of the article is organized as follows: the mathematical model and formulation 

including the kinematic equations, constitutive equations, and force/moment resultants are presented 

in section 2. Section 3 develops the finite element model used through the analysis. Validation with 

previous prestigious works has been illustrated in section 4 to confirm the obtained results. 

Numerical analysis and parametric studies have been presented in section 5.  

 

 

2. Mathematical model and formulation  
 

Fig. 1 shows the geometrical configuration of composite plates structures with length, width, and 

overall thickness (a, b, and h respectively). The displacement field of any point (x, y, z) can be found 

based on the first order shear deformation theory (FOSDT) by the following equations (Reddy et al. 

2003) 

{

𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑣(𝑥, 𝑦, 𝑧, 𝑡)

𝑤(𝑥, 𝑦, 𝑧, 𝑡)
} =  {

𝑢0(𝑥, 𝑦 , 𝑡)

𝑣0(𝑥, 𝑦 , 𝑡)

𝑤0(𝑥, 𝑦 , 𝑡)
} + 𝑧 {

𝜑𝑥(𝑥, 𝑦 , 𝑡)

𝜑𝑦(𝑥, 𝑦 , 𝑡)

0

} (1) 

 In which u0, v0 represent the in-plane displacements and w0 is the transverse displacement, 

𝜑𝑥  and 𝜑𝑦  represent shear displacement at z=0. While the strain-displacement relations are 

portrayed by Mohamed et al. (2022b) 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}

 
 

 
 

= 

{
 
 
 
 

 
 
 
 

𝜕𝑢0

𝜕𝑥
+ 

1

2
 (
𝜕𝑤0

𝜕𝑥
)
2
 + 𝑧

𝜕𝜑𝑥

𝜕𝑥

𝜕𝑣0

𝜕𝑦
+ 

1

2
 (
𝜕𝑤0

𝜕𝑦
)
2
 + 𝑧

𝜕𝜑𝑦

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥
+ 

𝜕𝑤0

𝜕𝑥
 
𝜕𝑤0

𝜕𝑦
 + 𝑧 (

𝜕𝜑𝑥

𝜕𝑥
+ 

𝜕𝜑𝑦

𝜕𝑦
)

𝜑𝑥 +
𝜕𝑤0

𝜕𝑥

𝜑𝑦 +
𝜕𝑤0

𝜕𝑦 }
 
 
 
 

 
 
 
 

  (2) 
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and the constitutive equations of composite plate are defined by Assie et al. (2011)  

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [

𝒬̅11 𝒬̅12 𝒬̅16
𝒬̅12 𝒬̅22 𝒬̅26
𝒬̅16 𝒬̅26 𝒬̅66

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

}    

   {
𝜎𝑦𝑧
𝜎𝑥𝑧

} = [
𝒬̅44 𝒬̅45
𝒬̅45 𝒬̅55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
}  

(3) 

where the transformed material constants as a function of fiber orientation θ are evaluated as 

Karamanli et al. (2023) 

𝒬̅11 = 𝒬11cos
4(𝜃) + (𝒬12 + 2𝒬66)sin

2(2𝜃) + 𝒬22sin
4(𝜃) 

𝒬̅12 =
1

2
(𝒬11 + 𝒬22 − 4𝒬66)sin

2(2𝜃) + 𝒬12(sin
4(𝜃) + cos4(𝜃))  

𝒬̅22 = 𝒬11sin
4(𝜃) + (𝒬12 + 2𝒬66)sin

2(2𝜃) + 𝒬22cos
4(𝜃) 

𝒬̅16 =
1

2
  [(𝒬11 − 𝒬12 − 2𝒬66)cos

2(𝜃) + (𝒬12 − 𝒬22 + 2𝒬66)sin
2(𝜃)] sin(2𝜃)  

𝒬̅26 =
1

2
  [(𝒬11 − 𝒬12 − 2𝒬66)sin

2(𝜃) + (𝒬12 − 𝒬22 + 2𝒬66)cos
2(𝜃)] sin(2𝜃)  

𝒬̅66 =
1

2
(𝒬11 + 𝒬22 − 2𝒬12 − 2𝒬66)sin

2(2𝜃) + 𝒬66(sin
4(𝜃) + cos4(𝜃))  

𝒬̅44 = 𝒬44cos
2(𝜃) + 𝒬55sin

2(𝜃) 

𝒬̅45 =
1

2
(𝒬55 − 𝒬44) sin(2𝜃)  

𝒬̅55 = 𝒬44sin
2(𝜃) + 𝒬55cos

2(𝜃) 

(4) 

The 𝑄𝑖𝑗 is the plane stress-reduced stiffness given by 

[𝒬11 𝒬12 𝒬22] = [
𝐸1

1−𝜈12𝜈21

𝜈12𝐸2

1−𝜈12𝜈21

𝐸2

1−𝜈12𝜈21
]  

[𝒬66 𝒬44 𝒬45 𝒬55] = [𝐺12 𝐺23 𝐺12 𝐺13],    
(5) 

where 𝐸1 and 𝐸2 are elastic moduli, 𝑣12 and 𝑣21 are Poisson’s ratios, and 𝐺12, 𝐺13 and 𝐺23 are the 

shear moduli. The governing differential equations of motion in form of stresses and moment 

resultants are 

𝛿𝑢0 ∶    
𝜕𝑁𝑥𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑢0

𝜕𝑡2
+ 𝐼1

𝜕2𝜙𝑥

𝜕𝑡2
  

𝛿𝑣0 ∶    
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝐼0

𝜕2𝑣0

𝜕𝑡2
+ 𝐼1

𝜕2𝜙𝑦

𝜕𝑡2
  

𝛿𝑤0 ∶    
𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 + 𝑃𝑥𝑥

𝜕2𝑤0

𝜕𝑥2
+ 2𝑃𝑥𝑦

𝜕2𝑤0

𝜕𝑥𝜕𝑦
+ 𝑃𝑦𝑦

𝜕2𝑤0

𝜕𝑦2
= 𝐼0

𝜕2𝑤0

𝜕𝑡2
  

𝛿𝜙𝑥 ∶    
𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝜙𝑥 = 𝐼2

𝜕2𝜙𝑥

𝜕𝑡2
+ 𝐼1

𝜕2𝑢0

𝜕𝑡2
  

𝛿𝜙𝑦 ∶    
𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦𝑦

𝜕𝑦
− 𝜙𝑦 = 𝐼2

𝜕2𝜙𝑦

𝜕𝑡2
+ 𝐼1

𝜕2𝑣0

𝜕𝑡2
  

(6) 

Where the inertia terms are 

{𝐼0, 𝐼1, 𝐼2} = 𝜌 ∫ {1, 𝒵, 𝒵2} 𝑑𝒵
ℎ/2

−ℎ/2
  (7) 

351



 

 

 

 

 

 

Faisal Baakeel et al. 

The force and moment resultants are given as  

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

]

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥}
 
 

 
 

+ [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
 
 

 
 

𝜕𝜙𝑥

𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥

𝜕𝑦
+
𝜕𝜙𝑦

𝜕𝑥 }
 
 

 
 

  

{

𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦

} = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
 
 

 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑢0

𝜕𝑦
+
𝜕𝑣0

𝜕𝑥}
 
 

 
 

+ [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
 
 

 
 

𝜕𝜙𝑥

𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥

𝜕𝑦
+
𝜕𝜙𝑦

𝜕𝑥 }
 
 

 
 

  

{
𝑄𝑥
𝑄𝑦
} = 𝜘 [

𝐴44 𝐴45
𝐴45 𝐴55

] {

𝜕𝑤0

𝜕𝑦
+ 𝜙𝑦

𝜕𝑤0

𝜕𝑥
+ 𝜙𝑥

}  

(8) 

where 𝜘 is the shear correction factor. The laminated in-plane rigidities 𝐴𝑖𝑗, 𝐵𝑖𝑗, and 𝐷𝑖𝑗 are defined 

as 

{𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗} = ∑ ∫ {1, 𝑧, 𝑧2}𝑑𝑧
𝑧𝑘+1
𝑧𝑘

𝑁𝐿
𝑘=1 , (𝑖, 𝑗 = 1, 2, 6)  (9) 

Based on minimum potential energy principle, the governing equations are obtained as follows 

∫ (𝛿𝑈 + 𝛿𝑉 −  𝛿𝐾)
𝑡2

𝑡1
𝑑𝑡 = 0     (6) 

Meanwhile U, K and V are strain energy, kinematic energy and virtual work done by external 

forces, respectively. The virtual work done by external forces can be stated as 

𝛿𝑉 = −∫ 𝑞(𝑥, 𝑦)
𝐴

𝛿𝑤0𝑑𝐴   

+  ∫ [𝑃𝑥𝑥  
𝜕𝑤0

𝜕𝑥

𝛿𝜕𝑤0

𝜕𝑥
+ 𝑃𝑦𝑦  

𝜕𝑤0

𝜕𝑦

𝛿𝜕𝑤0

𝜕𝑦
+ 𝑃𝑥𝑦  

𝜕𝑤0

𝜕𝑥

𝛿𝜕𝑤0

𝜕𝑦
 +  𝑃𝑥𝑦  

𝜕𝑤0

𝜕𝑦

𝛿𝜕𝑤0

𝜕𝑥
]

𝐴
𝑑𝐴  

(7) 

where 𝑞(𝑥, 𝑦)  is transverse loading, 𝑃𝑥𝑥 , 𝑃𝑦𝑦  and 𝑃𝑥𝑦  are the constant inplane edge loads. The 

variation of kinetic energy can be expressed as 

𝛿𝐾 = −∫ {𝐼0(𝑢̇0𝛿𝑢̇0 + 𝑣̇0𝛿𝑣̇0  + 𝑤̇0𝛿𝑤̇0) + 𝐼1(𝜑̇𝑥𝛿𝑢̇0 + 𝑢̇0𝛿𝜑̇𝑥  + 𝜑̇𝑦𝛿𝑣̇0 + 𝑣̇0𝛿𝜑̇𝑦) +𝐴

 𝐼2(𝜑̇𝑥𝛿𝜑̇𝑥0 + 𝜑̇𝑦𝛿𝜑̇𝑦)}   𝑑𝐴  
(8) 

The virtual strain energy is computed as 

𝛿𝑈 = ∫ [𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑦𝑦𝛿𝜀𝑦𝑦 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦  +  𝜎𝑥𝑧𝛿𝛾𝑥𝑧  +  𝜎𝑦𝑧𝛿𝛾𝑥𝑧]𝑉
𝑑𝑉   (10) 

Substituting Eqs. (7), (8) and (10) into Eq. (6) and integrating by parts, collecting the coefficient’s 

of 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0, 𝛿𝜑𝑥  and 𝛿𝜑𝑦  

 

 

3. Finite elements formulation 
 

The finite element is a powerful numerical tool that has been used extensively in analysis of 

composite structures (Fantuzzi and Tornabene 2014a, b). Filippi and Carrera (2016) developed a 
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finite element formulation with basis of Carrera Unified theory to study the free-vibrational analyses 

of metallic/composite rotor structures. Errico et al. (2019) investigated the effect on the flow-

induced vibrations of the lay-up sequence of composite laminated axisymmetric structures, using an 

hybrid approach based on a wave finite element and a transfer matrix method. 

The developed mathematical model defined by Eq. (6) is to be solved to explore the static as well 

as the dynamic performance of composite plate. The finite elements methodology as an efficient 

numerical technique is employed for this goal. To derive a computational finite elements model, the 

virtual work approach (VWA) presents the starting point of a finite element model. According to 

standard finite element notations, when the total plate domain Ω, shown in Fig. 1 is discretized into 

NE finite elements, one can write the equilibrium between the elastic internal, and inertial forces 

within each finite element as well as the external applied loads as follows (Assie et al. 2011, 

Abdelrahman et al. 2019, Abdelrahman and El-Shafei 2021) 

𝛿𝐾 + 𝛿𝑈 − 𝛿𝑉 = 0 (11) 

where 𝛿𝐾, 𝛿𝑈, 𝛿𝑉 respectively refer the variation of the total kinetic energy, the variation of the 

strain energy, and the variation of the work done by the external forces.  

The variation of the kinetic energy, 𝛿𝐾 could be expressed as 

𝛿𝐾 = 𝛿𝒒𝑒
𝑇  𝑴𝒆 𝒒̈𝒆 = 𝛿𝒒𝑒

𝑇  (∫ 𝑵𝑻𝑰
𝑨

𝑵) 𝒒̈𝒆𝑑𝐴  (12) 

Variation of the strain energy and work done could be given by 

𝛿𝑈 = 𝛿𝒒𝑒
𝑇  𝑲𝒆 𝒒𝒆 = 𝛿𝒒𝑒

𝑇  (∫ 𝑩𝑻𝑫
𝑨

𝑩𝑑𝐴) 𝒒𝒆  (13) 

𝛿𝑉 = −∫ 𝑞(𝑥, 𝑦)
𝐴

𝛿𝑤0𝑑𝐴     (14) 

where ‘e’ denotes the elemental division, qe and 𝑞̈𝑒 refer to vectors of the nodal displacements and 

accelerations, respectively. Me and Ke are, respectively, the mass and the stiffness matrices, A is the 

element area, I is the inertia matrix, B is the strain-displacement, and D is the stress strain relation 

matrix. The kinematic and the constitutive relations could be expressed as   

𝜺 = 𝑩 𝒒𝒆  and  𝝈 = 𝑫 𝜺        (15) 

The stress strain relation matrix and the inertia matrix could be expressed as 

 𝝈 =

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
 
𝒬̅11 𝒬̅12 𝟎 𝟎 𝒬̅16
𝒬̅12 𝒬̅22 𝟎 𝟎 𝒬̅26
𝟎 𝟎 𝒬̅44 𝒬̅45 𝟎

𝟎 𝟎 𝒬̅45 𝒬̅55 𝟎

𝒬̅16 𝒬̅26 𝟎 𝟎 𝒬̅66]
 
 
 
 
 

 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

,     

 𝑰 = [

𝑰𝟎 𝑰𝟏 𝟎
𝑰𝟏 𝑰𝟐 𝟎
𝟎 𝟎 𝑰𝟎

] 

(16) 

Assembling the element mass and element stiffness matrices, and the element force vectors 

transformed into the global coordinate system, the dynamic finite element equations of motion, 

could be written as  

∑ 𝑴𝒆
𝑵𝑬
𝒆=𝟏  𝒒̈  + ∑ 𝑲𝒆

𝑵𝑬
𝒆=𝟏  𝒒 = 𝑹,  

 𝑹 is the overall force vector    
(17) 
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with NE is the number of elements in the spatial discretized model. The associated boundary 

conditions for simply supported rectangular plate could be expressed as 

𝑤0(𝑥, 0) = 𝑤0(𝑥, 𝑏) = 𝑤0(0, 𝑦) = 𝑤0(𝑎, 𝑦) = 0  

and  𝜓𝑥(𝑥, 0) = 𝜓𝑥(𝑥, 𝑏) = 𝜓𝑦(0, 𝑦) = 𝜓𝑦(𝑎, 𝑦) 
(18) 

Neglecting the inertial effect leads to the following static problem 

∑ 𝑲𝒆
𝑵𝑬
𝒆=𝟏  𝒒 = 𝑹   (19) 

Applying the boundary conditions and solve the system of equations in Eq. (19) to obtain the 

static bending behavior. 

On the other hand, neglecting the effect of external load results in the following free vibration 

problem 

∑ 𝑴𝒆
𝑵𝑬
𝒆=𝟏  𝒒̈  + ∑ 𝑲𝒆

𝑵𝑬
𝒆=𝟏  𝒒 = 𝟎    (20) 

To evaluate the natural frequencies and associated normal modes, the solution of the system 

defined in Eq. (20), which is referred to as the linear eigenvalue problem is required. Assuming that 

q can be expressed in the following harmonic form 

𝒒 = 𝚲𝒆𝒊𝒘𝒕  and   𝒒̈  = −𝚲𝒘𝟐𝒆𝒊𝒘𝒕 = −𝚲𝝀𝒆𝒊𝒘𝒕,   (21) 

where 𝜔  is the natural frequency, λ is the eigen value, 𝚲 is the associated eigen vector. Substituting 

Eg. (21) into Eq. (20) the free vibration analysis is reduced to the following standard eigenvalue 

extraction problem 

∑ (𝑲𝒆 − 𝝀𝑴𝒆)
𝑵𝑬
𝒆=𝟏  𝚲 = 𝟎    (22) 

The system of equations defined in (22) has a non-trivial solution only if the dynamic matrix 
(𝑲𝒆 − 𝝀𝑴𝒆)  is singular. It can be shown that this condition takes place for a finite number of 

𝜔𝑖
2 or 𝜆𝑖  depending on the order n of the dynamic matrix. The discrete set of values of  𝜆𝑖 , 𝑖 =

1 ,2, 3, …… . , 𝑛 1 are called eigen values. Each eigen value corresponds to an eigen vector, 𝚲𝒊, which 

is the solution of the following system of equations 

∑ (𝑲𝒆 − 𝝀𝒊𝑴𝒆)
𝑵𝑬
𝒆=𝟏  𝚲𝒊  = 𝟎, 𝒊 = 𝟏, 𝟐, 𝟑, ……… . . , 𝒏  (23) 

The eigen value, λi and the corresponding eigen vector, 𝚲𝒊   a free vibration mode of the 

considered composite plate structure.  

 

 

4. Problem validation  
 

Under this section, a numerical simulation model was developed to validate a published theory 

on laminated composite sandwich plates using mechanical APDL software. The numerical 

simulation model was developed based on a published theoretical work by Pagano (1970). The 

APDL model focuses on the specific case of three-layer symmetric cross-ply ((0°/90°/0°) plates, 

under sinusoidal load. The validation of the numerical simulation topics is addressed as follows. 

Consider a three-layered symmetric cross ply (0°/90°/0°) plate under sinusoidal load. The plate 

is simply supported on all edges for which had an exact three-dimensional solution by Pagano 

(1970), as shown in Fig. 1. The plate’s layers have equal thicknesses with fibers in the outer layers 

oriented in the x-direction (0°) and those in the inner most layer oriented in the y-direction (90°).  
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Fig. 1 Simply supported boundary conditions 

 

 

The material properties provided by Pagano (1970) are listed in Table 1: 

 

 
Table 1 Pagano’s material properties 

𝐸11 = 174.6 GPa 𝐺12 = 3.5 GPa 𝜈12 = 0.25 

𝐸22 = 7 GPa 𝐺23 = 1.4 GPa 𝜈23 = 0.25 

𝐸33 = 7 GPa 𝐺13 = 3.5 GPa 𝜈13 = 0.25 

 
Table 2 Assumption for the APDL validation model 

Parameters Value 

Length/Hight Ratio a/h=100 

Length a=0.100 m 

Width b=0.100 m 

Laminate Thick. h=a/100=0.001 m 

Layer Thick. t=h/3=0.000333 m 

Load Type Sinusoidal 

Load Value q=-10,000 N 

 

 

where 11 and 22 respectively, are the directions parallel and normal to the fiber’s direction. The plate 

is subjected to a doubly sinusoidal distributed transverse load as in Eq. (1) 

𝑃𝑆𝐷𝐿 = 𝑞 sin ( 
𝜋𝑥

𝑎
 )  sin ( 

𝜋𝑦

𝑏
 ) (24) 
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Fig. 2 Static doubly sinusoidal load 

 

 

Numerical simulation can be a powerful tool in load response analysis and virtual design. Hence, 

it is required to validate the exact solutions for square (a=b) plate of three-layer symmetric cross-

ply (0°/90°/0°) lamination and simply supported on all edges provided by Pagano (1970). The APDL 

model’s assumed input parameters are shown in Table 2 which were used consequently to create the 

mesh illustrated in Fig. 2 by defining the element type as SHELL181_4 nodes with square element 

size of 1 mm and applying simply supported boundary conditions. The static doubly sinusoidal load 

applied to the shell with a magnitude of  𝑞 = −10000 N, is presented in Fig. 3. 

The shell and layer results must be adjusted in the APDL General Postproc (Options for Outp). 

Table 3 represents the deflection and stresses results with APDL output options.   

The model’s distribution results for; (a) deflection 𝑤, (b) normal stress 𝜎𝑥𝑥, (c) normal stress 

𝜎𝑦𝑦 , (d) shear stress 𝜏𝑥𝑦 , (e) shear stress 𝜏𝑦𝑧 , and (f) shear stress 𝜏𝑥𝑧 , are presented in Fig. 4. 

However, the obtained results need to be generalized by normalizing the quantities of stresses and 

deflection by using Eq. (25).   

𝑤̅ = 𝑤 ( 
𝑎

2
,
𝑏

2
, 0) 

102𝐸22ℎ
3

𝑞𝑎4
  

𝜎̅𝑥𝑥 = 𝜎𝑥𝑥 ( 
𝑎

2
,
𝑏

2
,
ℎ

2
 )  

ℎ2

𝑞𝑎2 
 ,  

𝜎̅𝑦𝑦 = 𝜎𝑦𝑦 ( 
𝑎

2
,
𝑏

2
,
ℎ

6
 ) 

ℎ2

𝑞𝑎2 
 ,  

𝜏̅𝑥𝑦 = 𝜏𝑥𝑦 (0,0,
ℎ

2
 ) 

ℎ2

𝑞𝑎2 
 ,  

𝜏̅𝑥𝑧 = 𝜏𝑥𝑧 (0,
𝑏

2
, 0) 

ℎ

𝑞𝑎 
 ,  

𝜏̅𝑦𝑧 = 𝜏𝑦𝑧 ( 
𝑎

2
, 0,0) 

ℎ

𝑞𝑎 
 ,  

(25) 
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Table 3 Deflection and stresses results with APDL output options 

Deflection & Stresses Shell Results From FEA Results 

𝑤 

Top 

Middle 

Bottom 

0.624 mm 

𝜎𝑥𝑥 
Top 

Bottom 
53.9 MPa 

𝜎𝑦𝑦 
Top 

Bottom 
18.1 MPa 

𝜏𝑥𝑦 
Top 

Bottom 
2.14 MPa 

𝜏𝑦𝑧 Middle 0.103 MPa 

𝜏𝑥𝑧 
Top 

Bottom 
0.392 MPa 

 
Table 4 APDL non-dimensionalized deflections and stresses in three-layer (0°/90°/0°) square laminates of 

a/h=100  

Deflection & Stresses Analytical FEA Error 

𝑤̅ Karama et al. (2009): 0.4352 0.4368 0.37% 

𝜎̅𝑥𝑥 Pagano (1970): 0.5390 0.5390 0.00% 

𝜎̅𝑦𝑦 Pagano (1970): 0.1810 0.1810 0.00% 

𝜏̅𝑥𝑦 Pagano (1970): 0.0213 0.0214 0.47% 

𝜏̅𝑥𝑧 Pagano (1970): 0.3950 0.3939 0.28% 

𝜏̅𝑦𝑧 Pagano (1970): 0.0830 0.1033 24.46% 

 

 

The model’s non-dimensional deflections and stresses in three-layer (0°/90°/0°) square laminates 

of a/h=100 is presented in Table 4. The results of the model analysis are compared with the three-

dimensional elasticity results given by Pagano (1970) and compared to the results of the higher shear 

deformation given by Karama et al. (2009). The global average error of each theory is calculated by 

averaging the absolute values of all the particulars errors presented, and they are presented in the 

last columns of Table 4. The performance of the model analysis is evaluated by calculating errors 

compared with both results. The results in Table 4 showed that the finite element model using APDL 

model provided results that have very good agreement with the results obtained from the analytical 

models introduced by Pagano (1970), Karama et al. (2009). The results of the deflection 𝑤̅ was not 

provided by the Pagano (1970) but it was compared to the results given by Karama et al. (2009). 

This good agreement between the analytical and FEA results indicated the model’s level reliability 

and validity. The normal stresses 𝜎̅𝑥𝑥 and 𝜎̅𝑦𝑦 results show matching results with the solution of the 

3D-elasticity by Pagano (1970). The shear stress 𝜏̅𝑥𝑦  and 𝜏̅𝑥𝑧  results show negligible error when 

compared to the 3D-elasticity by Pagano (1970). The shear stress 𝜏̅𝑦𝑧 results was higher than the 

3D-elasticity by Pagano (1970) by 24.46%. It will be possible to apply the developed APDL model 

for various fiber orientations, plate geometries, and applied loads if it exhibits a strong connection 

with the published theories. 
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Fig. 3 The distribution results for deflection, normal stresses, and shear stresses from APDL 

 

 

5. Numerical results 
 

In the second part of this study, different laminated plates with different dimensions and fibers 

layup orientations including; unidirectional, cross-ply, quasi-Isotropic, and bio-inspired helicoidal 

have been considered to investigate the load response, in order to improve the performance of the 

composite structures. 

Herein, three different plate dimensions under constant and sinusoidal load were investigated, 

these plates are presented in Fig. 5 and referred to as case I, II and II and specified as Case I: (a: b) 

ratio is (1:1), Plate dimensions are 150×150 mm, Case II: (a: b) ratio is (2:1), Plate dimensions are 

300×150 mm and Case III: (a: b) ratio is (3:1), Plate dimensions are 450×150 mm. Each lamina 

consists of 32 unidirectional layers. Each layer thickness is 0.1125 mm, resulting 3.6 mm total 

lamina thickness. The shell element was defined using the element type SHELL181_4nodes, and 

square element size of 5 mm. In the three cases, the boundary conditions were fixed supported in 

the longitudinal ends and simply supported in the lateral sides. Two load conditions were applied to 

the plate, constant load (𝑃𝐶𝐿) and sinusoidal load (𝑃𝑆𝐷𝐿) as the following Eqs. (8) and (9) where, the 

load value was 𝑞 = −10000 N for both cases 

𝑃𝐶𝐿 = 𝑞, 

𝑃𝑆𝐷𝐿 = 𝑞 sin ( 
𝜋𝑥

𝑎
 )  sin ( 

𝜋𝑦

𝑏
 ),  

(26) 

The material used in this analysis was prepreg material provided by Cytec with unidirectional 

12K HTS carbon fibers which were already pre-impregnated with an 977-2 epoxy matrix. The 

technical data from the manufacturer and the lamina elastic material properties are listed in Table 5. 

Heimbs et al. (2009).   
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Fig. 4 Different plate geometries and applied loads 

 
Table 5 Material characteristics with mass density of ρ=1620 kg/m3 

𝐸11 = 153 GPa 𝐺12 = 5.2 GPa  𝜈12 = 0.3  

𝐸22 = 10.7 GPa 𝐺23 = 2.2 GPa  𝜈23 = 0.3  

𝐸33 = 10.7 GPa 𝐺13 = 5.2 GPa  𝜈13 = 0.3  

 

 

Fig. 5 Different layup configurations examined in this analysis; (a) Unidirectional (UD), (b) Cross-Ply (CP), 

(c) Quasi-Isotropic (QI), (d) Linear-Helicoidal (LH), and (e) Fibonacci-Helicoidal (FH) 

 

 

In order to study the effects of fibers orientation on the static load response, different layup 

configuration was examined including Unidirectional (UD), Cross-Ply (CP), Quasi-Isotropic (QI), 

the linear bio-inspired known as Linear-Helicoidal 24° (LH) (Wang et al. 2021) and non-linear bio-

inspired known as Fibonacci-Helicoidal (FH) (Wang et al. 2021). The specifications of the different 

layup configurations are presented in Fig. 6 and Table 6. 

The numerical simulation (validation model) used to validate the experimental results was 

implemeneted for different layup configurations. Only the number of layers was increased from 24 

up to 32 layers, which results 3.6 mm total laminate thickness. The analysis results were generated  
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Table 6 Specifications of the different layup configurations Wang et al. (2021) 

𝐷𝑒𝑠𝑖𝑔. 𝑁𝐿 Stacking Sequence 

UD 32 
Unidirectional 

(0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°/0°)s  

CP 32 
Cross-Ply - Symmetric 

(0°/90°/0°/90°/0°/90°/0°/90°/0°/90°/0°/90°/0°/90°/0°/90°)s  

QI 32 
Quasi-Isotropic - Symmetric 

(0°/45°/90°/−45°/0°/45°/90°/−45°/0°/45°/90°/−45°/0°/45°/90°/−45°)s  

LH 32 
Linear-Helicoidal (24°) - Symmetric 

(0°/24°/48°/72°/96°/120°/144°/168°/192°/216°/240°/264°/288°/312°/336°/360°)s  

FH 32 
Fibonacci-Helicoidal - (𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝐹0 = 0, 𝐹1 = 10) - Symmetric 

(0°/10°/10°/20°/30°/50°/80°/130°/210°/340°/190°/170°/360°/170°/170°/340°)s  

 
Table 7 The maximum non-dimensional deflection and stresses of a CFRP plate under uniform load 

𝑎: 𝑏 𝑅𝑎𝑡𝑖𝑜 𝐷𝑒𝑠𝑖𝑔. 𝑤̅ 𝜎̅𝑥𝑥 𝜎̅𝑦𝑦 𝜏̅𝑥𝑦 𝜏̅𝑦𝑧 𝜏𝑥𝑧 

( 1: 1 ) 

𝑈𝐷 0.2383 0.2563 0.0276 0.0166 0.0081 0.0466 

𝐶𝑃 0.4072 0.4239 0.0255 0.0193 0.0022 0.0837 

𝑄𝐼 0.3769 0.1642 0.1590 0.1866 0.0146 0.0227 

𝐿𝐻 0.3740 0.3871 0.0218 0.0165 0.0038 0.1048 

𝐹𝐻 0.3028 0.3231 0.0202 0.0146 0.0057 0.0784 

( 2: 1 ) 

𝑈𝐷 0.1922 0.2203 0.0359 0.0190 0.0316 0.1549 

𝐶𝑃 0.1104 0.1007 0.0228 0.0105 0.0091 0.1570 

𝑄𝐼 0.1080 0.0950 0.1087 0.0865 0.0429 0.0634 

𝐿𝐻 0.1115 0.0988 0.0220 0.0099 0.0120 0.2699 

𝐹𝐻 0.1460 0.1512 0.0289 0.0127 0.0214 0.2274 

( 3: 1 ) 

𝑈𝐷 0.1075 0.1222 0.0462 0.0154 0.0110 0.0365 

𝐶𝑃 0.0258 0.0302 0.0112 0.0046 0.0020 0.0305 

𝑄𝐼 0.0306 0.0501 0.0618 0.0410 0.0095 0.0141 

𝐿𝐻 0.0312 0.0312 0.0132 0.0048 0.0027 0.0589 

𝐹𝐻 0.0536 0.0485 0.0230 0.0075 0.0055 0.0590 

 

 

by considering the APDL output options as; shell results from middle shell, and layers results from 

maximum failure critical. 

 

5.1 Deflection and stresses  
 

The maximum non-dimensional deflection and stresses of the CFRP plate under uniform load 

and the maximum non-dimensional deflection and stresses of a CFRP plate under sinusoidal load 

are presented in Table 7 and Table 8; respectively. It is observed that, uniform and sinosoidal  

loadings, the cross-ply layup configuration CP results in largest nondimensional bending deflection, 

𝒘̅ and  nondimensional normal stress, 𝝈̅𝒙𝒙 for aspect ratio, a:b=1 while for for all aspect ratio a:b>1 

the maximum nondimensional bending deflection, 𝒘̅  and the maximum nondimensional normal 

stress,  𝝈̅𝒙𝒙 are obtained by unidirectional (UD) layup configuration. Regarding the nondimensional 

shear stress, the largest value of 𝝉̅𝒙𝒚 is produced by QI layup configuration for a:b=1 while for a:b>1, 

𝝉𝒙𝒛 shows its largest value for LH layup configuration.    
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Table 8 The maximum non-dimensional bending deflection and stresses of a CFRP plate under sinusoidal load 

𝑎: 𝑏 𝑅𝑎𝑡𝑖𝑜 𝐷𝑒𝑠𝑖𝑔. 𝑤̅ 𝜎̅𝑥𝑥 𝜎̅𝑦𝑦 𝜏̅𝑥𝑦 𝜏̅𝑦𝑧 𝜏𝑥𝑧 

( 1: 1 ) 

𝑈𝐷 0.1794 0.2016 0.0125 0.0079 0.0014 0.0288 

𝐶𝑃 0.2753 0.3001 0.0193 0.0121 0.0009 0.0453 

𝑄𝐼 0.2553 0.1227 0.1164 0.1181 0.0068 0.0127 

𝐿𝐻 0.2544 0.2771 0.0172 0.0103 0.0017 0.0586 

𝐹𝐻 0.2117 0.2362 0.0146 0.0086 0.0020 0.0458 

( 2: 1 ) 

𝑈𝐷 0.1299 0.1570 0.0278 0.0120 0.0131 0.0834 

𝐶𝑃 0.0748 0.0822 0.0161 0.0069 0.0051 0.0615 

𝑄𝐼 0.0730 0.0694 0.0783 0.0478 0.0248 0.0401 

𝐿𝐻 0.0748 0.0786 0.0157 0.0065 0.0069 0.1710 

𝐹𝐻 0.0979 0.1117 0.0209 0.0084 0.0115 0.1453 

( 3: 1 ) 

𝑈𝐷 0.0723 0.0902 0.0327 0.0100 0.0058 0.0174 

𝐶𝑃 0.0184 0.0183 0.0084 0.0026 0.0012 0.0080 

𝑄𝐼 0.0211 0.0374 0.0452 0.0191 0.0058 0.0081 

𝐿𝐻 0.0214 0.0211 0.0095 0.0029 0.0016 0.0340 

𝐹𝐻 0.0363 0.0399 0.0163 0.0049 0.0032 0.0364 

 

 

Fig. 6 The maximum nondimesional bending deflection vs. a:b ratio 

 

 

Considering the influence of the aspect ratio a:b on the non-dimensional deflection values, 𝒘̅ the 

linear regression of the different layup configurations for different values of the aspect ratio (a:b) is 

presented in Fig. 7. It is demonstrated that the maximum nondimensional bending deflection rapidly 

decreases with increasing the aspect ratio for CP layup configuration. On the other hand, regarding 

the UD layup configuration, the maximum nondimensional bending deflection slowly decreases 

with increasing the aspect ratio. 
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Fig. 7 The first non-dimensional frequency for the first lowest four vibration modes 

 
Table 9 The non-dimensional fundamental frequencies of a CFRP plate 

a:b Ratio 𝐷𝑒𝑠𝑖𝑔. 1st Mode 𝜔̅1 2nd Mode 𝜔̅2 3rd Mode 𝜔̅3 4th Mode 𝜔̅4 

( 1: 1 ) 

𝑈𝐷 26.2 30.0 40.2 58.1 

𝐶𝑃 21.1 39.4 51.3 62.5 

𝑄𝐼 21.9 39.4 51.3 67.5 

𝐿𝐻 21.9 38.8 52.3 66.2 

𝐹𝐻 24.1 34.0 54.1 60.4 

( 2: 1 ) 

𝑈𝐷 15.4 29.5 37.7 47.7 

𝐶𝑃 20.2 32.8 55.3 68.0 

𝑄𝐼 20.3 35.8 58.7 60.8 

𝐿𝐻 20.0 35.4 58.5 60.5 

𝐹𝐻 17.6 36.2 45.1 58.6 

( 3: 1 ) 

𝑈𝐷 13.7 27.8 38.9 48.2 

𝐶𝑃 26.7 32.6 45.2 64.8 

𝑄𝐼 24.9 35.0 50.5 70.9 

𝐿𝐻 24.7 34.2 49.5 70.1 

𝐹𝐻 19.2 31.1 49.6 62.3 

 

 

5.2 Modal analysis 
 

To generalize the obtained results, the normalized quantities of the fundamental frequencies can 

be defined using the following equation 

𝜔̅ = 𝜔 ( 
𝑎2

ℎ
)√

𝜌

𝐸2
  (27) 

The non-dimensional fundamental frequencies of the CFRP plate are presented in Table 9. It may 

be observed that, the nondimensional frequency parameters decrease with increasing the plate aspect  
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Fig. 8 First four mode shapes of CFRP plate with 1:1 ratio and different layup configuration 

 

 

ratio for all layup configurations due to the decrease in the overall plate equivalent stiffness to mass 

ratio. It is also noticed that, for plate aspect ratio 1:1, the largest value of the nondimensional 

frequency parameters are produced by the UD layup configuration while for the other higher 

vobration modes, the FH layup configuration produces the largest value of the nondimensional 

frequency parameters. Increasing the plate aspect ratio, a:b>1, the UD layup plate configuration 

results in the smallest value of the nondimensional frequency parameter while the FH layup 

configuration produces the largest values for all vibration modes.   

For mor clear illustraton, the comparison between the different plate layup configurations for the 

first four modes of the non-dimensional fundamental frequency and the a:b ratio is depicted in Fig. 

8.  

The different mode shapes of the first lowest four vibration modes different plate layup 

configuration for CFRP plate with different a:b ratio are presented in Figs. 8-10. 

 
 
6. Conclusions 
 

In the context of finite element simulation, the static, as well as the free vibration behaviors of 

helicoidal composite plates are quantitatively investigated and analyzed. The dynamic finite 

elements equations as well as the numerical solution methodology of the helicoidal composite plate  

f4 

f4 

f4 

f4 

f4 
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Fig. 9 First four mode shapes of CFRP plate with 2:1 ratio and different layup configuration 

 

 

are acquired, then mechanical APDL tool is used to obtain and solve the static bending and free 

vibration problems. Accuracy of the proposed numerical simulation is verified by comparing 

obtained results the corresponding results reported in the literature. Parametric studies are performed 

to explore the influences of the lamination scheme the plate aspect ratio on the mechanical 

performance of the helicoidal composite plate. Notable conclusions based on the numerical results 

are drawn as follows: 

• The overall mechanical performance of helicoidal composite plate significantly affected by the 

plate layup configuration as well as the plate aspect ratio, a:b. The maximum nondimensional 

bending deflection, internal stresses, as well as the nondimensional frequency parameters could 

be controlled by selecting the suitable plate layup configuration for the considered plate aspect 

ratio.   

• In all cases, results obtained from the FEM simulation are in good agreement with the 

previously outputs reported in the literature. 

• The proposed finite element simulation has an acceptable accuracy for utilizing this model for 

the analysis of more complicated cases. 

• Obtained results are supportive for design and manufacturing of such composite structures.  
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Fig. 10 First four mode shapes of CFRP plate with 3:1 ratio and different layup configuration 
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