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Abstract.  This study compares various ways of calculating flows for the problems with the presence of shock 
waves by first-order schemes and higher-order DG method on the tests from the Quirk list, namely: Quirk’s problem 
and its modifications, shock wave diffraction at a 90 degree corner, the problem of double Mach reflection. It is 
shown that the use of HLLC and Godunov’s numerical schemes flows in calculations can lead to instability, the 
Rusanov-Lax-Friedrichs scheme flow can lead to high dissipation of the solution. The most universal in heavy 
production calculations are hybrid schemes flows, which allow the suppression of the development of instability and 
conserve the accuracy of the method. 
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1. Introduction 
 

Finding a numerical solution to the problems of mathematical physics is aimed at obtaining a 
numerical solution fully adequate to the exact physical solution, so it not only necessitates the 
usage of a high quality computational grid and a reliable high-precision numerical method but also 

requires the investigator`s assurance that the chosen numerical method has no failings or 
shortcomings with regard to the problem to be solved.  

Thus, it was detected that a numerical simulation of the supersonic viscous flow around the 
cruise missile Tomahawk performed using the discontinuous Galerkin (DG) method of the second 
order of accuracy (Krasnov et al. 2017) with the Harten-Lax-van Leer with contact (HLLC) 
numerical scheme developed instability. The computational domain was represented by a 
structured grid consisting of 107 elements. The incident flow was characterized by the Reynolds 

number Re of 107, and Mach number at М=1.3. A low-pressure area in the form of a wedge, 
perpendicular to the direction of the incident flow, appeared in the solid body fore part. It 
increased with time, distorted the shock wave, and led to a calculation failure at a fairly early time. 
This type of instability appears to be caused by a set of conditions similar to the one revealing the 
instability mechanism known as the carbuncle phenomenon (Peery and Imlay 1988, 
Rodionov2018): high Reynolds numbers, around 107, low dissipative HLLC flow, the first-order 

accuracy scheme. The calculation was performed using the second-order discontinuous Galerkin 
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method, although in the area behind the shock wave front, the order of the scheme can drop to the 

first order of accuracy (Ladonkina et al. 2018). A similar calculation using Rusanov-Lax-

Friedrichs numerical scheme did not result in forming such instability, although the high 

dissipativity of the flow created more diffuse regions. Two more calculations were carried out with 

new hybrid numerical schemes (Krasnov et al. 2017). Both proposed flows ensured stable 

operation in the calculations, made it possible to avoid the occurrence of instabilities, preserved 

the shock wave accuracy and structure, and showed good solution accuracy in the boundary layer. 

A large number of works are devoted to the study of the “carbuncle” type instability, the 

occurrence of which affects the profile of the shock wave front (Rodionov 2019, Pandolfi 2001, 

Dumbser 2004, Roe 2005, Menart 2008, Kitamura 2013, Xie 2017, Gressier 2000). One of the 

established causes of this instability type are the numerical schemes used to perform calculations. 

As is known, low dissipation flows are the most susceptible to this instability, and the use of 

highly dissipative flows makes it possible to avoid the occurrence of the carbuncle phenomenon. 

For this reason, several attempts have been made to develop new methods that suppress the 

development of instabilities while ensuring low dissipativity (Nishikawa 2008, Guo 2018, Hu 

2014, Ferrero 2019).  

The purpose of the present paper is to investigate the shock-wave instability of some specific 

numerical schemes implemented in the RAMEG3D software package (Krasnov 2021). This 

instability type is tested on some of the Quirk`s catalogue test problems (Quirk 1994). We 

followed the formulations given in the work of Rodionov (2019). In this paper, we study first-

order numerical schemes and second-order DG schemes with numerical Godunov (1959), HLLC, 

Rusanov-Lax-Friedrichs and hybrid flows used in our calculations. 

 

 

2. Numerical schemes corresponding to the system of Euler equations 
 

Let us consider Euler equations in a two-dimensional case 

 ∂𝑡𝐔 + ∇ ⋅ 𝐅(𝐔) = 0,                                                              (1) 

where U-is the vector of conservative variables and F(U)-are the components of the flux function. 

To determine the pressure, we will use the ideal gas equation.  

An approximate solution to system Eq. (1) in the discontinuous Galerkin method is sought as a 

solution to the following system (Cockburn 1998, Bassiand Rebay 2002) 

𝑑

𝑑𝑡
∫ 𝜙𝑘(𝐱)𝐔ℎ(𝐱, 𝑡)𝑑Ω

𝑇𝑗

+ ∮ 𝜙𝑘(𝐱) ⋅ 𝐡𝐹(𝐔ℎ
+, 𝐔ℎ

−, 𝐧)
∂𝑇𝑗

𝑑𝜎 − 

− ∫ (
∂𝜙𝑘(𝐱)

∂𝑥
𝐅𝑥(𝐔ℎ(𝐱, 𝑡)) +

∂𝜙𝑘(𝐱)

∂𝑦
𝐅𝑦(𝐔ℎ(𝐱, 𝑡)))

𝑇𝑗
𝑑Ω = 0,                            (2)

 

Eq. (2) is written on the grid element 𝑇𝑗 therefore, the index j is omitted in the coefficients and 

basic functions. 𝐔ℎ(𝐱, 𝑡)-is the solution vector, 𝑛-the vector of the outer unit normal to the element 

boundary ∂𝑇𝑗, 𝐡𝐹(𝐔ℎ
+, 𝐔ℎ

−, 𝐧)-flux functions computed on the ∂𝑇𝑗 element border. The quantities 

denoted by 𝐔ℎ
− are calculated at the border ∂𝑇𝑗 of the element 𝑇𝑗 by the values inside the element 

𝑇𝑗 , while the quantities denoted by 𝐔ℎ
+ , are calculated at the border ∂𝑇𝑗  by the values in the 

adjacent cell to the element 𝑇𝑗. 
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To ensure the monotonicity of the solution obtained by this method, a slope limiter (Yasue 

2010) or the Cockburn (1998) limiter are used. 

In Eq. (2) 𝐡𝐹(𝐔ℎ
+, 𝐔ℎ

−, 𝐧) -is the numerical flux function depending on the values of the 

approximate solution on both sides of the element boundary and on the direction of the unit normal 

vector 𝐧. This function is monotone and satisfies the consistency condition 

 𝐡𝐅(𝐔ℎ(𝐱, 𝑡) , 𝐔ℎ(𝐱, 𝑡) , 𝐧) = 𝐅(𝐔ℎ(𝐱, 𝑡)).                                      (3) 

In our works, while performing numerical simulation using the RAMEG3D software package, 

most frequently used are the numerical Godunov’s scheme, based on the numerical solution of the 

Riemann problem, the HLLC numerical scheme and the Rusanov-Lax-Friedrichs (RLF) scheme 

(Krasnov 2017, Ferrero 2019). The purpose of this work is to test these numerical schemes in 

detail on a series of test problems in order to identify their main properties and areas of 

application. 

It is known that the RLF flow (Eq. (4)) has a higher dissipation compared to the Godunov’s and 

HLLC numerical schemes and ensures the most stable operation of the software package, however, 

its use can affect the accuracy of the obtained solution by reducing it. 

𝐡(𝐔ℎ
+, 𝐔ℎ

−, 𝐧)
1

2
(𝐅(𝐔ℎ

+) + 𝐅(𝐔ℎ
−) − 𝐴 ⋅ (𝐔ℎ

+ − 𝐔ℎ
−))

𝐹
 

𝐴 = max(|𝐯+| + 𝑐+ ,  |𝐯−| + 𝑐− ),                                                (4) 

Here we use the notation introduced above, where 𝑐+- is the speed of sound calculated on the 

border ∂𝑇𝑗  of the 𝑇𝑗  element from the values inside the element 𝑇𝑗 , 𝑐− - is the speed of sound 

calculated on the border ∂𝑇𝑗  on the base of the values in the cell adjacent to this element, 𝐯- is the 

speed. 

A hybrid numerical scheme was constructed in the paper of Krasnov (2017), based on the main 

idea proposed in the paper of Ferrero (2019). This scheme is a linear combination of one of the 

flows (HLLC or Godunov’s scheme) and of a stable Rusanov-Lax-Friedrichs (RLF) scheme. The 

direction of the velocity jump determines the normal to the shock wave: when the cell boundary 

coincides with the shock wave front, the Godunov’s flow (𝐅𝐺𝑜𝑑𝑢𝑛𝑜𝑣 ) is used, and when the 

interface is perpendicular to the shock wave, the Rusanov-Lax-Friedrichs scheme (𝐅𝑅𝐿𝐹) is used. 

Thus, the dissipation in the direction coinciding with the shock wave increases and the instability 

is eliminated. 

�̂� = 𝜃𝐅𝐻𝐿𝐿𝐶 + (1 − 𝜃)𝐅𝑅𝐿𝐹,                                                   (5) 

�̂� = 𝜃𝐅𝐺𝑜𝑑𝑢𝑛𝑜𝑣 + (1 − 𝜃)𝐅𝑅𝐿𝐹                                                (6) 

где𝜃 = {
|Δ𝑢⋅𝑛|

|Δ𝑢|
=

|Δ𝑢𝑛𝑥+Δ𝑣𝑛𝑦+Δ𝑤𝑛𝑧|

√Δ𝑢2+Δ𝑣2+Δ𝑤2
,  |Δ𝑢| > 𝜀,

1,    |Δ𝑢| ≤ 𝜀,
                                   (7) 

where𝜀 is a small constant used to avoid division by zero (for example 𝜀 = 10−6), n is the normal 

to the cell boundary, and Δ𝐯 = (𝑢𝐿- 𝑢𝑅 , 𝑣𝐿- 𝑣𝑅)is the velocity vector jump across the boundary. 

The parameter θ is calculated from the normal to the cell boundary and the velocity jump across 

the surface of the cell boundary. 

Another approach to constructing a hybrid flow is to add a dissipative term in areas where it is 

necessary.  
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To construct it, we go over to the local coordinate system with the unit vector (𝐧, 𝛕1, 𝛕2), where 

𝐧-is the outward normal vector to the surface through which the flow goes, 𝛕1, 𝛕2- are any unit 

vectors orthogonal to each other lying on this surface. Vectors 𝐔 and 𝐅 in this coordinate system 

(denoted by the subscript *) will look as follows 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
1 2

*

1 1

*

τ τ

, , , , ,

( ) , , , ,( ) ,

T

n

E

u p u u E p

   

   

=

= + +

U u,n u,τ u,τ

F U u,n u,n u,n u,n u,n

            (8) 

In order to obtain a new flow with greater dissipation than Godunov’s scheme (HLLC) and less 

dissipation than RLF scheme, we will choose some speed W in the original coordinate system and 

switch to an inertial reference frame moving with this speed.  

Let 𝑊max denote the maximum velocity and 𝑊min the minimum velocity (taking into account 

the sign) of the waves generated by Riemann problem in the case of using Godunov’s flow (or 

when using the HLLC scheme). Note that if W is greater than 𝑊max, then the values of the gas-

dynamic quantities will coincide with U+ and, after recalculation into the original coordinate 

system, this scheme will be equal for the usage of Godunov’s scheme and the HLLC scheme 

respectively.  

�̂� = 𝐅*𝐺𝑜𝑑𝑢𝑛𝑜𝑣(𝐔*+) − 𝑊𝐔*+,�̂� = 𝐅*𝐻𝐿𝐿𝐶(𝐔*+) − 𝑊𝐔*+

 Accordingly, if -W is less than 𝑊min , then the values of the gas-dynamic quantities will 

coincide with U- and, after recalculation to the original coordinate system, this flow will be equal 

to 

�̂� = 𝐅*𝐺𝑜𝑑𝑢𝑛𝑜𝑣(𝐔*−) + 𝑊𝐔*−,�̂� = 𝐅*𝐻𝐿𝐿𝐶(𝐔*−) + 𝑊𝐔*−

 Taking half the sum of these flows, we get the RLF scheme. If W=0, then Godunov schemes 

(or HLLC) are obtained accordingly. Thus, if 0<W<W*max, where 𝑊max
*(|𝑊max|||𝑊min||||)

 we get a 

new scheme that is average between the Godunov’s scheme (HLLC) and the RLF scheme and has 

more dissipation than the Godunov’s flow (HLLC) and less dissipation than the RLF scheme. This 

type of flow was considered in the work of Woodward and Colella (1984). 

The hybrid flow which we used can be obtained as follows. Let us consider an inertial 

coordinate system moving at a speed 𝑊 ⋅ 𝐧 relative to the original coordinate system and we will 

calculate Godunov’s scheme flow or HLLC, which we will after that recalculate in the original 

coordinate system. The resulting value will be denoted by 𝐔*+ . We will carry out a similar 

procedure with speed and denote the corresponding value as 𝐔*−. Taking half the sum of such 

flows, we arrive at the formulas 

�̂� =
𝐅*𝐺𝑜𝑑𝑢𝑛𝑜𝑣(𝐔*+)+𝐅*𝐺𝑜𝑑𝑢𝑛𝑜𝑣(𝐔*−)

2
− 𝑊

𝐔*++𝐔*−

2
                                         (9) 

�̂� =
𝐅*𝐻𝐿𝐿𝐶(𝐔*+)+𝐅*𝐻𝐿𝐿𝐶(𝐔*−)

2
− 𝑊

𝐔*++𝐔*−

2
                                            (10) 

𝑊 = 𝜃𝑊*,  𝑊* = 𝑚𝑎𝑥(|𝑢 + 𝑐|, |𝑢 − 𝑐|)                                         (11) 

𝜃 = {

𝑀 ≤ 𝑀𝑚𝑖𝑛,   𝑊 = 𝑊*,

𝑀𝑚𝑖𝑛 < 𝑀 < 𝑀𝑚𝑎𝑥 ,  𝑊 =
𝑀𝑚𝑎𝑥−𝑀

𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛
𝑊*,

𝑀 ≥ 𝑀𝑚𝑎𝑥 ,  𝑊 = 0

                                 (12) 
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Fig. 1 Dependence of W from M for θ in Eq. (12) 

 

 

Where 𝑊*-is the maximum of modules for  
∂𝐅*(𝐔)

∂𝐔*   matrix`s eigenvalues and θ is a parameter from 

Ferrero and D’Ambrosio (2019). 

 

 

3. Test calculations 
 

In order to test various numerical schemes used in the RAMEG3D software package, a study 

on a series of two-dimensional test problems was carried out. These problems were described in 

detail in the papers of Quirk (1992) and Rodionov (2019) devoted to the research of carbuncle 

instability. Throughout the present paper we will use the following acronyms for the first-order 

schemes: P0God for the Godunov scheme flow, P0HLLC for the HLLC scheme flow, P0RLF for 

the Rusanov-Lax-Friedrichs scheme flow, P0Hyb1 for the type 1 hybrid scheme flow, P0Hyb2 for 

the type 2 hybrid scheme flow with parameter from Eq. 12, P0HybT for the type 2hybrid scheme 

flow with parameter from Eq. (7), and for DG method with linear basis functions: P1God, 

P1HLLC, P1RLF, P1Hyb1, P1Hyb2, P1HybT, respectively. 

 

3.1 Problem 1. Quirk`s test problem and its modifications 
 

In the Quirk`s test problem a shock wave propagating along a rectangular channel is calculated. 

The computational area [0, 800]×[0, 20] in the xy plane is covered with a regular grid which 

consists of square cells with the space step hx=hy=1. The instability of the plane shock wave is 

initiated by a small perturbation of one horizontal central line of the grid: 𝑦𝑖,𝑗𝑚𝑖𝑑
𝑛𝑒𝑤 = 𝑦𝑖,𝑗𝑚𝑖𝑑 +

𝛿(−1)𝑖, where i,j are grid indices, in longitudinal and transverse sections, jmid=10, 𝛿=10-6. The 

initial state of the gas in the computational domain, i.e., density, pressure and velocity, is given by 

(𝜌0, 𝑝0, 𝑢х0, 𝑢𝑦0) = (1,1,0,0) . The impermeability condition is set on the upper and lower 

boundaries of the grid. On the left, at x=0, the inflow condition is set with parameters 

(𝜌, 𝑝, 𝑢х, 𝑢𝑦), which are determined by the Mach number 𝑀𝑠 = 6 and the adiabatic exponent 𝛾 =

1,4.  

𝑢1 = 𝑢𝑠

2(𝑀𝑠
2 − 1)

(𝛾 + 1)𝑀𝑠
2 ,  𝜌1 =

(𝛾 + 1)𝑀𝑠
2

(𝛾 − 1)𝑀𝑠
2 + 2

,  𝑝1 =
2𝛾𝑀𝑠

2 − (𝛾 − 1)

(𝛾 + 1)
, 
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where 𝑢𝑠 = √𝛾𝑀𝑠 is the velocity of propagation of the shock wave through the stationary gas. 

In this problem the emerging instability can be clearly defined visually when the calculation is 

performed using the P0God scheme (Fig. 2). The same figure shows the calculations results for the 

P0RL and P0Hyb schemes. The degree of deviation of the solution from the one-dimensional flow 

along the density contours cannot be defined neither in these figures nor in the graphs provided by 

the other computational schemes. In conformity with the work of Rodionov (2019), the degree of 

deviation of the solution from the one-dimensional flow will be determined by the formulas 

𝜀0 = 𝑚𝑎𝑥
𝑖,𝑗

(|𝜌𝑖,𝑗 − �̄�𝑖|),  �̄�𝑖 =
1

𝐽
∑ 𝜌𝑖,𝑗

𝐽

𝑗=1

 

 

 

 

 

 

Fig. 2 Problem 1.Density isolines from 1.5 to 5.5 with a step of 0.16 
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Fig. 3 Problem 1. Dependence in P0 and P1 schemes with Godunov, HLLC, Rusanov-Lax-

Friedrichs, Hybrid type 1, Hybrid type 2 numerical flows 

 

 

Fig. 3 shows the values 𝜀0(х𝑠), where х𝑠  is the distance traveled by the shock wave х𝑠 =
𝑢𝑠𝑡,  𝑢𝑠 = √𝛾𝑀𝑠 for the first- and second-order schemes with different numerical flows for the 

same Quirk problem 1 with the Mach number 𝑀𝑠 = 6. 

The calculations performed using the P0God and P0HLLC schemes, respectively, P1God and 

P1HLLC virtually coincide and display the fastest growth rate of shock wave disturbance. The 

smallest deviation from the one-dimensional flow was shown by the schemes of both the first and 

the second order with the type 2 hybrid numerical flow P0Hyb2, P1Hyb2, P0RLF, P0Hyb. For the 

P1God and P1HLLC second-order schemes, the largest deviation is observed near the moment 

when the shock wave passes the point х𝑠=500, although this deviation is not determined in the 

graphs with density contours. 

For the problem 2 the computational domain differs from the domain in problem 1. This 

difference is due to the size increase in the y direction: [0, 800]×[0, 50]. The grid remains regular 

and it consists of square cells (hx=hy=1). As a modification to Problem 1, the method of initiating 

shock wave instabilities is changed: a perturbed vertical boundary is added 𝑥𝑖0,𝑗
𝑛𝑒𝑤 = 𝑥𝑖0,𝑗 +

𝛿(2𝑅𝑁𝐷𝑗 − 1), where i=i0=10 are grid indices in the cross section and 𝑅𝑁𝐷𝑗 (built-in function 

RAND was used from C language library) are random numbers generated within the interval [0, 

1], 𝛿 =10-4. The condition of periodic flow is set on the upper and lower boundaries of the 

computational area. 

In problem 3 boundary conditions introduce a change into the computational domain so that it 

differs from the one in the previous Problem 2. On the left boundary x=0 the impermeable wall 

condition is set, on the right boundary x=800 there is an inflowing flow with the parameters 

(𝜌, 𝑝, −𝑢х, 𝑢𝑦) taken from the first problem. 
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Fig. 4 Problem 2. Dependence in schemes P0 and P1 by numerical flows of Godunov, HLLC, 

Rusanov-Lax-Friedrichs, Hybrid type 1, Hybrid type 2numerical flows 

 

 

Fig. 5 Problem 3. Dependence in P0 and P1 schemes with Godunov, HLLC, Rusanov-Lax-

Friedrichs, Hybrid type 1, Hybrid type 2 numerical flows 

 

 

The results obtained for the problems 1-3 are fully consistent with each other. Note that if we 

compare first-order schemes with each other, we can see that the largest deviation is observed 

while using Godunov`s scheme flow, HLLC, i.e., low dissipation flows. Rusanov-Lax-Friedrichs 
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scheme flow shows the smallest deviation, which is logically due to the high dissipativity of the 

flow. The same results are observed when using a type 2 hybrid scheme flow. For second-order 

schemes, the picture changes: almost all schemes showed a high probability of instabilities, due to 

a higher order of the scheme accuracy. Moreover, schemes with numerical Godunov and HLLC 

schemes flows, as well as type 1 hybrid scheme flow are most susceptible to instability. Just as in 

the case of using first-order schemes, the P1RLF and P1Hyb2 schemes are less prone to 

instabilities. 

 

3.2 Problem 4. Double mach reflection problem 
 

The computational domain in the xy plane has the form of a rectangle [0, 1.5]×[0, 1] cut off by 

a straight line y=(x−0.075) tg(30°). It is covered with a regular grid with J×I=800×800 cells. The 

initial state of an ideal gas =1.4 in the computational domain is the following: (, p, ux, uy)=(1, 

1/, 0, 0). On the left boundary of the region, the boundary conditions of a freely inflowing flow 

are set with parameters corresponding to the Mach number 𝑀𝑠 = 5,5, On the right boundary 

x=1.5, lower y=(x−0.075) tg(30°) and upper y=1 boundaries of the region, the impermeability 

condition is set. The test is calculated up to the time t=0.18. 

 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6 Problem 4. Density isolines from 2 to 12 with a step of 0.5 (a)-(f)-calculations performed on constant 

polynomials (P0), (g)-(j)-calculations performed on linear polynomials (P1), (b),(f), -on grids 1600×1600 
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(e) (f) 

  

(g) (h) 

  
(i) (j) 

Fig. 6 Continued 

 

 

Fig. 6 shows the calculations results for this problem with different numerical flows. While 

performing the calculations with the first-order schemes, instability occurs while using Godunov 

and HLLC flows; however, the occurrence of instabilities is not observed while using the RLF 

flow and hybrid flows. It is noteworthy that shock and reflected waves have clearer profiles than 

while using the RLF flow. When calculating the second-order DGM with the use of P1RLF 

scheme, one can note the occurrence of instability, which a decrease in the time step does not 

make disappear. We do not fully understand this fact, perhaps this could be related to the increase  
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(a) (b) 

Fig. 7 Problem 5. 25density isolines  from 0.2 to 5.2 using P0God scheme 

 

  
(a) (b) 

Fig. 8 Problem 5. 25 density isolines from 0.2 to 5.2 for calculations performed with P1God  scheme on the 

1/600 grid 

 

 

in the scheme order due to linear polynomials. Rodionov (2021) in his paper mentions the 

possibility of such instability type to occur when the researcher uses higher than first order 

numerical schemes. 

 

3.3 Problem 5. Diffraction of a strong shock wave around a 90-degree corner 
 

Another problem from Quirk’s (1992) work appears to be the calculation of shock wave 

diffraction around a 90-degree corner. The computational area has the size of [0, 1]×[0, 1] in the xy 

plane and it is covered with a regular grid with J×I=600×600; the initial state of the gas (=1.4) in  
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(а) 

  
(b) (c) 

Fig. 9 Problem 5. 25 density isolines from 0.2 to 5.2 for calculations performed with P1RLF, P1Hyb, 

P1Hyb2 schemes 

 

 

the computational domain being (, p, ux, uy)=(1, 1/, 0, 0). In the upper y=1, lower y=0, right x=1 

parts of the boundary, the impermeability condition is set. At the left boundary x=0: in the lower 

part of the left boundary (y<0.5) an impermeable wall is set, in the upper part of the left boundary 

(y>0.5) an inflow flow is set with the parameters corresponding to the shock-wave Mach number 

MS=5.09. The problem is calculated up to the time t=0.8/MS. 

When the calculations of this problem are performed according to the P0GodGodunov schemes 

(Fig. 7(a)), instability is formed on the shock wave, where the plane shock wave is aligned with 

the grid. This result is in line with the calculations results obtained by many authors. But when the 

time step is reduced by a factor of two, this instability disappears (Fig. 7(b)). When this series of 

calculations is repeated on a grid reduced by a factor of two in all directions, instability occurs 

inevitably; no matter what the Courant numbers are (Fig. 7(c), 7(d)). 
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About influence of the choiсe of numerical flow in the DG method for the solution… 

Such instability is not observed, however, while performing calculations according to P1God 

(Figs. 8(a), 8(b)), even with the use of limiters with different degrees of limitation. 

No instability was observed for the calculations performed with both the first and the second 

order schemes P0RLF, P0Hyb, P0Hyb2 (not shown in the figures), P1RLF, P1Hyb, and P1Hyb2, 

using different options for determining the parameter θ. Fig. 9 shows that calculations using 

P1Hyb, P1HybT give more distinct shock wave fronts and a more accurate flow pattern than while 

using P1RLF. 

 

 

4. Conclusions 
 

In the present paper a study of various numerical flows for the simulations of flows with 

shockwaves has been undertaken. Computation results for a number of test problems from the 

Quirk`s catalogue of failings are in line with the results obtained by other authors. Using 

Godunov’s or HLLC flow in calculations can lead to instability, while using Rusanov-Lax-

Friedrichs flow can lead to high dissipativity of the calculation. It is shown that the use of hybrid 

flows makes it possible to suppress the development of instability and preserve the accuracy of the 

method. 
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