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Identification of flutter derivatives of bridge decks
using stochastic search technique
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Abstract. A more applicable optimization model for extracting flutter derivatives of bridge decks is
presented, which is suitable for time-varying weights for fitting errors and different lengths of vertical
bending and torsional free vibration data. A stochastic search technique for searching the optimal solution
of optimization problem is developed, which is more convenient in understanding and programming than
the alternate iteration technique, and testified to be a valid and efficient method using two numerical
examples. On the basis of the section model test of Sutong Bridge deck, the flutter derivatives are
extracted by the stochastic search technique, and compared with the identification results using the
modified least-square method. The Empirical Mode Decomposition method is employed to eliminate
noise, trends and zero excursion of the collected free vibration data of vertical bending and torsional
motion, by which the identification precision of flutter derivatives is improved.

Keywords: flutter derivatives extraction; parameter identification; empirical mode decomposition; sto-
chastic search technique; section model.

1. Introduction

Self-excited forces of bridge decks may be expressed as the linearized functions of small

amplitude sinusoidal displacements, velocities and flutter derivatives (Scanlan and Tomko 1971). In

this work, a free vibration method of identifying flutter derivatives of bridge decks was discussed in

detail. The uncoupled and coupled terms are obtained from pure vertical bending and torsional free

oscillations and coupled oscillation data individually. Such system identification method as extended

Kalman filtering (Yamada, et al. 1992) has been employed to extract all the 8 flutter derivatives that

giving the lift force and torsional moment due to torsional rotations/velocities and vertical

displacements/velocities from coupled oscillation data of bridge decks. In this method, the time

histories of the displacement and velocity as well as the information of the initial condition are both

required, which can simplify the experimental procedure significantly. Combining control theory

and system identification technique, flutter derivatives for the Great Belt East Bridge were extracted
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(Poulsen, et al. 1992). Modified Ibrahim Time-domain (MITD in short) method was developed to

extract all the direct and cross derivatives simultaneously from noisy displacement time histories

(Sarkar and Scanlan 1994). This method requires selection of the time shifts N1 and N2, and the

parameters play an important role in computation precision and convergence. Sarkar and Scanlan

found an effective way to select the two time shifts close to optimal values. Combining with the

extended Kalman filter, a method of simultaneous identification of all the 8 flutter derivatives from

free oscillation data was proposed (Iwamoto and Fujino 1995). In this method, the uniqueness

problem in reducing the identified quantities to non-dimensionalized flutter derivatives was

discussed. In addition, some difficulties in identifying aerodynamic unsteady coefficients at high

wind speed near the flutter onset speed were discussed. Such conclusion as the increase of mass and

inertial moment of the section model leads to better identification precision at higher wind speed

was drawn. The method for the determination of flutter derivatives by employing conversion of

buffeting response data to the response covariance function estimate was proposed (Jokobsen and

Hansen 1995). In this article, ambient vibration data were analyzed by a system identification

method valid for a linear structure driven by a linearly filterd white noise loading process.

Covariance block Hankel matrix (CBHM in short) method was used for parameter extraction of a 2-

DOF system (Brownjohn and Jakobsen 2001). The Eigensystem Realization Algorithm (ERA in

short) was developed for the identification of flutter derivatives from free vibration histories of

section model of bridge decks (Ma, et al. 2006). Combining with the Random Decrement Technique

(RDT in short), the flutter derivatives in turbulent flows can be extracted using ERA. The

Covariance-driven Stochastic Subspace Identification (CSSI in short) technique was presented for

the estimation of 8 flutter derivatives from the responses of bridge decks (Qin, et al. 2004). This

technique can be applied to signals collected in both smooth and turbulent flow. 

The unifying least-squares method was presented for extracting 8 flutter derivatives from the

coupled free vibration data of 2-DOF model (Gu, et al. 2000). In this method, a unified error

function which is linearly composed of two error components of vertical bending and torsional

motions is defined as the objective function to optimize the flutter derivatives. Nevertheless, if

distinct difference exists in quantity between the two error components, unsatisfactory identification

precision may occur. In order to improve the precision, the modified least-square method for adding

weights to error components was proposed subsequently (Ding, et al. 2001). In addition, the

weighting ensemble least-square method was developed to extract 8 flutter derivatives of bridge

decks (Li, et al. 2003). In this method, several vibration records at the same wind speed are

regarded as an ensemble. It is simultaneously fitted to identify the mode parameters by nonlinear

least-square method in the sense of minimizing the total error function.

The above researches all focused on 8 flutter derivatives identification of section model.

Identification of all 18 flutter derivatives of streamlined bridge deck was first attempted by Singh

(Singh, et al. 1995). The general least-square theory and experimental system of bridge deck

sections was developed for identifying 18 flutter derivatives (Chen, et al. 2002). The identification

precision may be improved by adding weights to error components of vertical bending, lateral

bending and torsional vibration data. The iterative least squares approach was presented to identify

all 18 flutter derivatives for a streamlined bridge deck and an airfoil section model (Chowdhury and

Sarkar 2004). Without output covariance estimation, a stochastic subspace approach (SSA in short)

identifying 18 flutter derivatives of section and aeroelastic models of bridges was developed (Xu

2006). This algorithm is superior in computation time saving to the covariance-driven stochastic

subspace identification technique. The free vibration method for extracting flutter derivatives has
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been widely used for its simplicity and less expenditure.

The above least-square method and its generalized ones commonly apply alternate iteration

technique to obtain solutions, and the same lengths of the vertical bending and torsional vibration

histories is necessary. Nevertheless, the solution precision of alternate iteration technique is closely

relevant with and sensitive to the initial selected values of mode parameters, and the solution can

not be convergent sometimes. In addition, vertical bending vibration decays rapidly at high wind

speed, and the ratio of noise to signal tend to be higher for the latter signal. In such cases, it is

reasonable to use the former part of vertical bending vibration signal and relatively longer torsional

signal to improve identification precision, i.e., different lengths of vertical bending and torsional

vibration signals are preferable. But the existent model is only applicable to the case of the same

length of vertical bending and torsional signals. 

Undoubtedly, the collected signals are inevitably contaminated by many sorts of noises. In most

cases, it is assumed that the measurement noises are Gaussian zero-mean processes. Nevertheless,

such an assumption is not the verity, but a kind of approximation. Especially, at higher wind speed,

the noise of vibration signal is very strong and the vertical bending vibration signal is very short

due to high damping. Long-period trends exist occasionally in the vibration responses. Empirical

Mode Decomposition (EMD in short) method (Huang, et al. 1998) is an effective way to filter and

reduce the noises and eliminate the trends and zero excursion of the collected data.

Then, in this work, a more applicable optimization model that is suitable for time-varying weights

for fitting errors and different lengths of torsional and vertical bending vibration data is presented,

in which the demand of the same lengths of vertical bending and torsional time-series relaxes.

Basing on this optimization model, a stochastic search technique for extracting flutter derivatives of

bridge decks is subsequently developed. Compared with the alternate iteration technique, the

stochastic search technique is more convenient for both understanding and programming. Before the

extraction of flutter derivatives from the collected data, the EMD method is carried out beforehand

to filter and reduce the noises and eliminate the trends and zero excursion mingled with the true

signals, by which the identification precision can be improved.

2. Application of Empirical Mode Decomposition to flutter derivatives extraction

The essence of EMD is to identify and extract the intrinsic different oscillatory modes by their

respective characteristic time scales in the data. Such modes represent for the oscillation imbedded

in the data and may be defined as Intrinsic Mode Functions (IMFs in short). In this study, the EMD

method is employed to process the free vibration signals and improve the identification precision of

flutter derivatives of bridge decks. The detailed procedure of EMD is not discussed in this work,

one may see Huang, et al. (1998).

Certain vertical bending and torsional free vibration signals are shown in Fig. 1 and Fig. 2 respec-

tively, in which the IMFs components acquired using the EMD method are also given. In Fig. 1 and

Fig. 2, ci(i = 1~6) are the IMFs, and r is the residue that can be also regarded as a special IMF. It

can be seen that c3, c4 in Fig. 1 are respectively similar to c3, c5 in Fig. 2 with different amplitude.

In some sense, they respectively correspond to torsional and vertical bending components contained

in the coupled vibration signals. There is an assumption that the coupled vertical-torsional free

vibration signals for extracting flutter derivatives only consist of two types of frequency data sets.

Nevertheless, the signals collected from a large amount of wind tunnel tests contain more than two

types of frequency components for the reason of mingled noises. On the basis of the EMD
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characteristics, IMFs c1, c2 in Fig. 1 and Fig. 2 may be regarded as the noise, and residue r may be

regarded as the trend. If the noise and trend are eliminated, the identification precision can be

improved, which will be investigated detailedly in the following paper. It can be seen that the

amplitudes of the vertical bending components are close to those of noises mixed in both vertical

bending and torsional signals. This is one of the main reasons that result in the large errors of mode

parameters of vertical bending components.

Fig. 1 Vertical bending signal and its IMF components

Fig. 2 Torsional signal and its IMF components
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3. Mathematical model for modal parameters identification

Under the action of self-excited forces, the mathematical model for vertical bending and torsional

motion of section model can be expressed in the form of coupled differential equations

(1)

where m and I are the model mass and mass inertia moment per unit length respectively; ξh and ξα
are the mechanical damping ratios in vertical bending and torsion respectively; ωh and ωα are the

corresponding natural mechanical frequencies respectively;  are displacements,

velocities and accerleration of vertical bending, torsional movement respectively; ρ is the air

density; flutter derivatives  and  (i = 1, 2, 3, 4) are functions of the reduced frequency K; K is

the product of frequency of the motion ω and the model width B scaled by the mean oncoming

wind speed U.

If the displacement vector is given as x(t) = [h(t) α (t)]T, then Eq. (1) may be rewritten compactly

in the matrix form

(2)

where

C e and K e are the damping and stiffness matrices of the wind-model system.

Eq. (2) can be rewritten as

(3)

where  is the state vector,  is the eigenmatrix, E denotes identity

matrix.

On the basis of complex mode theory, Eq. (3) can be uncoupled in the complex mode coordinates.

In the physical coordinates, the free vibration histories may be described as

m h
··

2ξhωhh
·

ωh

2h+ +( ) ρU
2
B KH1

* K( ) h
·

U
---- KH2

* K( )Bα
·

U
------- K

2
H3

* K( )α K
2
H4

* K( )h

B
---+ + +=

I α·· 2ξαωαα
· ωα

2α+ +( ) ρU
2
B

2
KA1

* K( ) h
·

U
---- KA2

* K( )Bα
·

U
------- K

2
A3

* K( )α K
2
A4

* K( )h

B
---+ + +=

h α h
·
α· h

··
α··, , , , ,

H1
* A1

*

x·· C
e
x· K

e
x+ + 0=

C
e

2ξhωh

ρB
2
ω

m
-------------H1

* K( )     –
ρB

3
ω

m
-------------H2

* K( )–

ρB
3
ω

I
-------------A2

* K( )     – 2ξαωα
ρB

4
ω

I
-------------A2

* K( )–

= ,

K
e

ωh
2

ρB
2
ω

2

m
----------------H4

* K( )     –
ρB

3
ω

2

m
----------------H3

* K( )–

ρB
3
ω

2

I
----------------A4

* K( )     – ωα
2

ρB
4
ω

2

I
----------------A3

* K( )–

=

Y
·

AY=

Y x x·,[ ]T= A
0 E

K–
e

C–
e

=



446 Ai-Rong Chen, Fu-You Xu and Ru-Jin Ma

(4)

where  are the eigenvalues of the eigenmatrix  are the eigenvectors

of  are constants, depending on the original recorded signals.

When complex mode parameters are determined according to the data sets, eigenmatrix A can be

acquired. All 8 flutter derivatives at a certain wind speed can be extracted from the difference of

stiffness and damping of model system with those of no-wind condition.

For bridge deck section model, the estimated values of the free vibration response of vertical

bending and torsinal motions can be constructed as

(5)

Let mh and mα denote the signal lengths of h and α respectively. The error vectors of h and α

between the measured and estimated values may be individually expressed as

(6)

Correspondingly, the time-varying weights of the errors may be written as

(7)
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Let 

The coupled equations in matrix style can be obtained as follows

(10)
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Y and  in Eq. (3) can be written as

where 

Eigenmatrix A can be expressed as A = QP−1.

Up to now, the flutter derivatives can be extracted easily according to the obtained damping

matrix Ce and stiffness matrix Ke.

4. Stochastic search technique for flutter derivatives extraction

For traditional methods, 12 parameters ai, bi, ci, di, ei, fi, (i = 1, 2) in Eq. (12) can be acquired by

alternate iteration solving approach with J as the objective function. In essence, since it is an

optimization problem, a stochastic search technique will be developed to search for the optimal

solution which minimizes the objective function Jh, Jα or J. The stochastic search technique may be

summarized as the following general procedure.

(1) Select the initial mode parameters  (i = 1, 2) and determine the appropriate weights

{wh}, {wα}. Identifying results at the last level wind speed can be regarded as the initial
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(9) Construct the system eigenmatrix A on the basis of the 12 parameters and other known

relevant parameters, extract the flutter derivatives for this wind speed level.

If the original collected signals are processed and filtered by EMD, the identification procedure

can be continued likewise and the identification precision will be improved. As to the partial

vertical bending and torsional errors’ least square, it is enough to substitute Jh or Jα for J.

Identification results prove that satisfactory precision can be obtained when the fluctuation search

times attain 3000, and the common CPU time is within 5 seconds.

The above procedure can not only serve for section model data, but also may be employed to data
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based on similar procedure can also be performed.

5. Numerical examples

Before exploiting the present stochastic search technique, simulation data have been tested first in

order to check the validity and performance of this technique.

Example 1 Two exponential decaying cosinusoidal motion functions may be expressed as

(15)

The theoretical values of ωh, ωα, ξh, ξα are 5, 10, 0.15, 0.01, respectively. The initial search values

of mode parameters are 4, 12, 0.1, 0.05, (i = 1, 2) are all 0.1, and the fluctuation times is

3000. Identification results for different cases are listed in Table 1. σN, σS are respectively standard

deviations of noise and original signal. Identification results corresponding to “NO EMD” and

“EMD” are on the basis of original contaminated signals and preprocessed and filtered signals using

EMD, respectively.

It can be seen that the identification precision is satisfactory if the amplitudes of two data sets are

identical. But if data set amplitude increases by ten times, the identification error of the other data

set increases sharply simultaneously. It is testified that more difference of amplitudes cause more

significant identification error of ‘weak’ signals. For such cases, the identification precision may be

improved by appending appropriate weights to the errors between the original signals and their

estimated ones. If the selected initial values of mode parameters are closer to their theoretical values

or the fluctuation time is ample, the identification errors will tend to be zero. It goes without saying

that the parameter errors increase with increasing noise level. If the original contaminated signal is

preprocessed and eliminate the noises using EMD, the identification precision will be improved.

For example, a coupled exponential decaying cosinusoidal signal is contaminated by white noise,

and the curve of the signal and noise are respectively plotted in the first and second subplots in Fig. 3.

The noise data are also plotted in the second subplot. Using the EMD method, the signal can be

decomposed into several intrinsic mode functions. Since the noise is ‘white’, there is no trend in its

IMFs. According to the curves of all IMFs, components c1~c4 can be regarded as noise, as are

shown in Fig. 3. The sifting error difference between the true noise and the sifted one (sum of
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Table 1 Identification results for different cases

σN/σS p1, p2 wh, wα
ωh ωα

ξh ξα

0

1, 1 1, 1 5.0106 10.0018 0.1493 0.0101

1, 10 1, 1 6.0041 10.0010 0.0526 0.0098

1, 10 10, 1 4.9682 9.9946 0.1405 0.0099

0.05 1, 1 1, 1
NO EMD 5.0156 10.0021 0.1431 0.0102

EMD 5.0112 9.9983 0.1486 0.0099

0.1 1, 1 1, 1
NO EMD 4.9746 10.0032 0.1742 0.0097

EMD 4.9885 10.0026 0.1557 0.0101
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c1~c4) is quite minor, as can be seen from the last subplot in Fig. 3.

Example 2 The motion equation of a 2 DOF system is given by

(16)

Based on mass, damping and stiffness matrices, the frequencies and damping ratios can be

calculated easily. In order to check the validity of programs, the initial displacements and velocities

are all considered as 10*[rand(0, 1)−0.5] randomly. The free vibration responses with initial

conditions can be obtained by middle integration method with time interval 0.001s, and the number

of data is 5000. Identification results for different cases are listed in Table 2. The meanings of “NO

EMD” and “EMD” are the same as those in Table 1.

As for case 1, the initial mode parameters are assumed to be the theoretical values. The identified

m1 0

0 m2

X
··
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X
··
2

c11 c12

c21 c22

X
·
1

X
·
2

k11 k12

k21 k22

X1

X2

+ + 0=

Table 2 Determinations of parameters for different cases

Parameters c11 c12 c21 c22 k11 k12 k21 k22

Original values 1 -0.2 -0.2 1 50 -5 -5 20

Case1 1.0000 -0.1999 -0.2001 1.0000 50.0002 -5.0002 -4.9999 20.0000

Case2 1.0002 -0.2000 -0.2004 0.9977 50.0016 -5.0023 -5.0159 20.0176

Case3
NO EMD 0.9939 -0.1988 -0.1977 1.0015 50.0074 -4.9829 -5.0075 20.0278

EMD 0.9996 -0.1997 -0.1989 1.0008 50.0017 -4.9951 -5.0016 20.0039

Case4
NO EMD 0.9970 -0.2158 -0.1911 0.9974 50.0346 -4.8620 -4.9836 19.9454

EMD 0.9989 -0.2024 -0.1976 1.0015 50.0085 -4.9927 -4.9959 20.0186

Fig. 3 Signal filtering using EMD
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results show that the programs are right and valid. As for case 2, the initial mode parameters are

assumed to be 0.9 times of the theoretical values. It is verified that the stochastic search technique is

effective and practical. As for case 3 and case 4, there are additional noises mingled with the

responses with the intensity of 5% and 10% respectively. Obviously, the stronger noise produces the

higher identification error. Similarly, the identification precision may be improved by means of

EMD.

The above results may be taken as an encouragement to proceed with genuine recordings

consisting of the simultaneous vertical bending and torsional vibration responses.

6. Flutter derivatives Identification of Sutong Bridge deck

The Sutong Bridge over the Yangtze River is a cable-stayed bridge spanning 1088 m, which is

under construction presently in China. This bridge has a steel girder deck with a cross section

layout as is shown in Fig. 4. 

According to the parameters of the bridge and the dimensions of the working section and the

wind speed range of the wind tunnel, the geometry scale of the section model and the wind speed

scale were selected to be 1/70 and 1/6.75, respectively. The length, width and the height of the

section model are 1800 mm, 580 mm and 57 mm, respectively. The equivalent mass and inertial

mass moment per unit length of the section model are 6.53 kg and 0.379 kg · m2. In still air, the

vertical bending frequency fh is 1.91 Hz, while torsional frequency fα is 5.50 Hz. The flutter

derivatives of Sutong Bridge deck model at the attack angle of 0 are extracted, as shown in Fig. 5.

There are four curves named as MLSM, vertical & torsional, vertical, torsional individually in

each plot, which represent the identified results using the modified least-square method (MLSM in

short) [Ding 2001], the stochastic search technique based on the unifying (i.e. vertical & torsional),

vertical, torsional least-square principle, respectively. It is worth mentioning that the results

corresponding to MLSM are the mean identification values from several free vibration data at the

same wind speed, and the other results are acquired from one of sets of collected data for the reason

of comparisons of different least-square criterion.

The value of  has been proven to be sensitive to noises, and  itself is unimportant and may

be negligible, therefore the results of  are not shown here. It can be observed that:

(1) Largest scatter among the flutter derivatives appear for the coupling damping term .

Although there are obvious differences among 4 sets of results at high reduced wind speed,

A4
* A4

*

A4
*

H2
*

Fig. 4 Cross section layout of Sutong Bridge deck
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Fig. 5 Comparisons of flutter derivatives of Sutong Bridge deck
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results acquired using the stochastic search technique are close to each other comparatively.

(2) As for the coupling damping term , at high reduced wind speed, there are certain

differences among different cases.

(3) As for the torsional damping term , apparent differences exist among different cases at

high reduced wind speed.

(4) Since the vertical bending frequency term  and torsional frequency term  are related to

the stiffness matrix diagonal elements, the identification results are very stable.

(5) The results corresponding to stochastic search technique indicate that the unifying least-square

can not improve the identification precision of flutter derivatives significantly compared with

the vertical bending, torsional partial least-square.

The derivatives shown in Fig. 5 stem from response in smooth flow at mean wind speeds up to

the flutter speed. If the derivatives are used for checking the flutter speed from the flutter equations,

short extrapolation of the flutter derivatives related to the torsional degree of freedom will

commonly be needed.

In order to testify the effectiveness of EMD method in identification precision improvement, the

collected vertical-torsional coupled free vibration signals at different wind speeds are decomposed

into intrinsic mode functions by virtue of EMD. Some higher and lower frequency components may

be regarded as noises or trends and be eliminated. According to the original and preprocessed and

filtered signals, two sets of flutter derivatives can be extracted by the stochastic search technique

respectively, which are both based on the unifying least-square principle. The two sets of fitting

errors are calculated before determining flutter derivatives. The ratios of the fitting error

corresponding to the preprocessed signals (EP in short) to those of original signals (EO in short) can

be readily computed as EP/EO subsequently. Similarly, the ratios of the two sets of flutter derivatives

(FD in short) can be written as FP/FO. The curves of EP/EO and FDP/FDO versus wind speed are

plotted in Fig. 6 and Fig. 7, respectively.

It can be seen from Fig. 6 that the fitting errors decay evidently if the signals are filtered by EMD

in advance, and the identification precision is improved. There are distinct differences between the

flutter derivatives that correspond to original and preprocessed signals, especially for  and ,

as are observed from Fig. 7. The influence and significance of EMD is demonstrated intuitively, by

A1
*

A2
*

H4
* A3

*

H2
* A1

*

Fig. 6 Fitting error ratio versus wind speed
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which EMD is proven to be an effective tool to improve the identification precision of flutter

derivatives of bridge decks.

7. Conclusions

The main conclusions in this study are summarized as follows:

(1) A more applicable optimization model is presented, which is suitable for flutter derivatives

identification with time-varying weights and different lengths of vertical bending and torsional

free vibration data. So the scope of mathematical model for flutter derivatives identification is

broadened.

(2) Noises in collected vibration signals in wind tunnel can be filtered and reduced by Empirical

Mode Decomposition method. On the basis of the processed signals, the identification

precision of parameters and flutter derivatives can be improved, which has been verified by

two simulation examples and a testing example of the Sutong Bridge. So EMD method is an

effective implement to improve the precision of parameter identification.

(3) A stochastic search technique for searching the optimal solution of optimization problem is

developed, which is more convenient in understanding and programming than that of the

alternate iteration technique, and testified to be a valid and efficient method by two simulation

examples and the extraction of flutter derivatives of Sutong Bridge deck using free vibration

history collected in wind tunnel tests. 

(4) The unifying least-square can not improve the identification precision of flutter derivatives

significantly compared with the vertical bending, torsional partial least-square. The quality of

signals plays a more important role than identification technique on the accuracy of flutter

derivatives extraction.
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