
Wind and Structures, Vol. 7, No. 6 (2004) 405-420 405
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Abstract. In common approaches, bridge dynamics under wind action is analyzed by modeling the
interaction between fluid and structure by means of transient wind loads acting over the structure itself.
Amid various possible manners to describe such types of loads, a representation based on families of
‘indicial functions’ is adopted here. The aim is to investigate its flexibility to capture the main features of
wind-bridge interaction. A set of coefficients is involved in indicial functions. The values that one may
attribute to them suffer uncertainties coming from experimental errors affecting data. Here, the sensitivity
of a 2-DOF schematic model to the variations of these coefficients is investigated at fixed values of
dynamic derivatives and for various types of indicial functions. It is shown how parameter variations
influence phase portraits.
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1. Introduction

The description of the aerodynamic behavior of bridges under wind action is a challenging
problem in structural engineering. One needs to describe the interaction between bridge and
atmospheric boundary layer in turbulent regime in order to evaluate critical phenomena like flutter
and vortex-induced vibrations. A way to tackle the problem is to put the attention on the bridge
itself and to describe the action over it (exerted by the fluid) by means of transient wind loads. If
this approach is followed, the basic problem is a realistic model of such loads, once a structural
scheme of the bridge is selected.

Often, a two-dimensional framework is used and just the behavior of the typical cross-section of
the bridge is described. In this case, to represent transient loads induced by wind action, several
methods can be applied. They are frequency-based or time domain techniques. In particular, time
domain approaches seem to be convenient to represent non-stationary behavior of bridges in
turbulent flow because they allow one to account for all prominent non-linearities (in contrast with
frequency-based approaches) even if, strictly speaking, the load model remains linearized. However,
standard time domain methods used in aerodynamics to describe the behavior of wing profiles
cannot be applied directly and require adjustments: in fact, the cross-section of a bridge does not
coincide typically with an airfoil embedded in a perfect flow.
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Various proposals about appropriate extensions of time domain methods are discussed in literature
since the pioneer work of Scanlan, Béliveau and Budlong (1974). In general, the starting point
relies upon Fung’s theoretical representation of aeroelastic forces for the thin airfoil (Fung 1968)
where the circulatory or transient part of the wind action is modeled by using downwash w and
Wagner’s function φ (Wagner 1925). The latter is an indicial function, where the word ‘indicial’
refers to a quantity arising from an abrupt change in the state of the system. In particular,
Wagner’s function describes the lift on a thin airfoil as a consequence of a sudden variation in the
angle between the prevalent direction of the wind and the main characteristic linear dimension of
the airfoil (angle of attack). Up to a certain extent, Fung’s representation of wind action can be
extended to objects different from airfoils by simply selecting special indicial functions. Moreover,
more than one indicial function can be used in order to separate the effects of the different
degrees of freedom on the force components (see Bisplinghoff, et al. 1996). In this way a
comparison with the standard aeroelastic derivative model proposed by Scanlan and Tomko
(1971) (in which wind action is expressed by means of frequency-dependent quantities) can be
developed.

In the two-dimensional setting of cross-section models, stochastic effects induced by turbulence
may be accounted for as proposed by Lin and Li (1993). Furthermore, the unsteady behavior of the
bridge taking into account the fading memory of the fluid enveloping the body (Borri and Hoeffer
2000) can be modeled in the context of a finite element analysis, for example by means of the
integration scheme proposed by Borri, et al. (2002).

Indicial functions are characterized by certain coefficients whose values are usually obtained by
calibration on experimental data. Usually, the method applied is a standard interpolation of data
based on minimization of the error by using non-linear least square procedures (Scanlan, et al.
1974, Borri and Hoeffer 2000, Caracoglia and Jones 2003). The difference between the indicial
functions obtained by transient vibration tests and the corresponding functions derived in tests
affected by ambient vibrations is discussed by Zhang, et al. (2003): they point out in some way an
influence of the oscillation amplitude on the transfer functions. Bucher and Lin (1989) propose an
approximation of the aeroelastic derivatives by using a series of rational functions independent of
frequency, by following the operational treatment of Jones (1938). An analogous approach is
followed also by Ding and Lee, for an analysis of the buffeting response (Ding and Lee 2000), by
Boonyapingyo, et al. (1999) and by Chen, et al. (2000), where coupling with a finite element
method allows one to simulate the motion of a bridge in turbulent flow.

In this paper, a model with unsteady transient wind loads modeled through indicial functions is
considered: such functions have the advantage of being interpretable as physically meaningful
quantities and treatable with Fourier transform because of their exponential form.

A parametric analysis on selected dynamic systems is then performed in phase space at given
values of aerodynamic coefficients, to evaluate the sensitivity of the model to uncertainties arising
from experimental data. It is shown that the influence of uncertainties on indicial function
coefficients affects mainly the oscillation amplitude. The influence is different in intensity for each
indicial function. In the cases analyzed, the main effect is due to the y-lift indicial function, that
affects also the stability of the system. Such a circumstance is due to the streamlined geometry of
the section taken into account in numerical examples, which is a typical shape of suspension
bridges. The method can be analogously applied to sections with different and more bluff
geometries, in particular expecting a major role of the indicial functions related to the aerodynamic
moment. Extreme cases are presented, to quantify the importance of the different functions by
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means of the determination of upper and lower bounds. Results of the previous analyses are
confirmed, suggesting a prominent role of the lift function on the coupled flutter mechanism.

The results obtained here furnish first information on the qualitative behavior of the dynamic
system describing wind-bridge interaction. Further numerical examples can be developed. They
should involve variations in the aerodynamic coefficients and sectional geometry and will be
presented in a forthcoming work.

2. Mechanical model

The attention is focused on a bridge cross-section. The structural scheme adopted is an elementary
two-dimensional model simulating the behavior of an elementary strip of a bridge deck in a wind
flow (Fig. 1(a)).

The main characteristic dimension is assumed to be the width of the deck section B, referred to as
the chord. Half of the chord is indicated with b = B/2. The thickness of the section is indicated with
D, the span of the bridge with l. The ratio B/D between the chord and the thickness is a parameter
used to describe the slenderness of the structure.

The cross-section is studied as a rigid body, suspended by means of springs with translational
stiffness k, coupled with dampers, with damping constants c, fixed at a certain distance d from the
elastic center E. The pairs spring-damper give to the section a vertical stiffness ky=2k, a torsional
stiffness kα =2d2k, a vertical damping cy =2c and a torsional damping cα =2d2c. The section has
mass m and mass moment of inertia I per unit span.

The section is symmetric, with respect to the chord and to the vertical axis. The center of mass G
is then placed at the intersection of the symmetry axes. The elastic center E is coincident with the
center of mass. They are both located at the midspan of the deck section.

Fig. 1(a) Characteristics of the bridge deck section (B = chord; b = half-chord; D = thickness; k = stiffness
constant; c = damping constant; d = distance between restraints and elastic center); relevant points
(G = center of mass; E = elastic center; L = leading edge); wind forces (FL = lift force; FD = drag
force; Ma = aerodynamic moment); wind flow (U = wind velocity); reference system (Oxyz)
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The first point invested conventionally by the flow is the leading edge L.
The axes of the global reference system Oxyz are the horizontal x, positive downwind and the

vertical y, positive downwards. Positive rotations are assumed clockwise.
The degrees of freedom of the model are the vertical displacement y and the rotation α about the

center of mass. The wind flow is horizontal and laminar, its velocity is indicated with U.
The motion of the 2-DOFs model is ruled by the balance equations

(1)

where Fy and Ma represent the self-excited vertical force and moment due to wind-structure
interaction. The vertical force Fy depends on lift force FL, acting in the normal direction, and drag
force FD , applying in the direction parallel to the section at each instant. All quantities in Eq. (1) are
functions of time t. The dot denotes differentiation with respect to time t.

It is useful to consider an analogous system, where all the terms are expressed as functions of
dimensionless time s, as common in aerodynamics. In particular, s =Ut /b (i.e., s is the distance
traveled by a wind particle of velocity U, from the time origin, with reference to the deck semi-
chord). In terms of s, one obtains

(2)

where primes stand for differentiation with respect to the dimensionless time s.
To solve the system of differential Eqs. in (2), consistent expressions for self-excited forces Fy and

Ma need to be assigned: these expressions have the form of dynamic wind pressures modified
including relevant displacement and velocity components of the cross-section itself. The appropriate
expressions will be discussed in the following.

3. Wind load model: indicial functions

The thin airfoil is analyzed first to set the load scheme, then appropriate modifications are
introduced to adapt it to a bridge cross-section.

3.1. The thin airfoil

Some differences in the geometry of a thin airfoil with respect to the symmetric bridge cross-
section described in Fig. 1(a) need to be pointed out. In particular, a significant role is played in the
airfoil by the rear point R, placed at three-quarter chord distance from the leading edge, and by the
aerodynamic center C, at one-quarter distance from the leading edge (see Fig. 1(b)). 

The total lift is applied at the point C, because only the lift force arising form circulation is
considered, that is all the effects related to added mass are neglected. The center of mass G and the
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elastic center E are placed somewhere along the chord and are in general not coincident.
The unsteady wind action is modeled with the Wagner’s function φ(s) given, in Jones’

approximation (Jones 1939), as function of s :

(3)

Wagner’s function depicts the growth of circulation about the airfoil due to a sudden increase of the
downwash w acting at the rear point R, where the downwash is the vertical velocity of the fluid
particle in contact with the profile, due to rotational displacement and to rotational and vertical
velocities (Fig. 2).

Namely, the function w(t) is given by

(4)

or, with respect to dimensionless time, by

(5)

The downwash w is positive for a clockwise rotation angle (see the reference frame in Fig. 1(b)).
In this case, the positive lift force is assumed upwards, then opposite to the direction of the vertical
reference axis y. Lift force FL should be represented as normal to the airfoil chord, but, as thin
airfoil theory is adopted, small angles of attack are assumed and drag forces are absent, giving a

φ s( ) 1 0.165e 0.0455s–– 0.335e 0.30s––=

w t( ) y· t( ) Uα t( ) b
2
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w s( )
U
b
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                     0                        , if  s 0<





=

Fig. 1(b) Characteristics of the airfoil (B = chord; b = half-chord; k = stiffness constant; c = damping constant;
d = distance between restraints and elastic center); relevant points (C = aerodynamic center; G =
center of mass; E = elastic center; L = leading edge); wind forces (FL = lift force); wind flow (U =
wind velocity); w = downwash; reference system (Oxyz)
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resulting vertical lift.
The instantaneous value of the lift force is given by

(6)

considering that the net angle of attack corresponds to the ratio of downwash w and horizontal wind
speed U.

When a generalized time history of the action is considered, a superposition of elementary lift
forces can be accounted for and the total lift force FL can be written in terms of a convolution
integral (Scanlan and Tomko 1971), namely

(7)

with reference to the theoretical aerodynamic coefficient 2π.
One remarks also that .
The expression of the lift force FL can be simplified by integrating by parts. From Eq. (7), it follows that

(8)

then, by using the assumptions in Eq. (5), one gets

(9)

In the airfoil case, the aerodynamic moment Ma is simply obtained by multiplying FL by b/2, that is
by the distance between the application point of the circulation lift C and the midchord:

(10)
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Fig. 2 Wagner’s function (Jones’ approximation)
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The sole contributions included in the aeroelastic forces are therefore those related to the
circulatory terms, i.e., the unsteady contributions.

Balance equations reduce then to

(11)

for an airfoil of unitary length.

3.2. The bridge deck section

The behavior of the bridge deck section can be described by means of a set of balance equations
similar to those of the airfoil (11). Of course, such a system captures the prominent features of the
mechanical behavior of the bridge cross-section, as much as the section approaches the airfoil
profile. In fact, for bluff sections, the hypothesis of fully reattached flow used in the airfoil theory is
no more valid and the section itself cannot be considered as immersed in a potential flow. Moreover, the
positions of aerodynamic center and rear point are not known. Strictly, no theoretical formulation of
the lift force is therefore available for bridge decks. An extension of the theory of the airfoil can
nevertheless be formulated to include streamlined and bluff bridge sections in a more complete
model. To this aim, appropriate coefficients are defined to well represent the action on the structure.

A family of Wagner-like functions Φ is introduced to model the unsteady wind action:
By following (Fung 1968)

(12)

where n is the order of the Wagner-like function. Specific numerical values need to be assigned to
the a0, aj and bj coefficients.

Following the formulation of self-excited forces provided by Caracoglia and Jones (2003), the
expressions of the lift force and the aerodynamic moment become

(13)

If the expression of the lift force FL in Eq. (13) is compared with the expression in Eq. (7), one may
observe that the Wagner’s function φ is substituted with two new functions, that is ΦLy and ΦLα , and
vertical velocity, rotation angle and rotational velocity contributions to the downwash are separated.
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Only vertical velocity and rotation angle do appear in Eq. (13), because the contribution of the
rotational velocity is neglected, as suggested in Zhang, et al. (2003). The indicial functions ΦLy and
ΦLα describe, respectively, the elementary lift forces associated with a sudden unit variation in
vertical velocity and rotation angle.

Analogous description is adopted for the aerodynamic moment Mα , expressed by means of the
ΦMy and ΦMα indicial functions.

The two indices of each function Φ identify respectively the relevant force component and the
mechanical quantity interested by the sudden change.

The elementary forces are superimposed to obtain the total forces, by means of a convolution
integral. The load model is then linear. Moreover, small rotations are accounted for, then the y force
Fy can be substituted directly with the lift force FL. Drag forces are moreover neglected.

The aerodynamic coefficients dCL(α)/dα and dCM(α) /dα may vary here, whereas, in the standard
airfoil model, they attain the following values: the lift coefficient is dCL(α )/dα = 2π, while the
moment coefficient is dCM(α )/dα = π/2. The variation is however very slight, in the case of small
rotations.

This load model can be related to the frequency domain model by means of a Fourier transform: a
direct comparison between coefficients of indicial functions and frequency-dependent quantities
(aeroelastic derivatives) can be made, obtaining in a closed form the relationships between couples
of aeroelastic derivatives and indicial function coefficients (Borri, et al. 2002).

In this case, balance equations reduce to:

(14)

4. Numerical procedure

The behavior of the bridge cross-section can be described through the system of integro-
differential Eqs. (14). A suitable solution method is a fourth-order Runge-Kutta scheme.

The normal form of the system of Eqs. is = f ( s, p), where p = [ y, α, u, v]. If an integration by
parts following (8) is performed, one obtains a modified system, in which indicial functions and
their derivatives with respect to the dimensionless time do appear

(15)
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This integro-differential system is discretized along the s-axis. Each time step of amplitude ∆s =h
includes two intermediate intervals [s, s+h/2] and [s +h/2, s+h], and the vector variable p is
evaluated at the boundary of each interval. For each time step a constant value kstep is evaluated, in
order to calculate the upgraded variables. This constant is obtained by considering a weighted sum
of intermediate values ki, following the scheme of Table 1, calculated once assigned the fi functions.

The evaluation of the convolution integral is performed by means of the rectangular rule, by
taking into account all the displacement and velocity histories of the section, since the origin of
dimensionless time. The computational effort rapidly increases with the simulation time, because the
whole history motion has to be stored and used to evaluate the convolutions. A procedure to
consider the fading memory of the system and, at the same time, to reduce the computational effort,
is proposed in Borri, et al. (2002). The unsteady contribution of each elementary force tends to a
quasi-steady value (see Fig. 2) and therefore its effect on the actual time decreases, as integration
time increases. It is possible to change the integration limits, considering a moving time window
that includes only the last part of the unsteady forces. 

In this case the integration step is set up as ∆s = h = 0.001, in order to avoid the aliasing problem
and to obtain an accurate solution.

5. Numerical examples

Two numerical examples are analyzed. The first deals with a thin airfoil to test the numerical
procedure, while, in the second example, a streamlined bridge deck cross-section is examined, in
order to evaluate the contributions of the coefficients of indicial functions.

5.1. The thin airfoil

The geometrical properties of the section are given in Table 2 together with some dynamic data.
In addition, the circular frequencies ωy and ωα are given.

The dynamic behavior of the section is evaluated and a critical wind velocity, at which the flutter
phenomenon occurs, is identified with different methods. This is the typical case of coupled flutter, where
the critical frequency attains an intermediate value between the two natural structural frequencies.

The critical wind velocity Ucrit and the corresponding coupling frequency ωcrit are obtained with

Table 1 Runge-Kutta scheme for a differential equation of the first order p′ = f (s, p)

s p ki = hfi ( s, p)

s0 p0 k1

s0 + h/2 p0 + k1/2 k2

s0 + h/2 p0 + k2/2 k3

s0 + h p0 + k3 k4

s1 = s0 + h p1 = p0 + kstep kstep = 1/6(k1 + 2 k2 + 2 k3 + k4)

Table 2 Characteristics of the airfoil section

l = 0.45 m b = 0.08 m ωy = 8.5 rad/s m = 4.1202 kg/m ζ y = 0.0022

D = 0.005 m B = 0.16 m ωα = 12.8 rad/s I = 0.02031 kgm2/m ζα = 0.0060
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different methods: i) a theoretical eigenvalues analysis, ii) an indicial function numerical simulation,
and compared with that ones experimentally derived in wind tunnel tests (see Falco, et al. 1978).
Results are provided in Table 3. As a first step, the critical flutter condition is evaluated by means
of an eigenvalue analysis for a theoretical flat plate, that is with aerodynamic coefficients dCL(α)/
dα = 2π, dCM(α)/dα = π/2, CD = 0.00, evaluated around zero angle of attack. These theoretical
values are compared (see Table 3) with results obtained for the real system, characterized by
aerodynamic coefficients dCL(α)/dα = 5.73, dCM(α)/dα = 0.943 and CD = 0.10.

The indicial model (in this case adopting the theoretical Wagner’s function but aerodynamic
coefficients referred to the real profile) gives an error of 10% in velocity and 9% in frequency, then
in good agreement with the experimental results.

5.2. Streamlined bridge deck section

As example, a streamlined symmetric bridge deck section is analyzed, with a B/D = 12.5 ratio. Its
dynamic behavior is analyzed by varying the coefficients of the indicial functions, analyzing how
the value of the parameters can affect influence the motion of the section. Geometric and inertial
properties of the section are shown in Table 4.

The chosen indicial function coefficients are referred to the Tsurumi-Fairway bridge cross-section,
already studied in Caracoglia and Jones (2003�, Sarkar, et al. �1994�, Scanlan �2000). The following
values are assigned to the aerodynamic coefficients: dCL(α ) /dα = -3.370, dCM (α)/dα = 0.943.

The values of the indicial function coefficients are recalled in Table 5. The a0 coefficient is set up

Table 3 Thin airfoil flutter speed

Flutter analysis method Ucrit [m/s] ωcrit [rad/s] Ured, crit

Theoretical eigenvalues analysis 7.26 10.46 27.26
Indicial functions numerical simulation 8.10 10.56 30.13
Wind tunnel tests 8.80 11.30 30.58

Table 4 Characteristics of the bridge deck section-model

l = 0.920 m b = 0.1875 m ωy = 36.88 rad/s m = 3.738 kg/m ζy = 0.0018

D = 0.03 m B = 0.375 m ωα = 52.15 rad/s I = 0.03609 kgm2/m ζα = 0.0028

Table 5 Tsurumi Fairway Bridge indicial functions coefficients

IF a1 b1

ΦLy 3.035 1.316

a2 b2 a3 b3 a4 b4

ΦLα -1.868 1.978 0.784 0.559 -0.334 0.101

a5 b5

ΦMy 0.829 0.348

a6 b6

ΦMα 0.305 0.390
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to 1 in every case.
Qualitative analyses in the phase plane and time domain simulations are addressed. To quantify

the sensitivity of the motion to the different parameters, a proper interval of variation of such
parameters is selected and different analyses are performed. In fact, the experimental quantities that need
to be extracted to define the load model can be affected by uncertainties, because of the scaling of
the experimental set-up and of the measurement instruments. It is then interesting to have an idea of
how and how much a variation in the parameters can affect the solution of the dynamic problem.

In this case, only the variation of indicial function coefficients is accounted for. The influence of
the variation of aerodynamic coefficients is not taken into account, at the present stage, considering
that only a small variation is expected. Moreover, in the framework of a different load model (Borri
Costa 2004), it is shown that a small influence of such parameters can exist, especially in the region
of flutter instability.

5.2.1. Parametric analyses

For each coefficient of indicial functions, a variation of 10% around the assigned values is
considered. The amplitude ± 10% of variation of the coefficients is in accord with the safe
evaluation of possible experimental errors.

All the coefficients of the indicial functions are varied in the same interval. Different results arise
for different functions.

The indicial function ΦLy is considered first. This function is described by means of only one
exponential group, characterized by the pair of coefficients (a1, b1).

Preliminary analyses are performed with equal velocity of the oncoming flow U = 8.10 m/s and
following initial conditions assigned on displacements and velocities: [ y0 = 0.1 m, α0 = 0.1 rad, u0 =
0.1 m/s, v0 = 0.1 rad/s]. Three different values of the a1 coefficient are considered, respectively at
the bottom, in the center, and at the end of the 10% amplitude interval. In this case, both the
amplitude of displacements and stability of the system are affected by the variation of the coefficients.

Precisely, in all three phase portraits, corresponding to the relevant values of the parameter, a
regular limit cycle can be identified for the y displacement, with respect to the vertical velocity (Fig.
3), while the plot of the α displacement versus the rotational velocity (Fig. 4) is more irregular.
Both the oscillations are divergent. The relationship between the vertical displacement and the rotation is
plotted in Fig. 5, evidencing a boundary in the y direction. The variation of ΦLy coefficients affects
particularly the vertical motion. A minor influence is observed on the rotation of the section.

Fig. 3 y -  phase diagrams (1−a1(ΦLy) = 2.732, 2−a1(ΦLy) = 3.035, 3−a1(ΦLy) = 3.339)y·
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In Fig. 6, the time domain plots evidence that a ±10% variation of the a1 coefficient gives rise to
both a diverging and a decaying motion.

In the same manner, three different values of the b1 coefficient are considered, respectively at
the bottom, in the center and at the end of the 10% amplitude interval. Also in this case, the
amplitude of displacements and the stability of the system are affected by the variation of the
parameter (Fig. 7).

A more refined analysis, utilizing more than three values of the parameter of interest (in this case
a1 and b1), is performed, to follow the amplitude reached by the two DOFs and to evidence the
corresponding relationships parameter-amplitude, in particular their linear or non-linear nature.

The main information obtained is again that the oscillation amplitude is strongly influenced by the
values of a1 and b1 coefficients: in Fig. 8(a) and Fig. 8(b), the amplitude of the two DOFs is
normalized with respect to the maximum of the displacement occurring at the first cycle of

Fig. 4 α −  phase diagrams (1−a1(ΦLy) = 2.732, 2−a1(ΦLy) = 3.035, 3−a1(ΦLy) = 3.339)α·

Fig. 5 y − α phase diagrams (1−a1(ΦLy) = 2.732, 2−a1(ΦLy) = 3.035, 3−a1(ΦLy) = 3.339)

Fig. 6 Time evolution of system (1−a1(ΦLy) = 2.732, 2−a1(ΦLy) = 3.035, 3−a1(ΦLy) = 3.339)
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oscillation. As the a1 coefficient grows, the amplitude of the vertical displacements y decreases, in the
same manner as the amplitude of motion increases as the b1 coefficient grows, that is almost linearly.

Relative errors are calculated, observing that a 10% variation of a1 and b1 coefficients provides,
respectively, a 15% and a 10% variation in the ratio y/ymax, while effects decrease to 7% and 9% in
the case of α /α max .

In addition, a spectral analysis of the system is performed, to compare the frequency components
being involved in the motion with different sets of parameters. The natural frequencies are clearly
identified, evidencing but slight differences for variation of a1 and b1 coefficients. Spectral analyses
performed with different values of the a1 parameter are shown in Fig. 9.

The function ΦMy is described by means of three exponentials, with the pairs of coefficients (a2,
b2), (a3, b3) and (a4, b4). The effect of this function on the amplitude is very small.

Fig. 7 Time evolution of system (1−b1(ΦLy) = 1.184, 2−b1(ΦLy) = 1.316, 3−b1(ΦLy) = 1.448)

(a) Behavior of the two degrees of freedom of the section, varying the parameter a1(ΦLy)

(b) Behavior of the two degrees of freedom of the section, varying the parameter b1(ΦLy)

Fig. 8 (a) Behavior of the two degrees of freedom of the section, varying the parameter a1(ΦLy) and (b)
Behavior of the two degrees of freedom of the section, varying the parameter b1(ΦLy)
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An interesting comparison concerns results obtained by means of simplified expressions of ΦMy,

with only one (a2, b2) or two exponential groups ((a2, b2) and (a3, b3)). The oscillation amplitude is
clearly influenced by a different expression of the function. As an example, time domain plot and
phase portrait of the vertical displacement are shown (Fig. 10 and Fig. 11).

The functions related to the variation of the angle of attack ΦLα and ΦMα are still described by
means of one exponential group, respectively with the pairs of coefficients (a5, b5) and (a6, b6). The
effect of the variation of coefficients is negligible on the oscillation amplitude and similar to the
effect due to variation in ΦMy.

Fig. 9 PSD analysis (1−a1(ΦLy) = 2.732, 2−a1(ΦLy) = 3.035, 3−a1(ΦLy) = 3.339)

Fig. 10 y displacement vs time: 1−ΦMy (a2, b2), 2−ΦMy ((a2, b2), (a3, b3)), 3−ΦMy ((a2, b2), (a3, b3), (a4, b4))

Fig. 11 y displacement vs u: 1−ΦMy (a2, b2), 2−ΦMy ((a2, b2), (a3, b3)), 3−ΦMy ((a2, b2), (a3, b3), (a4, b4))
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5.2.2. Limit cases

Parallel analyses are performed to evaluate the behavior of the cross-section with different type of
indicial loads, considering the limit cases obtained setting to zero the unsteady contributions, that is
the exponentials. Also in this case, the prominent action of the ΦLy function is evident, being the
flutter velocity decided by the values of the corresponding coefficients. The aeroelastic vertical
damping related to the ΦLy function has a strong effect on the section dynamics, increasing
dramatically the critical threshold. As an example, in Fig. 12, the time history of the vertical
displacement is compared for two cases: the first one represents the y displacement calculated with
the unsteady contribution of all four indicial functions, while the second one shows the same
displacement with the unsteady contribution of the sole ΦLy function, evaluating as quasi-steady the
terms related to the other functions.

6. Conclusions

In this paper an indicial function model to describe aeroelastic wind loads on a cross-section of a
bridge is presented and used to perform parametric analyses. A first study is developed in order to
evaluate the influence of the coefficients of the indicial functions on the dynamic behavior of a
bridge deck cross-section. The influence of such parameters is found to be mainly on the amplitude
of the oscillation, and then, as a consequence, on the critical flutter speed. The main influence is
recognized in the ΦLy function, playing its major role in defining the critical threshold, at least in
the case of a streamlined section. This aspect is put in evidence also by the examination of limit
cases, to characterize the cross-section dynamics by separating an unsteady and a quasi-steady part
in the excitation. The main importance of the lift indicial function is confirmed.

This type of analysis can represent an interesting tool to characterize the expected behavior of the
section and can be easily extended to different sections and different groups of indicial functions.
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