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Interference loads of two cylinders
in a side-by-side arrangement
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Abstract. This paper presents a quasi-steady model of vibrations of two cylinders in a side-by-side
arrangement. The cylinders have flexible support and equal diameters. The model assumes that both
cylinders participate in the process of vibration, each of them having two degrees of freedom. The
movement of cylinders is described by a set of four non-linear differential equations. These equations are
evaluated on the basis of a numerical simulation and experimental data. Moreover many features of
cylinder vibrations are found from numerical results and are described in this paper.
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1. Introduction

Sets of two structures, which can be approximated by two circular cylinders, are often used in

engineering applications e.g., chimneys, cooling towers or pipelines. Research regarding the flow

around two circular cylinders has been performed since 1970 in wind tunnels (Zdravkovich and

Pridden 1977, Kazakiewicz 1987, Matsumoto, Shiraishi, Shirato 1990, Ruscheweyh and Dielen

1992, Zhang and Melbourne 1995, Brika and Laneville 1995, Park and Lee 2003, Brun, Tenchine

and Hopfinger 2004) and since 1990 numerically (Ng, Cheng and Ko 1997, B azik-Borowa and

Flaga 1998, Jester and Kallinderis 2003). The above research indicates that some cylinder

arrangements are unstable and become subject to flow induced vibrations. A few mathematical

models for such vibrations of the cylinders in tandem and staggered arrangements were proposed by

Kazakiewicz (1987), Ruscheweyh and Dielen (1992), B azik-Borowa and Flaga (1996), Bourdeix,

Hémon and Santi (1998). The author of this paper has not found the mathematical models for

vibrations of cylinders in a side-by-side arrangement in the literature. Hence, this paper

demonstrates a mathematical model for such cylinder vibrations. It is based on the quasi-steady

theory and therefore the proposed model is called quasi-steady model.
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2. Assumptions and relations

The arrangement of two cylinders is called a side-by-side arrangement if the velocity direction is

nearly perpendicular to the axis joining the midpoints of the cylinders (Fig. 1). When the distance

between the centers of cylinders is Ly = 1.2D the single vortex path is formed behind each as it is

shown in Fig. 1(a). For the distance from 1.2D to 3D, two vortex paths are created behind the

cylinders. These paths are the narrow and wide wakes and they are separated by biased jet flow

(Fig. 1(b)). This jet is unstable and changes sides at irregular time intervals. It causes change of

pressure distributions over the cylinder surfaces and, in effect, movement of cylinders. When Ly/D is

in the range from 3 to about 5 on the downstream side of cylinder two paths create and they mirror

each other (Fig. 1(c)). This author theorizes that the presented mathematical model correctly

describes vibrations of cylinders in the location shown in Fig. 1(b).

Most research in wind tunnel flow around cylinders is made for section models arranged

respective to wind so that the problem can be treated as two-dimensional. Mathematical models,

created for other phenomena of cylinder vibrations, also used the section models. Hence, one basic

assumption of the proposed model of vibrations is treating cylinders as section models. Moreover,

the basis of the model is the quasi-steady theory (Flaga 1994). Previously, the similar quasi-steady

model was applied for analysis of interference galloping, it is vibrations of cylinders in tandem and

staggered arrangements (B azik-Borowa and Flaga 1996 and B azik-Borowa and Flaga 1998).  Thel l

Fig. 1 Vortex paths separated from two circular cylinders in side-by-side arrangements
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Fig. 2 The arrangements of the cylinders and basic notations
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model of cylinder vibrations for the side-by-side arrangement is based on the following

assumptions:

1. Diameters of crosswise intersections of cylinders are the same and equal to D.

2. Position of cylinder no. 2 is found within the region with the following limitations: 1.2 < Ly /

D < 3 and −0.2 < Lx / D < 0.2 (Fig. 2), that is in the region of bistable flows shown in Fig. 1(b).

3. Cylinders are made of rigid material.

4. Flow is viscous and incompressible.

5. Cylinders are elastically supported and they have two degrees of freedom: along the average

wind direction and in the direction perpendicular to it.

6. Boundary disturbance effects are neglected, therefore the problem is treated as two-dimensional.

7. Global coordinate system is linked to the midpoint of cylinder no. 1 and the x axis is parallel to

the average wind direction.

8. Quantities such as the instantaneous wind velocity Vs, the components of the instantaneous

wind velocity along the x and y axes: us and vs, the instantaneous angle of wind attack αs, are

the averaged values from the region of averaging S =∆y x H, where: H− length of cylinders;

∆y = κ1 D− across dimension; κ1∈ (5 ÷ 10) (comp. Fig. 1). The spatial region of averaging is

located in front of cylinders within a distance at least one D, it is in the space without

disturbances caused by cylinders. This region covers the oncoming flow which influences on

the forms of the wake formed behind the two cylinders.

9. Agreement with the Reynolds decomposition of the flow field components of velocity are

defined by  and 

10. Small displacements of cylinders are assumed, hence, the inertia of fluid around structures is

small in comparison with the inertia of cylinders, and is ignored.

11. Other notations: − relative angles between the directions perpendicular to the direction

of relative wind velocity  (for cylinder no. 1) and Vr (for cylinder no. 2), respectively, and

the axis joining the midpoints of the cylinders; x1 and y1− axes directed along and across the

direction of the relative velocity ; x2 and y2− axes directed along and across the direction of

the relative velocity Vr; ρ− fluid mass density; m−mass of one cylinder; ωo−natural circular

frequency of a cylinder; δ−damping logarithmic decrement; Sc−Scruton number defined as

 Zdravkovich and Medeiros (1991); − reduced velocity; Iu = 100% 

− turbulence intensity. 

Subject to appropriate trigonometric dependence (Fig. 2), the components of wind load in respect

to the global coordinate system can be given by:
■ for the first cylinder
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where − components of load on the first cylinder along the x1 and y1 axes, respectively;

− components of load on the second cylinder along the x2 and y2 axes, respectively. 

On the basis of dimensional analysis and the quasi-steady theory, the above components of

aerodynamic load can be described as functions of static aerodynamic drag and lift coefficients:

 ; i = x1 , y1; j = x, y (3)

 ; i = x2 , y2; j = x, y (4)

The ,  and  coefficients are obtained for the set of fixed cylinders and

the constant wind velocity (so called steady flow) as shown in Fig. 3. The arrangement of these

cylinders corresponds to the momentary arrangement of vibrating cylinders. The aerodynamic

coefficients have been adopted from Zdravkovich and Pridden (1977) and ESDU 84015 (1984).

They are defined in terms of the angle β and represented by a polyline for angles from −40 to 40

degrees. Exemplary graphs of aerodynamic coefficients for the subcritical range of Reynolds

number are shown in Fig. 4 ÷ 7. The graphs of drag coefficients for the first and second cylinders

are symmetric with respect to the axis of ordinates. The graphs of lift coefficients are central

symmetric respective to points which are common for the axis of ordinates and the graphs. Most

graphs describing aerodynamic coefficients have rapid jumps around β = 0o. These sudden changes

of aerodynamic forces are responsible for unstable moving cylinders. 

The relative angles of the wind attack are described by an equations: 
■ for the first cylinder (see Fig. 2(a))
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Fig. 3 The arrangement of the cylinders to evaluate static aerodynamic coefficients
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arctan (5b)

arctan (5c)

■ for the second cylinder (see Fig. 2b)

(6a)

arctan (6b)

arctan (6c)

■ for both cylinders

arctan (7)

where θ− angle between the directions perpendicular to the direction of the averaged wind velocity

 and the axis joining the midpoints of the fixed cylinders; θ1− increase of the θ  angle coming

from changes of cylinder locations; θr− angle between the directions perpendicular to the direction

of the averaged wind velocity  and the axis joining the midpoints of the moved cylinders; α1, α2−

increases of the αs angle coming from velocity vectors of cylinders; − angles between

the direction of the averaged wind velocity  and the directions of relative wind velocities,
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Fig. 4 The graphs of the drag coefficient for the cylinder no 1 at Re = 6 · 104 adopted from Zdravkovich and
Pridden (1977) and ESDU 84015 (1984)
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respectively,  and Vr; − components of displacements for the first and second

cylinders towards the x and y axes, respectively; . 

Final Eqs. (5c) and (6c) are derived by subtracting the arctangent functions of corresponding

angles. Eq. (5b) should be subtracted from Eq. (7) in order to obtain Eq. (5c), and Eq. (6b) from

Eq. (7) to obtain Eq. (6c). 

The vectors of the relative velocities are defined as (Fig. 2):

 for the first cylinder (8)

   for the second cylinder (9)

It can be noted that

 and (10)

(11)

Taking into consideration Eq. (1) ÷ (4), Eq. (10) and Eq. (11) we obtain the following formulae for

the wind loads:
■ for the first cylinder

    

(12)

Vr ξ
1

 η
1

 ξ
2

 η
2

, , ,

ξ ξ
2

= ξ
1

– ; η η
2

= η
1

–

Vr t( ) Vs t( )= η· 1 t( )– ξ
·
1 t( )–

Vr t( ) Vs t( )= η· 2 t( )– ξ
·
2 t( )–

Vr
2

t( )cosαr us t( ) ξ
·
1 t( )–( ) us t( ) ξ

·
1 t( )–( )

2

vs′ t( ) η· 1 t( )–( )
2

+=

Vr
2

t( )cosαr us t( ) ξ
·
2 t( )–( ) us t( ) ξ

·
2 t( )–( )

2

vs′ t( ) η· 2 t( )–( )
2

+=

Wx t( ) 0.5ρD= ×

Cx
1

µ t( )( ) us t( ) ξ
·
1 t( )–( ) Cy

1
µ t( )( ) vs′ t( ) η· 1 t( )–( )–[ ] us t( ) ξ

·
1 t( )–( )

2

vs′ t( ) η· 1 t( )–( )
2

+

Fig. 5 The graphs of the lift coefficient for the cylinder no 1 at Re = 6 ·104 adopted from Zdravkovich and
Pridden (1977) and ESDU 84015 (1984)
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(13)

■ for the second cylinder

    

(14)

    

(15)

3. Equations of motion 

The equations describing the movement of these cylinders along x-axis (the average wind

direction) and y-axis (direction perpendicular to average wind direction) are formulated according to

an assumption that each cylinder has two degrees of freedom. The right sides of these equations are

the sums of acceleration, damping, and stiffness forces. The left sides are equal to wind loads. The

motion equations can be written in the set of four non-linear differential equations:
■ for the first cylinder

;  (16)
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Fig. 6 The graphs of the drag coefficient for the cylinder no 2 at Re = 6 · 104 adopted from Zdravkovich and
Pridden (1977) and ESDU 84015 (1984)
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■ for the second cylinder

;  (17)

where: Kξ
1
, Kη

1
, Kξ

2
, Kη

2
, Cξ

1
, Cη

1
, Cξ

2
, Cη

2
−damping and stiffness coefficients for the first and

second cylinder towards the x and y axes, respectively;  and −

components of wind loads described by Eq. (12) ÷ (15).

4. The numerical analyses of cylinder vibrations

4.1. Calculation method

The system of four differential equations of the second order, as discussed above, can be replaced

by a system of eight equations of the first order and solved numerically with Runge-Kutta's method.

Damping coefficients are described by equations: 

Cξ
1
= Cη

1
= Cξ

2
= Cη

2
=2δmωo, (18)

and are conditions by the Scruton number.   

In order to check the quasi-steady model for the side-by-side arrangement numerical analyses are

undertaken for the three cases: 
■ first group of data  similar to ropes of the cable-stayed bridge in Praha (from Studni ková 1994)

−D = 0.168 m, m = 87.7 kg, ωo = 6.41 rad/s, Kξ
1
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1
= Kξ

2
= Kη

2
= 3000 N/m, Iu = 0, Iu = 1%, Iu =

12.8%, δ depends on the Scruton number, Sc∈ (10,100)  ρ = 1.25 kg/m3;
■ second group of data adopted from Gowda, Sreedharan and Narayanan (1993)−D = 0.012 m,

m=0.0116 kg, ωo=345.6 rad/s, Iu=1%, Kξ
1
=Kη

1
=4.1 ·106 N/m, Kξ

2
=400 N/m, = 1385
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Fig. 7 The graphs of the lift coefficient for the cylinder no 2 at Re = 6 ·104 adopted from Zdravkovich and
Pridden (1977) and ESDU 84015 (1984)
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N/m, δ = 0.003, Sc = 3, ρ = 1.25 kg/m3; 
■ third group of data adopted from Ikegami, Fujita and Ohashi (1993)−D = 0.01 m, m = 0.0617 kg,

ωo = 3000 rad/s, Iu = 0%, Kξ
1
= Kη

1
= Kξ

2
= Kη

2
= 1.7 ·105 N/m, δ = 0.55, Sc = 6.7, ρ = 1000 kg/m3 (as

for water).

In most data given in papers, the authors do not give the stiffness Ki. For the first group, the stiffness of

cylinders is evaluated as forces induce unit displacement of ropes. In the research of Gowda, Sreedharan

and Narayanan (1993), the first cylinder is fixed at the ends, and  the second cylinder is supported by

vertical springs. For the first cylinder the stiffness Kξ
1
 and Kη

2
 are calculated as forces induce unit

displacement in middle of bars. The stiffness Kη
2
 is evaluated for a body with one degree of freedom,

and the horizontal stiffness Kξ
2
 is assumed as part of  the vertical stiffness. For the last group of data, the

natural frequencies and stiffness are calculated for the bar fixed at one end. 

The us and  components of the wind velocity are averaged values from ten correlated random

processes, which are generated in ten points forming a plane in front of cylinders. The WAWS

(Weighted Amplitude Wave Superposition) and ARMA (Auto-Regresive Moving Average) methods

were used to generate these random processes. These methods are described in many papers, for

example, Shinozuka and Jan (1972), Borri, Crocchini, Facchini and Spinelli (1995), B azik-Borowa

and Szulej (2004).

The results shown in Fig. 8 and Fig. 11 ÷ 16 are obtained for the first group of  data. Fig. 9 is

prepared for the second group of data and Fig. 10  for third group.

4.2. The numerical verification

The numerical analyses are preceded by the numerical verification of  the mathematical

phenomenon model. Fig. 8 shows a comparison of numerical and experimental results obtained

under flow conditions with a turbulence intensity Iu = 1%. The experimental data is from

Zdravkovich and Medeiros (1991). In Fig. 8 the rapid increase of vibration amplitudes at some

reduced velocity Vr is shown. This reduced velocity is called the critical reduced velocity Vcr by

Zdravkovich and Medeiros (1991), similarly as for the galloping phenomenon. As it is

demonstrated, the reduced critical velocities obtained from calculations are smaller than measured in

the wind tunnel, whereas, the values of calculated amplitudes are insignificantly bigger than

measured ones. Analysed parameters both from calculations and research in the wind tunnel are of

the same order. Differences come from disturbances around ends of cylinders existing in the wind

tunnel. In the tunnel the analysed wind load does not act on whole cylinders, but only on their parts.

Their lengths depend on a wind tunnel and they can be equal to about 70% of the whole cylinder’s

length as it is described by Gowda, Sreedharan and Narayanan (1993). Additionally, disturbances at

the ends damp vibrations. In effect, in the wind tunnel greater wind velocity induces vibrations, and

cylinders have smaller amplitudes than it is expected from theory.

All research shows that the cylinder vibrations exist for the limited range of velocities. It seems to

be an attribute of phenomena. It is not obtained in numerical research shown in Fig.8, because

further calculations need  significantly bigger velocities. But it is obtained in the next calculations

for the second group of data (Fig. 9). In Fig. 9, the difference between reduced velocities, for which

the vibrations vanish, is shown. As for earlier comparison, these differences come from distributions

around ends of cylinders existing in the wind tunnel. Additionally, the stiffness Kξ2 is not given in

the paper of Gowda, Sreedharan and Narayanan (1993) and the assumed stiffness in the calculation

can distinguish from the value from the research in the wind tunnel.

vs′

l
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Fig. 8 The comparison of numerical results and research from the paper of Zdravkovich and Medeiros (1991)
at Ly / D = 1.2 and θ= 5o for the first group of data; (a) Sc = 10; (b) Sc = 50; (c) Sc = 100
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Ikegami, Fujita and Ohashi (1993) measured acceleration of vibrating cylinders in three types of

arrangements. The vibrations were induced by the water jet. Authors created relations of

acceleration amplitudes and water velocities and, on this basis, they determined  the critical

Fig. 9 The comparison of numerical results and research from the paper of Gowda, Sreedharan and Narayanan
(1993) at Ly / D = 1.3 and θ= 0o for the second group of data

Fig. 10 The graphs of amplitudes of vibrations as functions of the water velocities at Ly / D = 1.6 and θ= 0o for
the third group of data
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velocities at which vibrations start. For the side-by-side arrangement, the critical velocity is equal to

6 m/s. For water velocity bigger than 10 m/s, the values of accelerations are in the range from 20 g

to 40 g (where g is the acceleration of gravity). Fig. 10 shows the numerical results. The graphs of

vibration amplitudes do not show rapid change which may be responsible for existing critical

Fig. 11 Trajectory forms of cylinders at the steady flow with Vs = = 16 m/s and Ly / D = 1.2, θ= 0o, Sc = 50 for
the first group of data

u

Fig. 12 Trajectory forms of cylinders at the steady flow with Vs = = 16 m/s and Ly / D = 1.2, θ= 5o, Sc = 50 for
the first group of data

u
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velocity of vibrations. For the velocity V = 15 m/s the accelerations are calculated. For the vibrations

towards the axis x, it is equal to 23 g and for the vibrations towards the axis y−3.5 g. Differences

between the calculations and research probably come both from disturbances at the ends and from

the big inertia of water. One of the assumptions of the presented model is neglecting the inertia of

flow. It means that the model cannot be applied for the flow of water around cylinders, but earlier

comparisons show that it can be applied for wind loads where air flows around cylinders. 

4.3. The numerical research

From above comparison it can be found that the proposed mathematical model properly describes

vibrations of cylinders in side-by-side arrangement caused by the flow of air. Hence, further

calculations have been done and their results are used to analyse the described phenomenon.

Fig. 13 The vibrations of cylinders at steady flow and Vs = = 16 m/s, Sc = 50, Ly / D = 1.2 for the first group
of data; (a) θ= 0o; (b) θ= 5o

u
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Fig. 14 The vibrations of cylinders at steady and unsteady flows with = 18 m/s, Sc = 50, Ly /D = 1.75 for the
first group of data; (a) θ= 0o, Iu = 0%; (b) θ= 0o, Iu = 12.8%; (c) θ= 5o, Iu = 12.8%

u
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Fig. 11 shows trajectories for cylinders located perpendicular to the wind direction, that is

θ = 0o, and at steady flow. Both cylinders move along similar and regular ellipses. In the case of

the cylinders situated in other way (e.g., θ = 5o), trajectories of cylinders become less regular and

amplitudes of vibration differ considerably (Fig. 12). Differences between vibrations of cylinders

arranged so that θ = 0o and θ = 5o are shown also in Fig. 13. Here it is seen for θ = 0o that

vibrations towards the x axis have the same values and phases, components of vibrations towards

the y axis also have the same phases and values of displacement, but the displacement vectors

have the opposite sense (comp. also Fig. 14a). The amplitudes of vibrations along the x axis are

bigger than across one. Whereas for θ = 5o the amplitudes of vibrations along the x axis are

smaller than across one and both components of vibrations towards the x and y axes have no

common phases. 

It can be noted that the solution of the set of differential Eq. (16) and (17) for the steady flow is

periodic. We can distinguish two types of periods: the period between extreme amplitudes and the

period of vibration, as shown in Fig. 15 for significantly longer time than in previous figures. The

cylinders move back to their previous trajectory after a time delay, which is equal to the period.

Fig. 16 represents the relationship between the Scruton numbers Sc, critical reduced velocities Vcr

and cylinder locations at steady flow. It is seen that the critical reduced velocity nearly linear

depends on the Scruton number. For the arrangement of cylinders with θ = 0o the graph is

Fig. 15 Relative displacements of cylinders as functions of time at the steady flow Vs = = 20 m/s and Ly /
D = 1.2, θ= 5o, Sc = 50 for the first group of data

u
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Fig. 16 The critical reduced velocity of cylinder vibration as function of the Scruton number and the cylinder
location at the steady flow and Ly / D = 1.2 for the first group of data

Fig. 17 The region of arrangements of cylinders for which can exist vibrations
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significantly below others and the slope angle of this graph is small. It means the vibrations of

cylinders arranged along the y axis are rather easily induced. It is also shown in previous figures.

Finally, the region of cylinder arrangements for which vibrations at steady flow can be induced is

shown in Fig. 17. There are lines joining points of the same value of the ψ coefficient  which is the

slope of a straight line described by the following equation

Vcr = ψSc + A (19)

Above formulae is obtained from the interpolation of the relationship between the Scruton number

Sc and the critical reduced velocity Vcr with use of the minimum mean-square method. It should be

noted that cylinder vibrations are more possible at the smaller values of the ψ coefficient. In Fig. 17

the drop line is the boundary of the region of existing vibrations for the steady flow. 

Research of possibilities of existing vibrations show that at steady flow in the checked region, it is

for 1.2 < Ly / D < 3, cylinders vibrate for θ = 0o (Fig. 11, Fig. 14a, Fig. 17). For Ly / D > 2.0 and θ ≠ 0o

vibrations cannot be induced at steady flow. Excitation of vibrations in this location is possible at

unsteady flow. In this situation amplitudes of vibrations are significantly smaller, but they exist for

all side-by-side arrangements in the region limited by 1.2 < Ly / D < 3 and −0.4 < Lx / D < 0.4, it is in

the region bigger than it is assumed in p. 2.

5. Conclusions

The comparison of numerical analyses and wind tunnel research presented in Fig. 8 and Fig. 9

shows similar  cylinder vibrations induced by wind velocity. It can, therefore, be concluded that the

quasi-steady model can serve as a reasonable tool to describe the vibrations of two cylindrical

structures in side-by-side arrangement in civil engineering. Thus, this model could be useful in

determining the safe distance between cylinders. Also note, the critical velocity of wind induced

vibrations depends on the Scruton number, as well as the turbulence intensity of wind flow. For

analysed arrangements the region of unstable locations of cylinders at steady flow is shown in Fig.

17.

The last stage of modelling an aerodynamic interference for cylinders in side-by-side arrangement

takes into consideration boundary distributions. The proposed model properly describes vibrations of

slender and long ropes (for example, ropes of cable-stayed bridges), but for chimneys, cooling

towers, etc. the model gives lesser values for critical velocities and greater amplitudes. It comes

from that the wind distribution load acts on the whole cylinder’s length in the theoretical model, but

for real structures this load has the same value but it acts only on the part of building. Of course,

real greater values of critical velocities and real smaller amplitudes are safer for structures. 
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