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Abstract. This paper presents a time domain approach for predicting buffeting response of long
suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the
mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and
equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of
equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using
the spectral representation method based on the Gaussian distribution assumption. The self-excited forces
on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic
impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are
derived from experimentally measured flutter derivatives under skew winds using rational function
approximations. The governing equation of motion of a long suspension bridge under skew winds is
established using the finite element method and solved using the Newmark numerical method. The
proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The
computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with
those obtained from the frequency domain approach and the field measurement. The comparisons are
found satisfactory for the bridge response in the main span.

Keywords: long suspension bridge; skew winds; buffeting response; time domain; equivalent turbulent
wind velocity; field measurement; Typhoon Sam; comparison.

1. Introduction

The prediction of wind-induced buffeting response is practically important for design, construction,
and structural health monitoring of long suspension bridges. The field measurements of long
suspension bridges during strong winds manifest that mean wind direction relative to a bridge deck
often deviates from the normal of a bridge deck (Xu, et al. 2000). However, the traditional buffeting
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analysis often assumes that mean wind is coming at a right angle to the longitudinal axis of the
bridge deck. This leads to some technical difficulties in performing a satisfactory comparison of
buffeting response between field measurements and analyses. Furthermore, if a little more realistic
prediction of buffeting response is to be made in relation to local wind climate, the directionality of
wind needs to be taken into account and the buffeting analysis of the bridge under skew winds
becomes necessary (Kimura and Tanaka 1992). Thus, for a better prediction of buffeting response of
a long suspension bridge and a reasonable comparison with field measurement results, it is
worthwhile to seek proper analytical approaches for buffeting response prediction of long suspension
bridges under skew winds. 

Analytical approach for buffeting response prediction of long suspension bridges has
predominantly been conducted in the frequency domain (Davenport 1962, Scanlan 1978). The
frequency domain approach was developed based on the quasi-steady assumption. It has evolved in
the past two decades to include self-excited forces in the lateral direction, aerodynamic admittance
functions, multi-mode effects, and inter-mode coupling effects (Scanlan and Jones 1990, Jain, et al.
1996, Xu, et al. 1998, Chen, et al. 2000a). Furthermore, the frequency domain approach for
buffeting response prediction of long span bridges under skew winds has also been fulfilled (Zhu
2002a, Xu, et al. 2003). The frequency domain approach has fast computational efficiency and can
conveniently handle the aerodynamic admittances functions and flutter derivatives that are functions
of frequency. However, the frequency domain approach is limited to linear structural systems
excited by stationary wind forces without aerodynamic nonlinearities. 

With the rapid development of computer technology and computational method, analytical
approach in the time domain for buffeting response prediction of long suspension bridges has been
developed rapidly. The self-excited forces were introduced in the time domain approach through
aerodynamic impulse functions associated with flutter derivatives (Bucher and Lin 1988, Xiang, et al.
1995). Chen, et al. (2000b) further incorporated aerodynamic admittance functions in the time
domain approach through their counterparts-aerodynamic impulse functions. However, the
aforementioned time domain approaches assume that mean wind is coming at a right angle to the
longitudinal axis of the bridge deck. 

In this study, a time domain approach for predicting the buffeting response of long suspension
bridges under skew winds is presented. The buffeting forces on an oblique strip of the bridge deck
in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew
winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The
time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge
deck are simulated using the spectral representation method based on the Gaussian distribution
assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the
convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic
impulse functions of self-excited forces are derived from experimentally measured flutter derivatives
under skew winds using rational function approximations. The governing equation of motion of a
long suspension bridge under skew winds is established using the finite element method and solved
using the Newmark numerical method. The proposed time domain approach is finally applied to the
Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under
skew winds during Typhoon Sam are compared with those obtained from the frequency domain
approach and the field measurement. 
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2. Formulation

2.1. Governing equation of motion for bridge buffeting due to skew winds

In the proposed time domain buffeting analysis of long suspension bridges under skew winds, the
three-dimensional finite element approach is employed to establish the governing equation of
motion of the bridge under skew winds. The governing equation of motion of a suspension bridge
under skew winds can be expressed as 

(1)

where M s, C s and Ks are, respectively, the N×N mass, damping, and stiffness matrices of the entire
bridge; Fbu(t) and F se(t) are, respectively, the buffeting and self-excited force vectors of N
dimensions due to skew winds, ∆(t) is the global nodal displacement vector of N-dimensions; and
N is the number of the total degrees of freedom of the entire bridge.

2.2. Buffeting forces due to skew winds

When employing the finite element method to describe the vibration problem of a long suspension
bridge excited by buffeting forces due to skew winds, a set of coordinate systems should be
properly established. A global structural coordinate system XYZ should be set up to consider the
overall dynamic equilibrium conditions of the bridge. A global wind coordinate system XuYvZw is
required to define the mean wind velocity and turbulent wind. The two global coordinate systems
are then correlated through the global wind yaw angle and inclination. In Fig. 1(a), the axis Xu is set
along the direction of the mean wind . The axis Yv is parallel to the X-Y plane. The axis Zw is
upward and perpendicular to the axes Xu and Yv following a right-hand rule. The positive directions
of the three axes Xu, Yv and Zw represent the positive directions of velocity fluctuations u(t), v(t)
and w(t), respectively. The angles β0 and θ0 are used to define the global yaw angle and inclination
of the mean wind  with respect to the XYZ-system. 

M s ∆·· t( ) C s∆· t( ) K s∆ t( )+ + F bu t( ) F se t( )+=

U

U

Fig. 1 Global and local coordinate systems
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With the use of the finite element method, a local structural coordinate system xyz, referring to
the static equilibrium position of the bridge, is required for each element to define the matrices of
elemental mass, stiffness, damping, and loading. Furthermore, the aerodynamic coefficients and
flutter derivatives of the bridge deck under skew winds are measured through wind tunnel tests, in
which wind yaw angle and inclination are often defined with respect to local wind and reference
coordinate systems. The measured coefficients are then expressed as the function of local mean
wind yaw angle and inclination. Thus, it is necessary to introduce a local reference coordinate qph-
system and a local wind coordinate -system. Fig. 1(b) shows the three local coordinate systems.
The angles  and  are used to define the local yaw angle and inclination of the mean wind  in
the qph-system. The angles β(t) and θ (t) are, respectively, the local yaw angle and inclination of
the transient wind speed V(t) in the qph-system. 

It is not difficult to establish the 3×3 transformation matrix TLrGw from the XuYvZw-system to the
qph-system. Then, the local yaw angle and inclination  and  and their increments ∆β(t) and
∆θ(t) in the qph-system can be derived and expressed as follows after a linearization.

(2) 

(3)

(4)

where ∆β(t) and ∆θ(t) are the time-dependent increments of the local yaw angle and inclination
due to the fluctuations of wind velocity; and tij is the element of the ith row and jth column of the
matrix TLrGw. The aerodynamic forces acting on the structural element due to the transient wind
speed V(t) can then be expressed as the function of ∆β(t), ∆θ(t), u(t), v(t), w(t), , and the
aerodynamic coefficients of the element with respect to  and . By assuming that the fluctuating
wind components are much smaller than the mean wind speed, that is, low turbulence intensities,
the non-linear terms of u(t), v(t) and w(t) can be ignored (Holmes 2001). Finally, by performing a
series of coordinate transformations, the buffeting forces due to skew winds in the global structural
coordinate system can be found

(5)

where  is the 12×1 vector of buffeting forces at the nodes of the ith element with respect to
the global structural coordinate XYZ-system; Ti

bu(i = 1, ... , n) is the N×12 matrix with its elements
being either zero or unit to locate the vector  at the proper position in the global vector
Fbu(t); and n is the number of the total elements on which the buffeting forces need to be
accounted. The expression of  can be written as 

(6)

where  is the 6×1 vector of buffeting forces per unit length of the ith oblique strip (element)
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of the bridge deck with respect to the local mean wind coordinate -system;  is the 6×6
transformation matrix from the local wind coordinate system  to the local structural coordinate
system xyz for the ith element;  is the 6×12 matrix of the displacement interpolation functions of
the ith element as used in the conventional finite element method;  is the 12×12
transformation matrix from the local xyz-system to the global XYZ-system for the ith element.

The vector  is the function of the air density ρ, the element width Bi, the mean wind speed
at the center of the element , the fluctuations of wind velocity at the center of the element ui(t),
vi(t) and wi(t), the aerodynamic impulse functions of the element under skew winds, the
aerodynamic coefficients and their derivatives of the element under skew winds, the coordinate
transformation matrix TLrGw, i , and others. The resulting expression is as follows

(7)

where  and  are the buffeting crosswind force,
drag, lift, pitching moment, rolling moment, and yawing moment on the ith oblique element of the
bridge deck with respect to the local wind coordinate  system, respectively; ajk ( j = 1, 2, ..., 6 ;
k = 1, 2, ..., 3) are the coefficients, which are the function of aerodynamic coefficients and their
derivatives of the element under skew winds and the coordinate transformation matrix TLrGw,i(see
Appendix A); and  (  and )
are six sets of equivalent fluctuating wind velocities defined as follows

(8)
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(11)

(12)

(13)

where the superscript “T ” represents the matrix operation of transpose; and ,
 and  (  and ) are the aerodynamic

impulse functions of the ith oblique element. Eqs. (8) to (13) indicate that six sets of equivalent
turbulent wind velocities are needed to describe the corresponding six-component buffeting forces.

Clearly, the equivalent turbulent wind velocities are linear transformations of the turbulent wind
velocities u(t), v(t) and w(t). Therefore, the equivalent turbulent wind velocities also follow the
Gaussian distribution if the turbulent wind velocities follow the Gaussian distribution. Non-Gaussian
distribution of the turbulent wind velocities is not considered in this study because of the comparison
with the results from the frequency domain approach which is based on the Gaussian distribution
assumption. Each set of equivalent turbulent wind velocities along the bridge deck can be simulated
using the spectral representation method (Shinozuka and Deodatis 1991, Deodatis 1996). Let us take
the equivalent turbulent wind velocities associated with the drag force as an example. The
equivalent turbulent wind velocities along the bridge deck in the lateral direction can be expressed
as a three-dimensional multivariate stochastic process.

(14)

The cross spectral density matrix of  is a  matrix  given by 
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(17)

(a = u, v, w ; b = u, v, w)

where  is the  matrix of the cross spectral density functions between three
equivalent turbulent wind velocities at the center point (point j ) of the jth element and the center
point (point k) of the kth element; Rab(Pj , Pk, ω) is the coherence function between turbulent wind
components a and b at point j and point k; Sab(Pj , ω) is the cross spectral density function between
turbulent wind components a and b at the same point j ; the product  is defined
as aerodynamic admittance functions;  and  are, respectively, the Fourier transform
of  and ; and the superscript “*” denotes a complex conjugate operation. 

The matrix  can be decomposed into the following product with the Choleskey’s method 

(18)

Based on the spectral representation method (Shinozuka and Deodatis 1991, Deodatis 1996), the
equivalent turbulent wind velocities along the bridge deck, , associated with the drag force
can be simulated by the following series as 

(19)

where ∆ω=  is the frequency increment; ωup is an upper cutoff frequency beyond which
the elements of the cross spectral density matrix  are assumed to be zero; 
is the element of  at the jth row and kth column; 

, which is the complex phase angle of ;  and
 represent the imaginary and real parts of  respectively; Φ1l, ..., Φjl,

l = 1, 2, ...,  are the sequences of independent random phase angles distributed uniformly over the
interval [0, 2π]; and ωml is of the double-indexing of the frequencies.

     (20)

The application of the fast Fourier transform technique to the above algorithm can dramatically
improve the computational efficiency for simulating the equivalent turbulent wind velocities .
The detail procedure of the fast Fourier transform technique is given in Deodatis (1996). 

Clearly, the simulated time histories of equivalent turbulent wind velocities along the bridge deck
associated with the drag force include not only the characteristics of incoming turbulent wind but
also the aerodynamic admittance functions of bridge deck. The same procedure can be applied to
generate the time histories of equivalent turbulent wind velocities along the bridge deck associated
with other forces. Finally, the time histories of buffeting forces along the bridge deck can be
obtained through Eqs. (5) to (7).
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2.3. Self-excited forces due to skew winds

The self-excited forces acting on the bridge deck due to wind-structure interaction can be
expressed as the function of mean wind speed , the aerodynamic impulse functions associated
with the flutter derivatives measured under skew winds, and the bridge motion. By performing a
series of coordinate transformations, the vector of self-excited forces acting on the bridge deck due
to skew winds in the global structural coordinate system can be found as

(21)

where  is the  vector of self-excited forces at the nodes of the ith element of the
bridge deck with respect to the global structural coordinate XYZ-system; and (i = 1, ..., n) is the

 matrix with its elements being either zero or unit to locate the vector  at the proper
position in the global vector . The expression of  can be written as 

(22)

where  is the  vector of self-excited forces per unit length of the ith oblique element of
the bridge deck with respect to the local reference coordinate qph-system ;  is the 
transformation matrix from the local reference coordinate system qph to the local structural
coordinate system xyz for the ith element. According to the coordinate systems of qph and xyz
shown in Fig. 1(b), the matrix  can be expressed as

(23)

The vector  includes six components
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crosswind force, drag, lift, pitching moment, rolling moment and yawing moment on the ith oblique
element of the bridge deck with respect to the local reference coordinate qph system. Generally,
only the self-excited drag force , lift force  and pitching moment  are
regarded to be important to the buffeting response prediction of the bridge (Scanlan 1978, Jain, et al.
1996). Correspondingly, wind tunnel tests were performed to determine the flutter derivatives
associated with these three forces under skew winds (Zhu 2002c), and the other three forces,

,  and  are omitted in this study.
The vector  is the function of the air density ρ, the element width Bi, the mean wind speed

at the center of the element , the aerodynamic impulse functions associated with the flutter
derivatives of the element under skew winds, and the structural motion at the center of the element.
The resulting expression is as follows
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(25)

where  and  are the transverse displacements along the axis p and the axis h,
respectively, and  is the torsional displacement around the axis q at the center of the ith
element with respect to the local reference coordinate system qph. These displacements with respect
to the local reference coordinate system can be related to those at the nodes of the element with
respect to the local structural coordinate system through the coordinate transformation and
displacement interpolation function. , , and (a = p, h, α ) are the aerodynamic
impulse functions, which can be obtained from the experimentally measured flutter derivatives of
the oblique element of the bridge deck using the rational function approximation approach. For
example,  can be given by

(26)

where the value of  determines the level of accuracy of the approximation;  and 
(i = 1,2,..., ; k = 3, ..., ) are the dimensionless coefficients, which can be determined by
the non-linear least-squares fit of the flutter derivatives  and  as follows (Bucher and Lin
1988). 
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(28)

(29)

(30)

where  ( ) are the
convolution integrations of the ith element, which can be calculated using a recursive algorithm. For
instance,  can be computed by
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2.4. Step-by-step solution

In predicting the buffeting response of a long suspension bridge under skew winds, the
Newmark’s constant-average-acceleration scheme is used to find the step-by-step solution for the
governing equation of motion of the bridge under skew winds (see Eq. (1)). The selection of the
Newmark’s constant-average-acceleration scheme is because of its unconditonal numerical stability
compared with other schemes (Bathe 1982). Rewrite the governing equation of motion for the time
step t + ∆t.

(32)

where ∆t is the time interval.
The formulations for the nodal displacement, velocity, and acceleration at time t + ∆t can be

obtained as

(33)

(34)

(35)

where

(36)

(37)

in which ai (i = 0, 1, ..., 7) are the constant coefficients given by Bathe (1982).

(38a-d)

(38 e-h)

where γ and β are taken as 0.5 and 0.25 in this study. It is noted that the self-excited force vector on
the bridge, F se(t+∆t), in Eq. (37) is the function of bridge motion as shown in Eq. (28). Iterations
should be performed in each time step. For instance, for the time step t + ∆t, use the self-excited se
force F se(t) in the time step t to replace F se(t +∆t) in Eq. (37) initially to compute the motion of
the bridge deck. Then, use the computed bridge motion to calculate the self-excited forces again.
Repeat the above two steps until the bridge motion is converged to the prescribed criteria.
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3. Tsing Ma suspension bridge and Typhoon Sam

3.1. Tsing Ma bridge and WASHMS

The Tsing Ma Bridge in Hong Kong is a long suspension bridge carrying a dual three-lane
highway on the upper level of the bridge deck and two railway tracks and two carriageways on the
lower level within the bridge deck. The alignment of the bridge deck deviates from the east-west
axis for about 17o in anti-clockwise. The typical section of the bridge deck is 41 m wide and 7.643 m
high. The two bridge towers of 206 m high are made of pre-stressed concrete. The east bridge tower
sits on the northwest shoreline of Tsing Yi Island, called the Tsing Yi tower while the west bridge
tower sits on Ma Wan Island, called the Ma Wan tower (see Fig. 2).

To monitor the health status of the Tsing Ma Bridge, an instrumentation system called the Wind
And Structural Health Monitoring System (WASHMS) was installed in the bridge by the Hong

Fig. 3 Positions of sensors on cross section of bridge deck

Fig. 2 Locations of anemometers and accelerometers
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Kong Highways Department (Lau, et al. 1998). The WASHMS has seven types of sensors including six
sets of anemometer and 24 uni-axial servo type accelerometers. Two digital ultrasonic anemometers
(AneU) were installed on the north side and south side, respectively, of the bridge deck at the
middle main span (75.314 m in elevation). They are specified as WITJN01 and WITJS01 in Figs. 2
and 3. Two analogue mechanical anemometers (AneM) were located at two sides of the bridge deck
near the middle of the Ma Wan side span (62.944 m in elevation), specified as WITBN01 at the
north side and WITBS01 at the south side in Figs. 2 and 3. Another two analogue mechanical
anemometers (AneM) were arranged over the top of each bridge tower (217.084 m in elevation).
They are specified as WITPT01 for the Tsing Yi tower and WITET01 for the Ma Wan tower. 

A total of 12 uni-axial accelerometers were used in AccU measurement, which was arranged at the
four deck sections ATTID, ATTJD, ATTFD and ATTBD (see Fig. 2). AccU means the uni-axial
measurement by using only one accelerometer to give signal in one prescribed direction. It is see from
Fig. 3 that at each section, there are two accelerometers, horizontally separated with 13 m, measuring
acceleration in the vertical direction and one accelerometer measuring acceleration in the lateral direction.

3.2. Typhoon Sam and wind characteristics

After developed at about 680 km east-northeast of Manila on 19 August 1999, the tropical
depression Sam moved west-northeast wards over the Pacific and intensified into a tropical storm at
that night. It then moved north-westly towards the coast of Guangdong and became a typhoon on a
late morning of 22 August near Hong Kong. Typhoon Sam finally made landfall over the eastern
part of Sai Kung in Hong Kong at around 6 p.m. on 22 August. Following landfall, Sam traversed
the northeastern part of the New Territories at a speed of about 25 km/h and crossed into Shenzhen,
and then weakened gradually over inland Guangdong on 23 August. The WASHMS timely recorded
wind velocity and bridge buffeting responses. The sampling frequency for wind velocity was 2.56
Hz and the cutoff frequency was 1.28 Hz. The sampling frequency of acceleration response was
25.6 Hz and the cutoff frequncy was 12.8 Hz.

After a careful examination of all the measured wind velocity time histories, one-hour record of
wind velocity between 14:11 to 15:11 Hong Kong Time (HKT) on 22 August 1999 was selected for
the analysis. During this period, incident wind blew to the Tsing Ma Bridge from the direction near
to the north. Therefore, the wind data recorded by the anemometers installed at the south side of the
bridge deck were contaminated by the bridge deck itself and were not suitable for the analysis of
natural wind structures. Due to the technical reason, the mechanical anemometers installed at the
deck and the top of the towers failed to record the wind azimuth. As a result, wind characteristics of
Typhoon Sam surrounding the bridge could be extracted only from the wind speed histories
recorded by the three-component ultrasonic anemometer installed on the north side of the bridge
deck at the mid-span. By analyzing the three-components of the recorded wind velocity, it was
found that the hourly-mean wind speed was about 17.1 m/s and the mean wind blew from north-
northeast. The global hourly-mean wind yaw angle β0 and inclination θ0 were, respectively, −29.15o

and 2.25o. The time histories of fluctuating wind speeds u(t), v(t) and w(t) in the longitudinal
(along-wind), lateral, and upward directions were also extracted from the measured three
components of wind velocity, respectively. It was found that the turbulence intensities were about
18.6%, 20.4% and 14.5%, for u(t), v(t) and w(t), respectively, and the corresponding integral
scales of turbulence were 228 m, 116 m, and 84 m based on the Taylor’s hypothesis.

The spectral analysis was performed on the measured three fluctuating wind speeds u(t), v(t) and
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w(t) with the hamming window and the piecewise smoothing method. A general objective function
of four parameters for wind spectrum was used to fit the measured normalized auto and cross
spectra of wind turbulence by minimizing the residue function via non-linear least squares fitting
technique (Zhu 2002a). The one-side three auto spectra obtained from this exercise were given as

(39a)

(39b)

(39c)

where c is the constant of 5/3; n is the frequency in Hz; f = nz /  is the non-dimensional
reduced frequency; z is the height above the sea level; and u* is the friction velocity, estimated as
1.69 m/s from the measured horizontal shear stress.

The one-side co-spectra between every two of the three fluctuating wind speeds were given as 

(40a)

(40b)

(40c)

The quadrature spectra between every two of the three fluctuating wind speeds were insignificant
and neglected in this study. The coherence function used in the study is taken the form as 
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where  and  are the coordinates of spatial points  in the global wind
coordinate XuYvZw- system;  is the mean wind velocity at the point ,

 and  are the exponential decay coefficients, taken as , ,
, , , , , , and 

in this study.

3.3. Measured bridge deck acceleration responses

To be consistent with wind characteristics analysis, only the acceleration response data recorded
from 14:11 to 15:11 HKT on 22 August 1999 were analysed. They include the lateral, vertical and
torsional accelerations at the three deck sections in the main span (ATTJD, ATTID and ATTFD) and
one deck section in the Ma Wan side span (ATTBD). The root mean square (RMS) acceleration
responses of the bridge deck at the four deck sections (ATTJD, ATTID, ATTFD and ATTBD) are
plotted in Fig. 10 to compare with the computed results.

4. Comparison between computed and measured buffeting responses 

A computer program was written for the time domain buffeting analysis of long suspension
bridges under skew winds based on the formulae derived in Section 2. The computer program is
now used to perform the buffeting analysis of the Tsing Ma suspension bridge under skew winds
during Typhoon Sam between 14:11 to 15:11 HKT on 22 August 1999. The computed buffeting
responses are then compared with the field measurement results. 

4.1. The bridge model

The three-dimensional dynamic finite element model of the Tsing Ma suspension Bridge has been
established and updated by Xu, et al. (1997) using the dynamic properties from the ambient
vibration measurement. Three-dimensional Timoshenko beam elements with rigid arms were used to
model the two bridge towers. The cables and suspenders were modelled by cable elements
accounting for geometric nonlinearity due to cable tension. The hybrid steel bridge deck was
represented by a single beam with equivalent cross-sectional properties determined from a finite
element analysis using detailed sectional modes. The connections between bridge components and
the supports of the bridge were properly modelled. The first 150 natural frequencies range from
0.068 to 2.008 Hz. Fig. 4 shows the first two modes of vibration in vertical, lateral and torsional
directions, respectively. 

To constitute the damping matrix of the bridge, the Rayleigh damping assumption is used in this
study. The two modal damping ratios of the bridge of 1% each, measured from the first symmetric
lateral and vertical modes of the main span of the bridge deck, are used to form the damping matrix.
The corresponding natural frequencies of the bridge are 0.068 Hz and 0.210 Hz, respectively, in the first
symmetric lateral and vertical modes of vibration. 

4.2. Aerodynamic properties of an oblique strip of bridge deck

To carry out the comparison of buffeting response of the Tsing Ma suspension bridge under skew
winds between field measurement and analysis, the aerodynamic coefficients and flutter derivatives
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of the bridge deck under skew winds were measured through wind tunnel tests by Zhu, et al.
(2002b, 2002c). The measured aerodynamic coefficients and their derivatives with respect to wind
inclination and yaw angle (β0 = -29.15o, θ0 = 2.25o) of a typical oblique strip of the bridge deck
under skew wind are listed in Table 1 and used in the simulation of buffeting forces. 

The measured eight flutter derivatives of  and (i = 1,2,3,4) of the oblique strip of the
bridge deck under skew wind (β0 = -29.15o, θ0 = 2.25o) as a function of reduced velocity are fitted
by the rational functions (see Eq. (27)) for the determination of self-excited forces. The measured
flutter derivatives and the fitting curves are shown in Fig. 5 and the resulting dimensional
coefficients are listed in Table 2. The flutter derivatives  and  are not available from the wind
tunnel tests. The formulae based on the quasi-steady theory were thus employed and fitted by the
rational functions. All other flutter derivatives were considered insignificant to the bridge buffeting

Hi
* Ai

*

P1
* P3

*

Fig. 4 First two modes of vibration of Tsing Ma Bridge in vertical, lateral and torsional directions
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response and neglected in the computation. It is seen from Fig. 5 that except for  and , all the
concerned flutter derivatives can be well fitted. However, the measured flutter derivatives  and

 oscillate so irregularly that they cannot be fitted properly.
There are no measurement data available on the aerodynamic admittance functions of the Tsing

Ma bridge deck. The aerodynamic admittance function proposed by Davenport (1962) is employed
for the 9 aerodynamic admittance functions associated with the buffeting drag, crosswind force, and
yawing moment of the bridge deck. 

A1
* A4

*

A1
*

A4
*

Table 1 Aerodynamic force coefficients of oblique strip of bridge deck (β0 = -29.15o, θ0 = 2.25o) (Zhu 2002b)

-0.0237 0.0794 0.0801 -0.0660 -0.0011 -0.0307 

0.0201 0.0607 -0.0811 -0.0377 -0.0228 0.0371

0.1712 -0.0313 2.6474 -0.5450 0.1145 0.0948
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Fig. 5 Measured flutter derivatives versus rational function approximations
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                                             (42)

(43)

where the decay factor λ is set to 7; and D is taken as the height of the bridge deck of 7.643 m.
The other 9 aerodynamic admittance functions associated with the buffeting lift force, pitching

moment, and rolling moment of the bridge deck are set to unity, namely 

(44)

The above assumptions on the aerodynamic admittance functions were found suitable for the
frequency domain buffeting analysis of the Tsing Ma suspension bridge (Zhu 2002a).

4.3. Simulation of equivalent turbulent wind velocities

Based on the concept of equivalent turbulent wind velocities described in Section 2, only two sets
of equivalent turbulent wind velocities need to be simulated according to the aerodynamic
admittance functions used for the Tsing Ma Bridge. One set of equivalent turbulent wind velocities
is used for simulating the buffeting lift force, pitching moment, and rolling moment acting on the
bridge deck, in which the aerodynamic admittance functions are set to unity and the spectra of the
equivalent turbulent wind velocities are actually equal to the measured wind spectra from Typhoon
Sam for a given position. Another set of equivalent turbulent wind velocities is used for simulating
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Table 2 Coefficients of rational functions of oblique strip of bridge deck ( β0 = -29.15o, θ0 = 2.25o)

-0.0001 0.0303 0.2827 -1.9181 -0.0639 -0.9046 
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the buffeting drag force, crosswind force, and yawing moment on the bridge deck, in which the
spectra of the equivalent turbulent wind velocities are the measured wind spectra from Typhoon
Sam times the Davenport’s aerodynamic admittance functions for a given position. The measured
auto spectra expressed by Eq. (39) and the co-spectra expressed by Eq. (40) are assumed to be the
same for all the points along the bridge deck and used in the simulation of buffeting forces. Thus,
the two sets of equivalent turbulent wind velocities to be simulated both are three-dimensional
multivariate stochastic processes. It is noted that the two sets of equivalent turbulent wind velocities
are respective to the global wind coordinate XuYvZw-system. Therefore, in the simulation the
coordinate vector of each point on the bridge deck with respect to the global structural coordinate
XYZ-system should be transformed to the global mean wind coordinate XuYvZw-system through the
transformation matrix , which is given by

(45)

The time interval and duration used in the simulation are 0.0625s and 3600s, respectively. The
variation of the bridge deck elevation between 58.73 m and 75.31 m is also taken into consideration
via the mean wind speed profile of a power law. The total number of points along the bridge deck
in the simulation N is 119. The upper cutoff frequency ωup is 4π and the frequency increment ∆ω is
4π/1024. Therefore, about 150 modes of vibration of the bridge are naturally included in the time
domain buffeting analysis. The major parameters used in the simulation and the time domain
analysis are summarized in Table 3 for easy reference. The two sets of equivalent turbulent wind
velocities are generated with the same independent random phase angles distributed uniformly over
the interval [0, 2π] so that all the buffeting forces can be regarded to simulate simultaneously. The
time histories of the simulated three-dimensional turbulent velocity at point ATTJD are shown in
Figs. 6 and 7, respectively, for the first and second sets of equivalent turbulent wind velocities. To
examine the accuracy of the simulated results, the auto spectra and cross spectra of the simulated
equivalent wind velocities at point ATTJD are computed using the time histories plotted in Fig. 7
for the second set of equivalent turbulent wind velocities and compared with the targeted auto
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=

Table 3 Major parameters used in the simulation and the time domain analysis

Major Parameters Values 

Mean wind speed at the deck level 17.1 m/s 
Power law of mean wind speed profile α = 0.33
Mean wind yaw angle and inclination β0 = -29.15o, θo = 2.25o

Total number of simulation points along the bridge deck N = 119
Longitudinal, lateral, and vertical turbulent intensities 18.6%, 20.4%, 14.5% 
Upper cutoff frequency ωup = 4π rad/s 
Frequency points N = 1024
Frequency interval ∆ω= 0.012 rad/s
Time interval ∆t = 0.0625s
Time duration 3600s 
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spectra and cross spectra , expressed by Eqs. (39),(40),
and (43). The comparison is shown in Fig. 8, and it is seen that the simulated auto spectra and cross
spectra match quite well to their respective targeted auto spectra and cross spectra. 

4.4. Comparison of acceleration response of bridge deck 

The time histories of lateral, vertical, and torsional acceleration responses of the Tsing Ma
suspension bridge deck at the mid-main span (point ATTJD) under skew winds during Typhoon
Sam from 14:11 to 15:11 HKT on 22 August 1999 are computed and displayed in Fig. 9. It is seen
that the vertical acceleration response is much larger than the lateral acceleration response of the

χD ω( ) 2Sab ω( ) a u v w;, ,  b u v w, ,==( )

Fig. 6 The first set of equivalent fluctuating wind velocities at point ATTJD

Fig. 7 The second set of equivalent fluctuating wind velocities at point ATTJD
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Fig. 8 Auto/cross spectra of equivalent fluctuating wind velocities versus targeted spectra

Fig. 9 Time histories of acceleration responses of bridge deck at point ATTJD
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bridge deck at point ATTJD. Since point ATTJD is at the mid-span of the bridge deck, the
acceleration responses are mainly attributed to the first a few symmetric modes of vibration in each
direction. 

Fig. 10 depicts the spectra of lateral, vertical, and torsional acceleration responses shown in Fig.
9. It is seen that the lateral acceleration response at point ATTJD is dominated by the first lateral
symmetric mode of the bridge main span with a natural frequency of 0.068 Hz. The second

Fig. 10 Acceleration response spectra of bridge deck at point ATTJD
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dominant spectral peak locates at a frequency of 0.271 Hz, which is the natural frequency of the
first torsional symmetric mode of the bridge main span. The coupling effect between the lateral and
torsional vibrations increases the lateral acceleration response. Furthermore, the second, third and
fourth lateral symmetric modes of the bridge main span with natural frequencies of 0.232 Hz, 0.285
Hz and 0.365 Hz, respectively, also make moderate contributions to the total lateral acceleration
response. 

Similar observation can be made for the vertical acceleration at point ATTJD. The vertical

Fig. 11 Comparison between measured and computed deck RMS acceleration responses
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acceleration response at point ATTJD is dominated by the first vertical symmetric mode of the
bridge main span with a natural frequency of 0.137 Hz. The second and third vertical symmetric
modes of the bridge main span with natural frequencies equal to 0.189 Hz and 0.325 Hz,
respectively, have moderate effects on the total vertical acceleration response. The contribution from
the further higher vertical symmetric modes of vibration is small. The torsional acceleration
response at point ATTJD is dominated by the first torsional symmetric mode of the bridge main
span with a natural frequency of 0.271 Hz. The second torsional symmetric mode of the bridge
main span with a natural frequency of 0.4755 Hz has a moderate effect on the total torsional
acceleration response. 

The root mean square (RMS) acceleration responses of the bridge deck computed from the
response time histories are plotted in Fig. 11 together with the measured RMS acceleration responses at
the four specified deck sections in the lateral, vertical, and torsional directions, respectively. It is
seen that for the main span, the computed RMS acceleration responses of the bridge deck in the
lateral, vertical, and torsional directions are close to the measured results. By taking the measured
results at the three points ATTFD, ATTID and ATTJD as references, the relative differences between the
computed and measured results are -19.72%, -3.31% and -0.28%, respectively, for the lateral RMS
acceleration responses; -7.57%, 6.25% and 8.22%, respectively, for the vertical RMS acceleration
responses; and -7.37%, -1.89% and -1.10%, respectively, for the torsional RMS acceleration
responses. For the Ma Wan side span, the computed RMS acceleration response in the vertical
direction deviates from the measured one at point ATTBD, and the relative difference is -30.45%. In
the lateral and torsional directions, the relative differences between the computed and measured
RMS acceleration responses reach -63.16% and 45.71%, respectively. 

The RMS acceleration responses of the bridge deck in the lateral, vertical, and torsional
directions, obtained by using the frequency domain method (Xu, et al. 2003), are also plotted in
Fig. 11. The buffeting forces on the bridge deck, the bridge towers and the main cables and their
interactions were taken into consideration in the frequency domain analysis. It is seen that the time
domain solutions are close to the frequency domain solutions for the bridge main span. However,
the frequency domain solutions appear to contain the effects from the main cables, which are not
considered in the time domain analysis. Furthermore, the time domain results are significantly
smaller than the frequency domain results for the Ma Wan side span. This may be attributed to
buffeting forces on the bridge towers and cables, which were taken into consideration in the
frequency domain analysis but not in the time domain analysis. The inclusion of the interaction
between the three major bridge components in the time domain analysis deserves to be considered
in the future work.

5. Conclusions

A time domain approach for predicting the buffeting response of long suspension bridges under
skew winds has been proposed in this study. The time histories of buffeting forces of six
components along the bridge deck under skew winds are simulated in terms of the aerodynamic
coefficients of an oblique deck strip measured under skew winds, the equivalent fluctuating wind
velocities with aerodynamic impulse functions included, and the spectral representation method. The
self-excited forces on the bridge deck are represented by the convolution integrals involving
structural motions and aerodynamic impulse functions derived from experimentally measured flutter
derivatives under skew winds. 
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Wind structures and buffeting responses measured by the Wind and Structural Health Monitoring
System installed on the Tsing Ma suspension Bridge in Hong Kong during Typhoon Sam were
analyzed. The proposed time domain approach was then applied to the Tsing Ma suspension bridge
to compute its buffeting response caused by skew winds during Typhoon Sam and to compare the
computed responses with the measured results and those computed by the frequency domain
approach. The comparisons were found satisfactory in general for the bridge response in the main
span but not for the bridge response in side spans. 

It should be pointed out that in this study, the buffeting forces on the main cables and towers of
the bridge were not included in this analysis because it was very time-consuming with the current
spectral representation method to simulate a complete three-dimensional turbulent wind velocity
field to cover not only the bridge deck but also the main cables and bridges towers. The inclusion
of the interaction between the three major bridge components in the time domain analysis is
deserved to consider in the future work. It is also the writers’ intention that after a liner buffeting
analysis of long span bridges under skew winds in the time domain is satisfactorily completed, a
nonlinear buffeting analysis in the time domain for the case of skew winds will be explored. 
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Appendix A - Expressions of coefficients ajk of oblique bridge deck strip in Eq. (7)

The expressions of coefficients ajk ( j =1,2, ..., 6 ; k = 1, 2, ..., 3) in Eq. (7) are given in the following with the
subscript “i ” omitted (Zhu 2002a)

(A-1 a-f)

(A-2 a-f)

a11 2CCq
a21, 2CDp

a31, 2CLh
a41, 2BCMα

a51, 2BCMγ
a61, 2BCMφ

= = = = = =

a12 s1CDp
– s7CL

h
s2C ′ βCq

s3C ′ θCq
+ + +=

a22 s3CLh
– s1CCq

s2C ′ βDp
s3C ′ θDp

+ + +=

a32 s7CCq
– s3CDp

s2C ′ βL
h

s3C ′ θL
h

+ + +=

a42 B s1CMγ
– s7CMφ

s2C ′ βMα
s3C ′ θMα

+ + +( )=

a52 B s3CMφ
– s1CMα

s2C ′ βMγ
s3C ′ θMγ

+ + +( )=

a62 B s7CMα
– s3CMγ

s2C ′ βMφ
s3C ′ θMφ

+ + +( )=
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(A-3 a-f)

where B is the characteristic width of the bridge deck;  and  are the aerodynamic
coefficients of buffeting crosswind force, drag, lift, pitching moment, rolling moment and yawing moment of
the bridge deck oblique strip with respect to the local wind coordinate  system, respectively;

 and ; and  and  are mean wind yaw angle in the horizontal plane
and the inclination angle in the vertical plane respect to the local wind coordinate  system, respectively.

The coefficients si(i = 1, ..., 8) are given as follows

(A-4 a-h)

where tij (i = 1,2,3; j = 1,2,3) is the element of the ith row and jth column of the matrix TLrGw.
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