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Abstract. For the slender and flexible cable supported bridges, identification of all the flutter
derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all,
eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-
freedom elastic suspension system has been a challenging task. In this paper, a system identification
technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been
utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic
state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter
derivatives have been simultaneously extracted from the output response data obtained from wind tunnel
test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and
measurements of only output responses are additional motivating factors for adopting COV-SSI technique.
The identified discrete values of flutter derivatives have been approximated by rational functions. 

Keywords: flutter derivative; wind tunnel test; stochastic subspace identification; rational function
approximation.

1. Introduction

Long span cable supported bridges are susceptible to the wind-induced actions and may become

critical to flutter. Flutter is an aeroelastic, self-excited phenomenon resulting in growing amplitude

of oscillation of the bridge structure due to the interaction of aerodynamic, inertial and elastic

forces. The analysis for critical flutter wind speed is based on flutter derivatives (Scanlan and

Tomko 1971, Scanlan 1978) which are extracted from the wind tunnel tests on a geometrically

scaled section-model of the bridge deck. The experimental extraction of the flutter derivatives is

possible but not without difficulties. Among the different investigators Sarkar, et al. (1994) used
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Modified Ibrahim Time Domain (MITD) method and extracted eight flutter derivatives out of the

full set of 18 flutter derivatives which are currently in use for expressing the general self-excited

forces. Brownjohn and Jakobsen (2001) used Covariance Block-Hankel Matrix (CBHM) method

while Gu, et al. (2000) and Zhu, et al. (2002) used Unifying Least Squares (ULS) technique to

identify eight flutter derivatives. Qin and Gu (2004) applied Stochastic Subspace Identification

technique to identify six flutter derivatives.

Identification of 18 flutter derivatives for bridge deck-sections has also been tried by some

investigators. Singh, et al. (1995) extended the MITD method for identifying all the eighteen flutter

derivatives but lacked clear trends of H6
*, A5

*, A6
*, P3

*, P5
* and P6

* due to large scatter of identified

values. Chen, et al. (2002) used general Least Squares theory and compared the flutter derivatives

with those obtained by computational fluid dynamics but at the higher wind speeds most of the

flutter derivatives except H1
*, H2

*, H3
*, A1

*, A2
*, and A3

* did not compare well. Chowdhury and

Sarkar (2003, 2004) used Iterative Least Squares (ILS) technique to determine eighteen flutter

derivatives from the estimated state matrix after generating the velocity and acceleration data

numerically by finite differencing of available displacement time-history. Though the trends of the

identified flutter derivatives were clear, the lengths of records selected were not sufficiently long.

Also, the generation of velocity and acceleration by finite differencing of displacements, especially

at the ends, lacked convergence.

The above system identification techniques require versatile three degree of freedom suspension

system which is difficult to realize in practice. Also, the length of records obtained from the free

vibration testing are very short especially at higher wind speeds and thus identification of flutter

derivatives is not accurate and representative of the actual wind environment. The above mentioned

problems can be circumvented by using the stochastic method of system identification in which the

wind itself excites the section- model which is freely suspended to oscillate in the wind tunnel. The

turbulence in the wind as input to the motion may be assumed as the unmeasureable stochastic

quantity. This assumption further reduces the instrumentation in the measurement of data. The

lengths of records can be taken long enough even at higher wind speeds for better accuracy in

system identification. 

A technique of system identification known as Stochastic Subspace Identification (SSI) method

has gained popularity over the recent years which has been well developed and applied by

Overschee and Moor (1993), Peeters and Roeck (1999) and Peters (2000) for system identifications.

The method requires only the measurement of output response data for extraction of the system

parameters and has proved to be very appropriate for civil engineering structures.

In this paper, a variant of the SSI method known as the Covariance-Driven Stochastic Subspace

Identification (COV-SSI) method has been applied as a system identification technique to extract all

the eighteen flutter derivatives from the wind tunnel test output data for a section-model of a long

span cable-stayed bridge-deck. The motivation for identification of all the eighteen flutter

derivatives by the COV-SSI technique came from Qin and Gu (2004) who applied the method to

extract six flutter derivatives, namely H1
*, H2

*, H3
* A1

*, A2
* and A3

*. 

The heart of the COV-SSI technique is the eigen-system realization algorithm (ERA) developed

by Juang and Pappa (1985) for the modal parameters of a system. This method identifies the

stochastic state-space model from the covariances of the output-only (stochastic) data and has been

proved as robust against nonstationary inputs (e.g. a white noise sequence with time varying

covariances).

The method has been described in the coming sections in the following sequence. First, the
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mathematical model of the system in discrete time form and then the theory identifying the modal

parameters from the covariances of output measurements is presented. Next, the formulations for

determining the physical stiffness and damping coefficients from the corresponding modal

parameters are shown. Finally, the formulations for the flutter derivatives followed by a very

concise description of approximation of flutter derivatives by rational function approximation are

presented. A description about the experimental setup, acquisition and processing of displacement

output data has also been presented.

2. Modeling of the system

2.1. Discrete time system representation

The discrete time state-space description of a linear time invariant (LTI) vibrating system,

considering a fixed sampling interval, ∆t, is expressed at any time, tk = k ∆t, k ∈ N, as:

(1)

Eq. (1) is known as the process equation. The discrete time output (measurement) equation is

expressed as:

(2)

where xk = x(k ∆t) =  is the discrete-time state vector containing the discretely sampled

displacements qk and velocities ; uk and yk are the discretely sampled input and output

respectively; A is the discrete-time state matrix; B is the discrete input matrix; C is the discrete

output locator matrix; D is the direct transmission matrix. They are related with their continuous

time counterparts and can be found elsewhere such as in Juang (1994).

2.2. Stochastic process and measurement equations

In real world of experiments, some imperfections in the measurements and in the process

describing the system are inherent. Therefore, stochastic noise terms are also included in the process

and measurement equations. By the stochastic system we consider that the input is unmeasureable

and is embedded in the white noise. Therefore, in this formulation the distinction between the input

terms and the noise terms is dropped and only the stochastic noise terms are retained to incorporate

implicitly the input, uk in them. Then, the following combined discrete time state-space model is

obtained:

(3)

where wk is the process noise due to disturbances and modeling inaccuracies; vk is the measurement

noise due to output sensor inaccuracies. 

3. Stochastic system identification

Following assumptions are imposed on the stochastic discrete model: (i) model is stationary; (ii)

xk 1+ Axk Buk+=

yk Cxk Duk+=

qk
Tq· k

T{ }T

q· k

xk 1+ Axk wk+=

yk Cxk vk+=
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xk, wk and vk are independent with zero mean; and (iii) wk and vk are unmeasureable vector

quantities. With these assumptions the stochastic system matrices are determined on the analogy of

deterministic system matrices (Ho and Kalman 1966). Knowing the mathematical model, Eq. (3),

that represents the system the output covariance sequences, Ri, can be estimated from the output

measurement data. If this sequence is decomposed, the stochastic realization of the matrices A and

C can be obtained (Akaike 1974). 

3.1. Covariance estimate
The output covariances, Ri can now be expressed assuming ergodicity of process as:

(4)

where i > 0 is an arbitrary time lag. Ri, after dropping the limit for only finite number N of data,

can be estimated as: 

(5)

3.2. Realisation of discrete-time state matrix

The output covariances, Eq. (5), are collected in a block Toeplitz matrix T1|i as:

(6)

If the system is observable and controllable, the rank of the Toeplitz matrix equals n = 2n1 where

n1 is the degree of freedom of the system. Then the factorization in terms of observability and

controllability matrices can be written as:

T1|i = OiΓi (7)

where the definitions of observability matrix, Oi, and controllability matrix, Γi, can be found in any

book on control theory or modern system identification e.g., Ljung (1987). 

The singular value decomposition (SVD) of the block Toeplitz matrix T1|i gives:

(8)

where U, S and V are orthonormal matrices. Matrix S is a diagonal matrix containing positive

singular values in descending order. The number of nonzero singular values indicates the rank of the

Toeplitz matrix. The reduced diagonal matrix S1 is obtained by omitting the zero singular values

from the matrix S. Matrices U1 and V1 are obtained by omitting the corresponding columns from

Ri E yk i+ yk
T( )  

1

N
---- yk i+  yk

T

k 0=

N 1–

∑
N ∞→

lim= =

Ri Ri≈ 1

N
---- yk i+  yk

T

k 0=

N 1–

∑=

T1|i

Ri Ri 1–
... R1

Ri 1+ Ri
... R2

... ... ... ...

R2i 1– R2 i 2–
... Ri

=

T1|i USV
T

U1S1V1
T≈ U1S1

1 2⁄ S1
1 2⁄ V1

T= =
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the matrices U and V respectively.

From Eq. (7) and last equality of Eq. (8), observability and controllability matrices can be given

as:

(9)

Now realizations of the system matrices are almost achieved. Matrix A is realized by using

factorization of a shifted Toeplitz matrix T2|i+1 as shown in Zeiger and McEwen (1974). The shifted

block Toeplitz matrix, T2|i+1 has similar structure as of T1|i but it consists of covariances, Rk from lag

2 to 2i. The state transition matrix, A is given as:

(10)

where (+) stands for Moore-Penrose pseudo inverse of a matrix.

The output locator matrix C is taken as the first l rows of observability matrix Oi, where l is the

number of outputs. Here, l = 3. A and C are sufficient to compute the modal parameters.

3.3. Modal frequency and damping

After knowing the discrete time state matrix, A (n × n), its discrete time eigenvalue matrix, Λ and

modal matrix, Ψ can be determined. The observed mode shape matrix, Φ = CΨ. Φ contains n

vectors of system modes as complex conjugate pairs. Λ is a diagonal matrix containing n complex

eigenvalues, λDi, corresponding to the i th mode, given as:

(11)

where (*) denotes the complex conjugate and . The continuous time eigenvalues, λCi, are

then obtained by as: 

(12)

The undamped frequency of the system is given as:

(13)

and damping ratio ζ is given as 

(14)

Frequencies defined by Eq. (13) in general differ from the corresponding natural frequencies of

the original system. The size of the matrix A depends on the number of nonsingular values selected

from the S matrix in Eq. (8). An economical model order may be selected by selecting the rows and

columns of S matrix where large gap in two consecutive nonzero values occur. The singular value

where large gap occurs determines the model order or the size of matrix A. The order of matrix A

so obtained is generally greater than the actual order of the matrix Ac. This is equivalent to saying

that model so selected represents a system that has more degrees of freedom than of the actual

Oi U1S1
1 2⁄=

Γi S1
1 2⁄ V1

T=

A Oi
+T2|i 1+ Γi

+ S1
1 2⁄– U1

TT2|i 1+ V1S1
1 2⁄–= =

λDi ,λDi ,
* ζi– ω i jω i± 1 ζi

2–=

j 1–=

λCi

ln λDi( )
∆t

----------------- ai jbi±= =

ω i ai
2 bi

2+=

ζi

ai

ω i

-----=
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system. A reduction in modal degrees of freedom using Guyan (1965) reduction technique may then

be applied to obtain the system parameters corresponding to the actual model order.

3.4. Physical stiffness and damping coefficient

Let M, C1 and K be respectively, the system’s physical mass, damping coefficient and stiffness

matrices of size n1 × n1. Matrix, C1, in the present study, has been determined by assuming a

proportional damping case. The modal damping coefficient matrix  is given as:

(15)

where ζi, ωi,  are the ith modal damping ratio, frequency and mass respectively. The modal mass

matrix is given as:

(16)

Then the physical damping matrix C1 is given as (Craig 1981):

(17)

and the physical stiffness matrix K is obtained from the eigenvalue problem as:

(18)

Therefore,

(19)

4. Formulation for flutter derivatives

Let the bridge deck section-model of width B is has a vertical mass, mh lateral mass, mp and mass

moment of inertia, Iα per unit length along the vertical (h), lateral (p) and torsional (α) degrees of

freedom respectively. ζh, ζp, and ζα, are the mechanical or inherent damping ratios and ωh, ωp, and

ωα, are the natural frequencies corresponding to the three degrees of freedom respectively. These

values are obtained from free vibration records of the section model under no-wind condition.

Assuming that Cmech and K mech are the matrices of mechanical damping coefficient and stiffness

under no-wind condition, the equation of motion for the section model subjected to self-excited

aeroelastic forces may be written as:

(20)

where,

C

C Φ
T
C1Φ diag 2ζiω iMi[ ]= =

Mi

M Φ
T
MΦ=

C1 MΦM
1–

( )C M
1–
Φ

T
M( )=

KΦ MΦΛ=

K MΦΛΦ
1–

=

y·· M
1–
Cy· M

1–
Ky+ + M

1–
Fse=

y h  α  p{ }T
=   M

mh 0 0

0 I
α

0

0 0 mp

=,
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The aeroelastic force vector Fse which a model is subjected to in air stream of velocity U and

density ρ is given as:

(21)

where, Lse, Dse and Mse are the aeroelastic (self-excited) forces induced in the model in the lift, drag

and pitching moment directions; K = Bω /U is the reduced frequency; ω is the circular frequency of

oscillation;  and (i = 1, 2,…., 6) are the flutter derivatives. 

Substituting Eq. (21) in Eq. (20) and bringing all terms to the left side, the aeroelastically

modified equations of motion are obtained:

(22)

where, C eff and K eff are the aeroelastically modified effective damping and stiffness matrices

respectively. Then Eq. (22) can be written in state-space form as:

(23)

where, 

The state matrix Ac is a 2n1 × 2n1 matrix (n1 = 3) and I is an n1 × n1 identity matrix. The

submatrices C eff and K eff (n1 × n1) are obtained by using Eqs. (17) and (19) after realization of

modal damping ratio and frequency from Eqs. (13) and (14) respectively. Then, the flutter

derivatives are obtained from the following formulations:

(24a)

M
1–
C

2ζhωh 0 0

0 2ζ
α
ω
α

0

0 0 2ζpωp

C
mech,= = M
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K

ωh
2 0 0

0 ω
α

2 0

0 0 ωp
2

K
mech

= =
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Dse⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫ 0.5ρU
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(24b)

(24c)

(24d)

(24e)

(24f)

(24g)

(24h)

(24i)

(24j)

(24k)

(24l)

(24m)

(24n)

(24o)

(24p)
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3
ω

-------------– C12
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–( )=
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3
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(24q)

(24r)

5. Rational function approximation of flutter derivatives 

Flutter derivatives are the functions of the reduced frequencies, K, and they are known only at

discrete frequencies. To obtain flutter derivatives (hence frequency dependent aeroelastic forces) as

a continuous function of reduced frequencies, rational function approximation of flutter derivatives

is used. The rational function approximation technique was originally presented by Roger (1977)

and commonly used by Bucher and Lin (1988), Boonyapinyo, et al. (1999), Chen, et al. (2000a, b),

Chen and Kareem (2002) for representation of self-excited forces, is given by:

(25)

where the rational function coefficients a1
*, a2

*, a3
* and a*

l+3 are frequency independent (3 × 3)

matrices. a1
*, a2

*, a3
*, a*

l+3 and bl are obtained from the known values of flutter derivatives by curve

fitting and applying nonlinear least squares technique, and l = 1, 2,…, m. The first term of the right

hand side rational approximation represents the noncirculatory static-aerodynamic term whereas the

second term represents the aerodynamic damping. The third term represents the aerodynamic mass

and the rational term (last term) accounts for the nonlinearity and unsteadiness in the flow and

represents a lag from the velocity of oscillation. The positive value of b approximates a time delay

in the motion of the model. The value of m may be taken from 2 to 4 depending on the

convergence and the number of lag terms (rational terms). ‘r’ is a nondimensional Laplace variable

given as r = iK = sB/U, where s = iω and . Forces in Laplace domain can now be obtained

as follows:

Expressing Eq. (21) in terms of non-dimensional Laplace variable r gives:

(26)

with Eqs. (25) and (26), flutter derivatives can be expressed in terms of rational function as:

(27)
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Eq. (27) finally, on equating the imaginary and real terms, flutter derivatives can be obtained in

terms of rational function coefficients and reduced frequency, K. For example 

(28a)

(28b)

The parameters ai* (i = 1,…, m + 3) have been determined by the nonlinear least-squares fit using

Levenberg-Marquardt method (Bevington 1969, Press, et al. 1992). The values of parameter bl (l =

1,…, m) have been kept fixed as = {0.5, 2.0, 5.0, 7} for m = 4 to ensure convergence of the function

and reduce the number of aerodynamic states which are generally used for further aeroelastic

analysis.

6. Experimental setup and signal processing technique

6.1. Wind tunnel characteristics

The wind tunnel tests were performed in the boundary layer wind tunnel at the Indian Institute of

Technology, Roorkee (India). The tunnel has a working section of 2.0 m width and 2.1 m height.

Wind speed could be generated continuously from 0.5 m/s to 18 m/s while maintaining a constant

speed at any level in the range with the help of a dynodrive system. Wind speeds were measured

manually by using a properly calibrated manometer as well as a Hot-Wire Anemometer. The

extraction of flutter derivatives has been carried out under smooth flow. Therefore, the turbulence in

the flow was made to a minimum (less than 2% of U) level to ensure a smooth wind for the test. 

6.2. Description of the section-model

The bridge deck section-model (Fig. 1) was fabricated of plywood to a scale of 1:50 to represent

the cross-sectional analog of a slender steel deck of a super-long, cable-stayed bridge. The length

and width of the section-model were 1600 mm and 510 mm respectively. It consisted of a central

open-bottom portion flanked by triangular boxes on the sides. The deck slab of the central portion

was supported on diaphragms and cross beams. The bridge deck section-model was adequately

stiffened to ensure its own rigidity and it was provided with its full details of railings, kerbs, crash

barriers, central verge, etc. At the two ends of the model, elliptical perspex plates were attached to

ensure two dimensional flow over and under the model. Fig. 2 shows the section-model in the wind

tunnel. The mass (m) and mass moment of inertia (Iα) of the bridge deck section-model were 6.406

kg/m and 0.205 kg-m2/m respectively.

6.3. Description of the suspension and data acquisition system

The model suspension system (Fig. 2) consisted of 600 mm long horizontal aluminum arms
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connected transversely to brackets of 120 mm length. The bracket with the arm forming a horizontal

tee is connected at each end of the model. Four coil-springs (two above and two below the arm),

with some degree of pretension, on either side of the models were used to suspend the model by

two rigid A-frame supports. The A-frame members consisted of slots at convenient locations. The

slots in legs provide extension and seats to the lift measuring transducers. The slots in top and

bottom members provide support points to top and bottom suspension springs. The entire assembly

fits closely inside the tunnel. This arrangement makes the model free to move along-wind (drag),

across-wind (lift) and pitching moment (torsion) directions. Piano wires were also used to arrest

motions in a desired degree of freedom while performing free vibration tests. 

Phosphor bronze strips were used as cantilever type displacement transducers by pasting a pair of

strain gauges at the fixed end of the strip. Three such displacement transducers were used–two for

measuring lift motions and one for the drag motion. Two roller assemblies were fixed on both ends

of one arm providing free horizontal movement to the two lift-measuring transducers. The spacing

between the lift measuring transducers was kept equal to 900 mm. A third drag-measuring

transducer along with the roller assembly was fixed on the A-frame brace below the centre of the

other arm. The roller assembly consisted of two cylindrical rollers of brass having a gap between

them equal to the thickness of transducer strip. Three TML make (spring-mass type) accelerometers

Fig. 1 Bridge deck section-model

Fig. 2 Suspension and transducer system for wind tunnel test on the bridge deck section-model
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(two for lift and one for drag directions) were also used to obtain the acceleration records of the

vertical, horizontal and torsional motions. However, acceleration records have not been used in the

present study. All these transducers were properly calibrated. The torsional motion was recorded

numerically by the difference of the vertical signals. Let ha(t) and hb(t) be the two discrete lift

response signals obtained by the transducers at any instant of time and lab be the horizontal distance

between them. Then rotational response at that instant of time is given by:

(29a)

and the average vertical response is given as

(29b)

The three sequences of signals h, α and p picked up by strain gauges mounted on phosphor bronze

strips were obtained The signals were measured using TML dynamic strain meter (housing signal

conditioner, low pass filter and amplifier) and then acquired with the help of a data acquisition (PCL

206 analog to digital conversion) card. The signals were also low-pass filtered electronically at 20 Hz.

Care was taken to avoid interference of other electrical and noise signals from the ambience.

6.4. Mechanical properties from no-wind condition

The mechanical (natural) properties such as stiffness (Kmech) and damping coefficient (Cmech) of

the models were obtained from free vibration records of the model in no-wind condition by giving

initial displacements (with the help of weight and pulley arrangement) separately along the three

degrees of freedom (h, α and p directions). While imparting free vibration motion along a particular

direction, motions along the other two directions were restrained with the help of long piano wires.

Several such records were taken and Kmech, Cmech
 

and natural frequencies (ω) of the model

corresponding to the three degrees of the freedom were obtained from the average of these

parameters obtained from each record. Typical records of free vibration motion of the model are

shown in Fig. 3. The values of the natural properties are given in Table 1.

6.5. Stochastic data acquisition and signal processing under wind

The three sequences of responses h, α and p were obtained at wind speeds varying from 3.5 m/s

to 15.5 m/s. The signals were amplified with TML dynamic strainmeter (amplifier) and 9000 data

points were acquired at a sampling frequency of 240 Hz as raw output data per channel. Samples of

raw data time history are presented in Fig. 4. These samples were detrended to remove the offset of

α t( )
ha hb–

lab

----------------=

h t( )
ha hb+

2
----------------=

Table 1 The natural properties of the bridge deck section-model

 Degree of freedom ω (rad/s) Kmech damping ratio (ξ)

 h 31.11 9920.279 N/m 0.007

 α 44.18   638.847 Nm/rad 0.008

 p 22.01 4965.51 N/m 0.021
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the mean from the baseline. This operation was carried out with the help of MATLAB (1997)

detrend command. Before identification the raw output data was lowpass-filtered with an eight-order

Chebyshev type I filter with a cutoff frequency of 19.2 Hz. Then the data was resampled at a lower

rate of 48 Hz. This whole operation was carried out by the MATLAB decimate command in signal

processing toolbox. The cutoff frequency of 19.2 Hz was kept well above the sampling frequency

required from the point of view of Nyquist frequency which in turn was well above the largest

natural frequency (7.023 Hz) of the sectional model. 

6.6. Constitution of Toeplitz matrices and selection of model order

Knowledge of a good model order (system order) is desired for modal analysis. The number of

block row i, in Eq. (6) is a user’s choice. However, the block rows i and columns of T1|i should be

such that i ≥ nmax/l, where nmax is the maximum model order. The actual model order in our case is

known and is equal to the order of state vector (= 6) and also number of outputs, l = 3. The output

covariances were determined for lags k = 1, 2,…, i. However, higher order of Toeplitz matrix Eq.

(6) of li × li were tried by taking values of block rows, i = 6, 8,…, 24. Models of different orders

were then obtained by including different number of singular values S1 in the computation of Oi and

Γi from Eqs. (9). Fig. 5 shows typical bar charts depicting the singular values on the ordinate and

Fig. 3 Free vibration records of bridge deck section-model: (a) Vertical, h (b) Torsional, α (c) Lateral, p
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model order on the abscissa for (i) U = 15.47 m/s and (ii) U = 6.67 m/s each for i = 6 and 16. The

large differences between singular values of model orders 1 and 6 (Figs. 5(a) and (c)) make the

obvious choice of model order equal to 6 which is also the actual model order. 

Fig. 4 Displacement record of bridge deck section-model at wind velocity U = 15.47 m/s: (a) Vertical, (b)
Torsional and (c) Lateral

Fig. 5 Typical bar charts showing singular values as ordinates and, number of bars as model order:
(a) U = 6.67 m/s, i = 6; (b) U = 6.67 m/s, i = 16; (c) U = 15.47 m/s , i = 6; (d) U = 15.47 m/s, i = 16
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7. Extraction of flutter derivatives

For the implementation of the above technique a computer programme COVSSI was developed in

MATLAB. The sequence of steps of implementation is summarized as follows.

For a selected value of number of data, N, a sequence of i values (block rows) varying from 6 to

12 were taken for use in Eq. (5). T1|i and the shifted block Toeplitz matrix T2|i+1 were generated

based on Eq. (6). Singular value decomposition of T1|i for use in Eq. (8) was done using svd

command of MATLAB (1997). Matrix A was realized by selecting a model order equal to 6.

MATLAB ‘eig’ command was used to find mode shape Φ and continuous time eigen value. Modal

frequency ω and damping factor ζ of the system were obtained from Eqs. (13) and (14)

respectively. From modal damping and stiffness, physical damping coefficient matrix Ceff and

stiffness matrix K eff were determined from Eqs. (17) and (19) respectively. These are the

submatrices of Ac matrix in Eq. (23). From the already known matrices C mech and K mech and other

physical properties of the model the values of 18 flutter derivatives were obtained using Eqs. (24).

Fig. 6 Vertical flutter derivatives for bridge deck section-model
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Values of flutter derivatives at a particular wind speed and for a model order equal to 6 were

determined at each value of i. Outliers, if any, were removed and average of flutter derivatives at

each wind speed were identified. Vertical (Hi
*), Torsional (Ai

*) and Lateral (Pi
*), (i = 1,…, 6) flutter

derivatives are presented in Figs. 6, 7 and 8 respectively with respect to reduced velocity, U/fB,

where f = ω/2π.

The values of flutter derivatives so identified are discretely located. The rational function

approximations of the flutter derivatives were obtained as outlined in Section 5. The coefficients of

rational function approximation in Eqs. (28) were obtained by developing a computer programme in

FORTRAN. The values of the rational function coefficients ai
* (i = 1,…, m + 3, m = 4) of Eq. (27)

have been given in Appendix-I. The approximated curves are shown as continuous curves in Figs.

6, 7 and 8. It is seen that most of the identified flutter derivatives are satisfactorily approximated by

the chosen rational function. However, some of the identified flutter derivatives H5
*, H6

*, A1
*, A2

*,

A3
*, A5

*, P1
* are not very well approximated by the rational function taken. The possible reason

could be that the same rational terms are used to approximate the pair of flutter derivatives as given

in Eq. (28). Another reason could be the fixed values of parameter b in Eq. (28). However, the

Fig. 7 Torsional flutter derivatives for bridge deck section-model
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optimum value of b could also be obtained at the cost of much more involved optimization. The

rational function works well. However, a better method of optimization might be a good choice. 

8. Discussion and comparison of the flutter derivatives extracted

The authors have not come across any published literature that presents all the 18 flutter derivatives

as benchmark for a bridge deck section-model based on wind tunnel experiment. Wherever lateral

flutter derivatives have been presented, they have been based on pseudo-steady theory. Therefore,

experimental flutter derivatives (Figs. 6-8) of the present bridge deck section-model are compared

with their theoretical as well as experimental counterparts available in the literature. 

Large scatters are observed in H4
*, H5

*, H6
*, A2

*, A3
*, P4

*, P5
* in Figs 6-8. In the following,

comparison is done for the approximated flutter derivative curves.

The theoretical flutter derivatives for the present bridge deck section-model have been obtained

from Theodorsen’s and Quasi-steady theory, as presented in Mishra, et al. (2005). The general

trends of flutter derivatives of the bridge deck section-model H1
*, H3

*, H4
*, H5

*, A3
* are well

Fig. 8 Lateral flutter derivatives for bridge deck section-model
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comparable with their theoretical counterparts. H2
* does not match with its counterpart. H6

* and A6
*

are very close to zero, hence acceptable, since their theoretical values are zero. A1
*, A2

*, A4
*, A5

* are

not comparable with the theoretical values. Lateral flutter derivatives also lack resemblance in trend

with the Quasi-steady counterparts. 

However, a greater degree of resemblance occurs when flutter derivatives of the present bridge

deck section-model (Figs. 6-8) are compared with the experimental counterparts determined for real

bluff bridge decks such as in Scanlan and Tomko (1971), Simiu and Scanlan (1996), Chowdhury

and Sarkar (2003, 2004) and Qin and Gu (2004). Trends and numerical values of H1
*, H2

*, H3
*, H5

*,

H6
*, A3

*, A4
*, A5

*, A6
*, P2

*, P3
*, P4

* and P6
* are comparable with those of Chowdhury and Sarkar

(2003, 2004) who have presented all the 18 flutter derivatives based on experiment for the NACA

0020 airfoil. Though, the exact trends of P1
* and P5

* are not matching, the downward trend and

approximately comparable magnitudes with those of Chowdhury and Sarkar (2004) may make

P1
*and P5

* acceptable.

H4
*, which has been a difficult parameter, shows large scatter. This scatter has been reported by

other authors also such as Jakobsen and Hjorth-Hansen (1993) and Brownjohn and Jakobsen (2001)

even in 1-dof case.

Going by the six flutter derivatives H1
*, H2

*, H3
*, A1

*, A2
*, A3

*, presented in Scanlan and Tomko

(1971) for different sections, it is seen that the general trends of these flutter derivatives are varying

to some extent. With this observation, some greater degree of confidence is added to flutter

derivatives extracted in the present study and they can be taken to be practically acceptable.

It is seen that most of the flutter derivatives are following the same pattern as presented either in

Scanlan (1971), or in Qin and Gu (2004). The scatter in the identified values of flutter derivatives

may be attributed to the stochastic identification method itself. The presence of railings, crash

barriers and the open soffit of the bridge deck may be considered as other factors contributing to the

scatter in the identified values. Good match of trends in the case of H1
*, H2

*, H3
*, H5

*, H6
*, A3

*, A4
*,

A5
*, A6

*, P2
*, P3

*, P4
* and P6

* are found between this identification and that identified by iterative

least square method used by Chowdhury and Sarkar (2003). However, very few published reported

values are there about the simultaneous identification of the maximum number of flutter derivatives.

9. Conclusions

All the eighteen flutter derivatives have been identified by the covariance driven stochastic subspace

identification (COV-SSI) method using the output-only measurement of displacements along the lift,

drag and torsional degrees of freedom of a bridge deck section-model. The discretely identified values

of flutter derivatives have been approximated by rational functions to obtain these as continuous

functions of reduced frequency. The efficiency and simplicity of the COV-SSI method lies in output-

only measurements and its noniterative nature of computations. The method uses only output

measurements and therefore instrumentation and extra efforts of input measurements are eliminated.

Some flutter derivatives such as H4
*, H5

*, H6
*, A2

*, A3
*, P4

* and P5
* do not show clear trends because of

the scatter in their identified values. The scatter in the values may be attributed to the stochastic method

itself which can be minimized by adopting better signal processing techniques. The presence of railings,

crash barriers, central verge and the open soffit of the bridge deck may be the other factors contributing

to the scatter in the identified values. However, very few reported values based on test results are

available for the full set of 18 flutter derivatives and therefore more research in this area is needed. The

overall performance of the COV-SSI method has good potential in flutter derivative extraction.
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Appendix-I

Values of rational function coefficients for the experimentally determined flutter derivatives
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