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Abstract.  A theoretical exploration for determining the characteristic length of the cohesive zone for a double 
cantilever beam (DCB) specimen under mode I loading was conducted. Two traction-separation laws were studied: (i) 
a law with only a linear elastic stage from zero to full traction strength; and (ii) a bilinear traction law illustrating a 
progressive softening stage. Two analytical solutions were derived for the first law, which fit well into two existing 
solution groups. A transcendental equation was derived for the bilinear traction law, and a graphical method was 
presented to identify the resultant cohesive zone length. The study using the bilinear traction law enabled the 
theoretical investigation of the individual effects of cohesive law parameters (i.e., strength, stiffness, and fracture 
energy) on the cohesive zone length. Correlations between the theoretical and finite element (FE) results were 
assessed. Effects of traction law parameters on the cohesive zone length were discussed. 
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1. Introduction 
 

Adhesive bonding, in lightweight sandwich construction and structural bonded joints, has been 

used for decades for the assembly of aircraft components. There has been a recent increase in the 

application of adhesive bonding in modern aircraft, largely driven by the usage of advanced carbon 

fibre composite materials. However, in-service experience has shown that the durability of bonded 

structures and adhesively bonded repairs varies dramatically, with some structures and repairs 

providing life-of-type service and others failing in a very short time, leading to a reluctant 

acceptance by aircraft operators as pointed by Davis and Bond (1999). In addition, due to 

difficulty in detecting the damage evolution of the adhesive bond and delamination, catastrophic 

failure could occur in the laminated structures (Ashtonm 1996, Li et al. 2012, Li 2013). 

Delamination and disbond belong to the most important damage mechanisms in laminates and 

bonded laminated joint structures. To understand the performance of composite structures and 

associated delamination onset and propagation, standard tests combined with finite element (FE) 

simulations have been widely conducted. Numerical methodologies using FE methods integrated 

with techniques such as the virtual crack closure technique (VCCT) and/or cohesive zone models 

(CZMs) using cohesive elements or surfaces have been developed to capture the crack onset and to 

simulate progressive failure (Rybicki and Kanninen 1977, Krueger 2004, Mi et al. 1998, Alfano 
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2006). VCCT originates from a fracture mechanics concept, in which the strain energy released 

during delamination propagation is assumed to equal the work required to close the crack. Crack 

growth will occur if the energy release rate reaches a critical value. This scheme needs nodal 

forces and topological information from nodes ahead and behind the crack tip. CZM has been 

developed from the work of Barrenblatt and Dugdale by assuming a cohesive zone existed just 

ahead of a physical crack tip. The stress traction within the zone is used to model cohesive 

tractions or plastic yielding, which makes that the CZM be a powerful approach for the 

progressive failure analysis of composite structures under various loading conditions (Mi et al. 

1998, Alfano 2006, Turon et al. 2007a, b, de Moura et al. 2008, Harper and Hallett 2008, 

Khoramishad et al. 2010, Landry and Laplante 2012). 

A local cohesive traction-separation (i.e., stress-displacement) relationship is used to govern the 

behaviour of the nodal pairs of the cohesive elements to capture the damage propagation. The 

shape of the traction-separation curves can be different; however, the total area enclosed by any 

curve shape must equal the critical strain energy release rate of the material under a quasi-static 

loading (Turon et al. 2007b, Harper and Hallett 2008). Previously, difficulty was existed to 

experimentally determine the traction profile; it was usually deduced indirectly based on physical 

material behaviour. Nowadays, direct methods based on experimental determination of the 

cohesive traction profile using the DCB test can be used (Andersson and Biel 2006, Ji et al. 2010, 

Dias, et al. 2013). The strain energy release rate GI or J-integral should be expressed in a function 

of the crack tip opening displacement or applied load and beam rotation in these methods, then the 

cohesive traction law can be obtained by differentiation of the GI or J-integral. Williams and 

Hadavinia (2002) carried out analytical solutions for several different cohesive zone traction laws 

for the case of a beam on an elastic foundation. They showed that all the solutions gave very 

similar results for the energy release rate and beam root rotation; only the fracture toughness was a 

critical parameter in the delamination analysis. Yang and Cox (2005) used a bridging length 

solution proposed by Bao and Sou (1992) to estimate the characteristic length of the cohesive zone.  

The theoretical solutions showed that different cohesive zone lengths were generated by different 

traction laws. These analytical solutions for the cohesive zone length provide a basis to assess a 

proper cohesive element length mesh for a converged FE simulation of progressive failure 

behaviour. To the end, it was suggested by Turon et al. (2007b) and Harper and Hallett (2008) that 

at least three cohesive elements should be placed within a fully developed cohesive zone length in 

the FE analysis. 

Currently, none of existing analytical solutions for the cohesive zone length have been derived 

from a mode I double cantilever beam (DCB) configuration using a bilinear cohesive 

traction-separation law. For delamination study, a mode I loading DCB configuration would be 

adopted first due to its high applicability and importance. A bilinear cohesive traction-separation 

law is widely used in numerical simulations due to its simplicity and versatility. This law is 

characterized by an elastic region up to full strength followed by a softening region until a 

complete nodal pair separation at zero traction. The cohesive zone length used for choosing 

cohesive element length was estimated based on the available analytical solutions.  

In this paper, theoretical explorations were carried out to determine the cohesive zone lengths 

for mode I loading DCB specimens. Two traction laws were selected: (i) a right-angled triangular 

form having only a linear elastic stage from zero to full strength followed by a sudden catastrophic 

failure; and (ii) a bilinear traction law. Theoretical determinations of the cohesive zone length were 

developed. Comparison of current, existing theoretical predictions, and FE results was conducted 

and discussed. Effects of cohesive traction law parameters on the cohesive zone length could be 
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theoretically assessed. The main objective was to develop analytical solutions of cohesive zone 

length in DCB configuration with the bilinear traction law, and expand the theoretical knowledge 

on the correlation between traction law parameters for accurate numerical progressive failure 

simulations. 

 

 

2. Theoretical derivation 
 

2.1 Two typical cohesive traction-separation laws 
 

A variety of cohesive traction-separation laws have been used for theoretical fracture behaviour 

analysis, among which two laws in the simplest forms have been chosen for a comparative study 

in this paper, as shown in Fig. 1, where 0  is the interfacial strength; K: the interfacial stiffness 

( 00 /K ); 0 : displacement ( 00 2w for the DCB case, where w0 is the half relative 

displacement at a given integration point in the vicinity of crack tip determined by the beam 

deflection at this moment) at the irreversible interface damage initiation position, and f : the 

relative displacement for separation ( ff w2 for the DCB case, where wf is the beam deflection), 

where the traction is degraded to zero. For the DCB case, the critical strain energy release rate is 

computed as: ffc wG 002/1   . Fig. 1(a) shows an idealized traction law in a right-angled 

triangular form. Fig. 1(b) shows a bilinear traction law with a progressive linear damage stage (or 

softening stage not perpendicular to the horizontal axis) after the damage onset at 0  . This 

bilinear traction profile effectively reduces the numerical singularity degree. The right-angled 

traction law actually cannot provide converged solutions in numerical analyses due to its abrupt 

stress cancellation. However, this law selected here for the study based on two reasons: (1) to 

effectively illustrate the advantages of the bilinear traction law in progressive damage analysis, 

and (2) to explore analytical solution of its cohesive zone length for correlation study with other 

existing solutions. 

 

 

  

Fig. 1 Two cohesive traction-separation laws: (a) a linear elastic stage followed by a sudden catastrophic 

separation in a right-angled triangular form, and (b) a bilinear relationship 
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(a) 

  

(b) 

 

 

(c) 

Fig. 2 Schematic diagrams for: (a) the characteristic length of a fully developed cohesive zone, lcz, located 

ahead of the physical crack tip; and determination of the lcz in: (b) a right-angled triangular traction 

law form, and (c) a bilinear traction law 

 

 

A cohesive zone with zero- or very small thickness can be introduced into a structure for 

capturing the progressive failure behaviour. The characteristic length of a fully developed cohesive 

zone length, czl , can be determined using the conditions shown in Fig. 2. Labels “1” and “2” refer 

to the physical crack and cohesive zone tips, as well as their traction/separation conditions for 

defining the fully developed cohesive zone length. At the physical crack tip, the laminated beam 

deflection is defined as   fw 5.00   at position 1. For the right-angled triangular traction form 

Eq. (1(a)) may be used to identify the value of 
czl  at position 2. 
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For the bilinear traction law at position 2, the following condition, Eq. (1(b)), is widely used to 

identify the value of czl .  

  05.0 
 czlx

xw
 

(1b) 

 

2.2 Cohesive zone length for the right-angled triangular traction law 
 

2.2.1 Beam deflection and associated energy release rate 
The augmented double cantilever beam (DCB) model proposed by Kanninen (1973) was 

adopted, and the DCB arm was theoretically treated as a beam partially supported by an elastic 

foundation, as shown in Fig. 3.  

 

 

 

(a) 

 

 

(b) 

 

(c) 

Fig. 3 Schematic representation of: (a) a DCB coupon made of a single-piece of material, (b) a bonded 

DCB coupon, and (c) the augmented double cantilever beam model for mode I fracture (not to 

scale) 
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The symbols used are: 𝑎 : the delamination length; 𝑏: the DCB width;  ℎ : the laminate 

thickness; 𝑙: un-delaminated or bonded length; 𝐿: the total length of the DCB coupon; 𝛿: the 

DCB opening displacement at the applied load position; and 𝜂: the adhesive thickness. The 

Euler-Bernoulli beam theory has been widely used to analyze the DCB beam deflection (Kanninen 

1973, Chow et al. 1979, Krenk 1992, Williams and Hadavinia 2002, Li et al. 2011, Li and Li 

2013). The corresponding governing differential equations for the laminated DCB beam deflection 

𝑤(𝑥) are 

 xaP
dx

wd
D 

2

1
2

          0 xa  

kw
dx

wd
D 

4

2
4

            lx 0  

(2a) 

where; 𝑤1 is the deflection within the delaminated range; 𝑤2: deflection within the bonded 

overlap region; D: the bending stiffness of cylindrical bent laminates (plane strain condition); 𝑘: 

the spring stiffness simplified for the adhesive layer in bonded DCB coupons or the influence of 

the opposite side beam; and 𝑃: the applied load. Determination of the parameter D is given by Li 

et al. (2011). 

The relationship between the spring stiffness, k, fracture energy, 
cG , interfacial strength, 0 , 

and relative displacement, w0, (here w0=wf )may be explained as 

ccf G

b

G

b

w

b
k

2
0

0

00 




  (2b) 

The general solution of the beam deflection is 
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(2c) 

where  Dk 44   is a parameter defined in the bending analysis. Using the following six 

displacement boundary conditions 

   00 21 ww  ,  
   
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the six integral constants 
i

A  (i=0 to 5) can be determined as 
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where 𝐻1, 𝐻2, 𝑎𝜆, and 𝜆𝑙 are dimensionless factors as 
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when 3l ,    ll  coshsinh   and they are significantly greater than  lsin  and  lcos . 

Then similar to Williams and Hadavinia (2002), the defection, 
2

w , becomes 

        xAxAxxw  sincosexp 422   (0 ≤ 𝑥 ≤ 𝑙) 
(2g) 
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For a fully developed cohesive zone, the deflection condition at the physical crack tip is: 
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(2h) 

It can be seen that   is an important parameter to determine the deflection and strain energy 

release rate. 

 

2.2.2 Cohesive zone length 

2.2.2.1 Solution one 
Using the approach of Williams and Hadavinia (2002), the characteristic length of a cohesive 

zone, czl , can be defined based on the deformation process parameter,  , as 

cz
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GE
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where  

EE '

 

(plane stress) or  21' vEE   (plane strain) for isotropic material DCB,  
(3b) 

and
 zIDE '

 

(equivalent flexural modulus for laminated DCB)

 
zI  is the moment of inertia in the bending analysis. The laminate bending stiffness, D , under 
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either plane stress or plane strain (cylindrical bending) is given by Li et al. (2011). The current 

solution, Eq. (3(a)), is half of the one derived by Williams and Hadavinia (2002) for a single 

peeling beam from a stiff foundation. The relationship 
fc

wG
0

5.0   was used in 
cz

l  derivation 

by them. Hence, the solution presented in their paper will be updated to the current solution for 

DCB specimens. 

 

2.2.2.2 Solution two 

An alternative way to determine lcz is based on the beam deflection condition, as presented in 

Eq. (1(a)) combined with Fig. 2, 
czlx

xw


)(  (i.e., 
czlxx )(  at position 2). The first or smallest x  

value will be the lcz, since other values have no practical value and also cause numerical solution 

problems. For most DCB cases, 3l  can be established, and the associated lcz 
is
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When a  is very large, the above expression can be simplified as 
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(3d) 

Different 
cz

l  values would be predicted by Eqs. (3(a)) and (3(c)). Eq. (3(c)) is equivalent to Eq. 

(3(d)) for large values of a . Comparisons of the predicted characteristic length profiles with 

existing solutions are conducted later in the paper. 

 

2.3 Cohesive zone length for the bilinear traction law 

 

2.3.1 Beam deflection and associated energy release rate 

Fig. 4 shows two parallel coordinate frames used for the beam deflection analysis within the 

two different traction-separation stages. The distance between the two origins is the length for a 

fully developed cohesive zone, 
cz

l , and 
R

l refers to the undamaged laminate or bondline length. 

The corresponding deflection equations in each section are 
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For simplicity, the undamaged laminate length is assumed to be long enough, 3
2


R

l , so that 

general solutions become 

A total of nine boundary conditions are used to determine the eight above constants 
iB  ( i  

0 to 7) and 
cz

l . They are 
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Fig. 4 Schematic diagrams for coordinates at the physical crack and cohesive zone tips ( 1o and 2o , 

respectively) and correlation of the beam deflection with its associated cohesive 

traction-separation stage, where 
cz

l  and 
R

l refer to the fully developed cohesive zone length and 

the undamaged laminate length, respectively (not to scale) 
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The critical strain energy release rate, cG , can be expressed as 

186



 

 

 

 

 

 

Linking bilinear traction law parameters to cohesive zone length 

2
04

1

4
2

00 122
2

1
wKwKwG ffc 
















  (4f) 

where 

   

 

   







































 s
a

sScCcC

sccsS

a
sS

I

I
cCBBw

1

2

1

2
2

2
1

2

1

2
2

2
1

112

11
24

2

4
1

60

2

2

2
2





















  
(4g) 

 

2.3.2 Determination of the cohesive zone length 

Based on the above boundary conditions, the cohesive zone length, 
cz

l , can be determined using 

the derived relationship as 
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An analytical expression for lcz is not easily derived. Therefore, a graphical method is suggested 

to identify the root (i.e., the characteristic length) from the following transcendental Eq. (5(c)) 

obtained from Eq. (5(a)) or (5(b)). Provided that all relevant parameters are known, changes to 

variable x can be made starting from a very small value using a reasonably fine increment; the 

minimum x that makes the following two y-functions meet is the characteristic length, lcz. If 1
a  

is very large, y1=0 can be approximated. 
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2.4 Existing analytical solutions for the cohesive zone length 

 

The characteristic length expressions for an infinite body made of an isotropic material with a 

central crack loaded in mode I have been derived by a number of authors using different cohesive 

traction laws, as listed in the paper of Turon et al. (2007b). It can be represented as 

2

0

'


 c

cz

GE
l   (6a) 

where EE '  (plane stress) or  21' vEE   (plane strain), and   is a coefficient derived 

from the specific used cohesive traction law. An asymptotic expression with 1  for estimating 
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the characteristic length suggested by Yang and Cox (2005) for orthotropic materials is 

2
0

'


c

cz

GE
l   (6b) 

where 'E  is an equivalent elastic modulus for orthotropic materials. Determination of the 

modulus is presented in papers of Harper and Hallett (2008), and Yang et al. (2006).  

For delamination in a slender laminated body similar to an infinite mode I loading DCB 

specimen, Yang and Cox (2005) set a unity coefficient to the bridging length derived by Bao and 

Sou (1992) to estimate the cohesive zone length, as follows 
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In the derivation of characteristic length, Bao and Sou (1992) applied a constant moment to the 

slender beam ends. The utilized cohesive traction law has non-zero traction at the zero separation 

condition. It can be noticed that Eqs. (6(a)) and (6(c)) are different and may be divided into two 

solution groups based on their expressions.  

 

2.5 Stiffness K in the cohesive traction-separation law 
 

2.5.1 A fixed value determined by the laminated DCB parameters 
The elastic foundation assumption, proposed by Kanninen (1973), could be used to define the 

associated traction-separation law of the introduced cohesive zone. Hence, a fixed interfacial 

stiffness, K , of the cohesive traction law is obtained from the DCB parameters 

h

bE
Kbk z

'2
2     (for monolithic DCB coupon) (7a) 



bE
Kbk a

'2
2       (for bonded DCB coupon) (7b) 

where k  is the spring stiffness introduced by the assumed elastic foundation; b : the DCB 

coupon width; h : the DCB beam thickness in one side; 𝐸𝑧
′ : the laminated beam Young’s modulus 

in the peeling direction under plane strain conditions; 𝐸𝑎
′ : the adhesive Young’s modulus under 

plane strain conditions; and  : adhesive layer thickness for the bonded DCB coupon. 

 

2.5.2 A variable without a direct linkage to the laminated coupon parameters 
The experimentally obtained critical energy release rate is used in the cohesive law. The 

stiffness K  and strength 0  have no direct relationship with the tested DCB coupons. Thus, 

different values of K  and 0  can be selected for the numerical progressive failure analysis. As 

pointed by Zou et al. (2003), the stiffness should be large enough to exclude the effect of the 

introduced cohesive zone on the original material property but small enough to avoid numerical 

problem in a finite element analysis. Through modeling analysis of damage in filament-wound 

pipes, they found that its effect on the load-indentation was limited when the K  was in the range 
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0
fK        ( 410f  710  mm

1
) (7c) 

 

2.5.3 Correlation of K  with cohesive law parameters 

For the right-angled triangular traction law, the correlation between K , 
c

G  and 0  is 

cG
K

2

2
0  (7d) 

This relationship shows that no two parameters can be kept constant simultaneously, if the third 

one changes. 

For the regular bilinear traction law, the condition, 
f

ww 
0

, should be kept to ensure a 

progressive linear softening stage. Therefore, the selected stiffness must satisfy the condition 

c
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K
2
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  (7e) 

A remarkable advantage of this law over the right-angled triangular traction law is that any two 

parameters among K , 
c

G , and 0  can be kept as invariable simultaneously when the third one 

changes. This allows us to study the individual effects of K , 
c

G , or 0  on 
cz

l . 

Based on relationships, K
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Hence, the effects of K , 
c

G , and 0  on 
cz

l  can be numerically studied using Eq. (5(c)) by the 

aid of Eq.(7(f)) for any specific DCB coupon. 

 

 

3. Results and discussion 
 

3.1 Correlation of the cohesive zone length with the existing solutions 

 

Regardless of different geometric conditions and traction-separation laws used, it can be seen that 

the current solution in Eq. (3(a)) belongs to the group of Eq. (6(a)) with a coefficient of 31 . 

This solution is almost identical to Irwin’s solution presented in the paper of Turon et al. (2007b). 

The solution, Eq. (3(d)), is approximately 0.6Eq. (6(c)), in the other group. For the bilinear 

cohesive traction-separation law, a graphical method is suggested to be used to predict the 

characteristic length. Comparison of the characteristic lengths obtained from relevant theoretical 

analyses can be conducted to assess the existing correlation. 
Table 1 Parameters used in FE simulation of unidirectional 0° laminated DCB coupons (refer to Fig. 3) 

 

3.2 Comparison of cohesive zone lengths 
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Table 1 Parameters used in FE simulation of unidirectional 0° laminated DCB coupons (refer to Fig. 3) 

Example 1: HTA6376/C laminated DCB coupon 

Geometry:  L = 150 mm; a = 35 mm; b = 20 mm; h = 1.55 mm. 

Laminate properties:  Gc = 0.26 N/mm; 0 = 30 MPa; K = 1x10
5
 N/mm

3
; 

E11 = 120 GPa; E22 = 10.5 GPa; G12 = 5.25 GPa; G23 =3.48 GPa;  v12 = v13 = 0.3; v23 = 0.51. 

Example 2 : T300/977-2 laminated DCB coupon 

Geometry:  L = 150 mm; a = 55 mm; b = 20 mm; h = 1.98 mm. 

Laminate properties:  Gc = 0.325 N/mm; 0  = 60 MPa; K = 1x10
5
 N/mm

3
; 

E11 = 150 GPa; E22 = 11 GPa; G12 = 6 GPa; G23 =3.7 GPa;  v12 = v13 = 0.3; v23 = 0.51. 

 

 

To have a clear comparison of this work with the open literature, examples from papers of 

Turon et al. (2007b) and Harper and Hallett (2008) were used. The material properties for 

unidirectional 0° laminated DCB coupons are given in Table 1. 

A constant element length of 0.125 mm was used in the FE analyses of Harper and Hallett 

(2008) to predict the fully developed cohesive zone lengths. The numerical cohesive zone lengths 

used in the current comparisons were obtained by visual judgment from their FE results. Small 

differences between the estimated FE values and the original data will exist; however, these will 

not affect the comparison. As pointed by Harper and Hallett (2008), a large difference was found 

between the analytical and FE results, a scaling factor of 0.5 was suggested to apply to Eqs. (6(b)) 

and (6(c)) for a good fit to the numerical results. The Eq. (6(c)) can be approximated to be Eq. 

(3(d)) in the comparison. Current solutions, Eqs. (3(a)) and (5(c)), were used for the comparison. 

This 0.5 factor was adopted here in Eq. (5(c)). No scaling factor was applied to Eq. (3(a)) since it 

has a small coefficient of 1/3. To be consistent with the work of Harper and Hallett (2008), the 

modulus 'E , in Eqs. (3(a)), (6(b)) and (6(c)), was determined using the method suggested by Yang 

and Cox (2005) and Yang et al. (2006). It should be noted that the bilinear traction-separation law 

was only used in the FE models and theoretical solution of Eq. (5(c)). 

Figs. 5 and 6 show comparisons of the cohesive zone length obtained from theoretical and FE 

results for HTA6376/C and T300/977-2 DCB, respectively. Effects of several factors on the 

cohesive zone length were assessed. The results show that a large Gc or a small 0  will lead to a 

long cohesive zone length. To a lesser degree, an increase in E11, E33, G13 and h  will extend lcz. It 

can be seen that the current solution Eq. (3(a)) greatly reduced the difference with the FE results as 

per the used existing solution of Eq. (6(b)). Similarly, current solution of Eq. (3(d)), approximated 

by Eq. (6(c)), could have good agreement with FE results. The theoretical solutions, Eqs. (3(a)) 

and (6(b)), cannot show the effect of the beam thickness, h , while solutions from Eq. (5(c)) show 

little influence from E33 or G13 for the studied unidirectional 0° laminated DCB coupons. Very 

good consistency was found between the current solution Eq. (5(c)) and the FE results for all 

factors except E33 and G13. The FE results were fully covered by Eq. (3(a)), Eq. (5(c)), and Eq. 

(6(c)). 

 

3.3.1 A traction-separation law in a right-angled triangular form 

Fig. 7 shows the profiles of lcz 
and K  versus 0  and Gc using the relationships expressed in  
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Fig. 5 Effect of specific parameters on the characteristic length profile of the HTA6376/C DCB coupon 
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Fig. 6 Effect of specific parameters on the characteristic length profile of the T300/977-2 DCB coupon 

loaded in mode I 
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(a) 

  
(b) 

Fig. 8 Profiles of 0  and czl  versus K  and 0  (a), and K  and 
c

G  (b) predicted by Eq. (5(c)) for 

a bilinear traction-separation law 
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Fig. 7 Profiles of 
cz

l  and K  versus 0  (a) and 
c

G  (b) predicted by Eqs. (3(a)) and (7(d)) 

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1

2

3

4

5

6

15 30 45 60
K

 (
N

/m
m

3
) 

l c
z
 (

m
m

) 
w

h
e

n
 G

c
=

 0
.2

6
 N

/m
m

 

0 (N/mm2)  

lcz

K

0

500

1000

1500

2000

2500

3000

3500

4000

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6

K
 (

N
/m

m
3
) 

l c
z
 (

m
m

) 
w

h
e

n
 

0
=

 3
0
 M

P
a
 

Gc (N/mm) 

lcz

K

193



 

 

 

 

 

 

Gang Li and Chun Li 

Eqs. (3(a)) and (7(d)). When the fracture energy, Gc, is kept constant, a large 0  

will lead to a small lcz and a large stiffness, K . When the interfacial strength, 0 , is kept 

constant, a large Gc will extend lcz and decrease the stiffness, K . Generally, the stiffness values 

are very small, and should be not used to an introduced cohesive zone for a practical progressive 

failure analysis. The results suggest that the interfacial strength, 0 , should be large enough to 

ensure a high stiffness to prevent a significant effect on the transverse modulus of the original 

structures (Zou et al. 2002, Turon et al. 2007b). However, a large interfacial strength would lead to 

a small cohesive zone length. In addition, the right-angled triangular cohesive law has no 

progressive damage stage, resulting in a strong numerical singularity in its traction profile. 

 

3.3.2 A bilinear cohesive traction-separation law 

Profiles of 0  and lcz versus 0  and K  as well as Gc and K  are shown in Fig. 8. It can be 

seen that a large interfacial strength will lead to a large separation displacement, 0 . Physically, a 

large 0  will be at a location closer to the delamination tip than a small 0 , which correlates 

with a small lcz, as demonstrated in the figure. An increase in stiffness, K , would reduce the 

separation displacement, 0 , creating a long lcz. 0  is only related to the dependency rate of 0  

over K , and has no direct relationship with Gc. However, when the interfacial strength is constant, 

a large Gc will lead to a large 0  at the delamination tip; thus, a fixed value of 0  will be 

relatively far from the delaminate tip and leads to a large lcz. Individual factor of K , Gc, or 0  

on the variation of lcz can be studied analytically using the current solution of Eq. (5(c)), and Fig. 8 

generated from the solution, Eq. (5(c)) based on the bilinear traction law, clearly demonstrates this 

logical judgment.  

 

 

4. Conclusions 
 

Theoretical explorations for determining the characteristic lengths of the cohesive zone for a 

double cantilever beam (DCB) specimen under mode I loading were conducted. The obtained two 

solutions expressed in Eqs. (3(a)) and (3(d)) for the right-angled triangular traction law, can be 

well fitted to the two existing solution groups presented in the open literature. They, Eqs. (3(a)) 

and (3(d)), are new additions to their associated groups expressed in Eqs. (6(a)) and (6(c)). For the 

bilinear cohesive traction-separation law, the graphical method can be feasibly used to determine 

the cohesive zone length based on the derived transcendental equation. As compared to existing 

analytical solutions, current solutions provided a better correlation with the FE results for most 

cases. Correlations among the cohesive law parameters were theoretically assessed for the two 

traction laws. For the right-angled triangular traction law, the three parameters are correlated to 

each other, and hence the individual effect on the cohesive zone length profile cannot be assessed. 

Furthermore, the stiffness usually is a small value. The bilinear traction law can effectively 

overcome these disadvantages. Any two parameters can be kept as invariables simultaneously 

when studying the effect of the third parameter on the variation of the cohesive zone length. In 

addition, the stiffness can be set to a high value, as required in the cohesive zone modeling 

approach, for a reasonable numerical progressive failure analysis. This work ensures that 

correlation of the cohesive element length with the cohesive zone length can be studied for the 
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identical bilinear traction law used in both theoretical and numerical methods; hence, a deep 

understanding of the FE results in the composite progressive failure analysis can be explored. 
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