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Spatial extrapolation of pressure time series on low 
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Abstract. This paper presents a methodology for spatial extrapolation of wind-induced pressure time
series from a corner bay to roof locations on a low building away from the corner through the application
of proper orthogonal decomposition (POD). The approach is based on the concept that pressure time
series in the far field can be approximated as a linear combination of a series of modes and principal
coordinates, where the modes are extracted from the full roof pressure field of an aerodynamically similar
building and the principal coordinates are calculated from data at the leading corner bay only. The reliability of
the extrapolation for uplift time series in nine bays for a cornering wind direction was examined. It is
shown that POD can extrapolate reasonably accurately to bays near the leading corner, given the first three
modes, but the extrapolation degrades further from the corner bay as the spatial correlations decrease.

Keywords: proper orthogonal decomposition; extrapolation; pressure time series; low-rise buildings; data-
base-assisted design.

1. Introduction

Surface pressure fluctuations on bluff bodies (such as low buildings) have complex temporal and
spatial features due to flow separation and turbulence. As a spatio-temporal description of a random
field, the proper orthogonal decomposition technique (POD) provides a unique tool to represent the
fluctuating pressure field. This has many practical uses related to determining structural loads for
engineering analyses or the extraction of spatial and temporal features for better physical interpretations.
The original idea of POD appears to be independently developed by several people including Kosambi
(1943), Loève (1945), Karhunen (1946), Pougachev (1953) and Obukhov (1954), as noted by Lumley
(1970). POD is also known as the Karhunen-Loève Expansion (Loève 1978) or Principal Component
Analysis (Jolliffe 1986), and has been widely applied to analyze random fields for the purposes of
data reduction, image compression, and feature extraction in a variety of disciplines. In fluid
mechanics, POD was first introduced in the context of turbulence by Lumley (1967) to extract organized
(i.e., coherent) structures of inhomogeneous turbulent flow fields. Since then, it has been successfully
used to investigate coherent structures in many turbulent flows including jets, wakes, shear layers
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and boundary layers (e.g., Lumley 1981, Glauser, et al. 1987, Berkooz, et al. 1993). In wind
engineering, the first application for the representation of pressure fluctuations is attributed to
Armitt (1968). Many applications include those of Kareem and Cermak (1984), Holmes (1990), Ho
(1992), Letchford and Mehta (1993), Davenport (1995), Bienkiewicz, et al. (1995), Tamura, et al. (1997,
1999), Holmes, et al. (1997), Jeong, et al. (2000), and so on. Among these examples, POD was mainly
used for extracting orthogonal modes from the random field for structural load analyses. 

Data reduction, interpolation and extrapolation are important issues in the use of aerodynamic
databases for design of buildings. The concept of database-assisted design (DAD) would make
direct use of pressure time series from aerodynamic databases to perform numerical structural
analyses of wind loads on low buildings (e.g., Simiu and Stathopoulos 1997, Rigato, et al. 2001,
Whalen, et al. 2002). Since no aerodynamic database could ever be complete, and designers need
freedom to choose building shapes, we have been addressing many issues pertaining to the
interpolation and extrapolation of pressure time series on low buildings to make DAD practically
feasible. This work has been recently summarized in Kopp, et al. (2003), with details given in
Chen, et al. (2002, 2003a, 2003b, 2003c).

The present work is motivated by different, but related issues. We had experimental data from a
corner panel on the roof of a generic low building. These data, which included more than 700
pressure taps in a corner panel of an equivalent full-scale area of 12 ft by 25 ft (3.7 m by 7.6 m),
were used in a numerical (finite element) analysis of the structural response to the roof loads (Ali
and Senseny 2003). No data existed outside of the panel area and questions arose as to the
boundary effects and the effects of not loading adjacent panels. Since much effort had already gone
into analyzing these particular data, the idea of extrapolating the existing data to areas outside the
corner panel using only the corner panel data, was examined herein. Spatial extrapolation, to our
knowledge, has not been done with POD, though Delville, et al. (2000) use POD and linear
stochastic estimation (LSE) to interface with direct numerical simulations of turbulent mixing
layers. The main objective of this paper is to develop a POD-based approach for extrapolation of
pressure time series from a corner bay to other bays on a generic low building.

The present work also has a secondary objective. In the literature, it is found that there is debate
over whether or not to use the spatial correlation matrix with or without the mean values included
to extract modes from a random pressure field in POD analysis. Both ways are mathematically
valid, but have different physical interpretations (Tamura, et al. 1999, Chatterjee 2000). Traditionally,
researchers in fluid mechanics prefer to analyze velocity fluctuations (i.e., velocity time series
without inclusion of mean value components), and thus the covariance matrix is employed. In
contrast, in wind engineering, many researchers (e.g., Davenport 1995, Bienkiewicz, et al. 1995, Ho
1992), though not all, directly decompose the random pressure field with the inclusion of mean
values. With this concern, Tamura, et al. (1999) concluded that the covariance matrix (i.e.,
fluctuations only) should be used because the distortion of the mode shapes leads to incorrect
understanding of the underlying features of the data and flow field. However, Ferré and Giralt
(1993) pointed out that if the features of the data are not naturally orthogonal, and there is no
reason to assume they are, there will be a distortion and misinterpretation of the results. It was not
clear to us, a priori, how these considerations would affect reconstruction and extrapolation, so the
issue is also examined in the present context.
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2. Review of proper orthogonal decomposition and reconstruction

2.1. Eigenvalue problem analysis

In POD analysis, spatially deterministic modes, Φ (x, y), are extracted. These modes are “most
similar” to the ensemble of a random field, on average, such that they have the largest mean-square
projection on the random field (Lumley 1967). Based on this definition, maximizing the inner
product (i.e., projection) between modes and surface pressure field, Cp(x, y ; t), in the mean-square
sense, leads to the Fredholm integral eigenvalue problem (Loève 1978, Lumley 1967, Armitt 1968):

(1)

where the kernel C  is defined as the two-point (zero time lag) spatial correlation
between locations (x, y) and ,

(2)

λ is an eigenvalue, Φ(x, y) is the corresponding eigenvector (i.e., mode), and the integral is over the
whole pressure field. The rigorous derivation of the above eigenvalue problem function can be
found in Loève (1978), and is also discussed by Lumley (1967) for turbulent velocity fields, and
Armitt (1968), Bienkiewicz, et al. (1995) and Tamura, et al. (1999) for pressure fields. The modes
can be determined from the solution of this integral eigenvalue problem.

By performing a numeric integration with a rectangular quadrature rule (Baker 1977, Glauser, et al.
1987, Jeong, et al. 2000), Eq. (1) can be written in discrete terms as:

(3)

where  is the tributary area associated with the i th tap, and N is the number of
pressure time series used in the ensemble of the pressure field. By setting j =1, 2, ..., N, Eq. (3) can
be written in a matrix format as:

(4)

where , [C] is the correlation matrix, and [∆A] is a diagonal matrix, whose
element ∆Ai represents the tributary area of the i th tap.

For a uniform grid (the simplest case), [Cnu] is a real symmetric matrix (i.e., a Hermitian matrix)
since [C] is a real symmetric matrix and [∆A] is a scalar matrix. Hence, the eigenvalue problem
function (Eq. (4)), which is defined by a Hermitian matrix, always give N numerically different real
eigenvalues and N linearly independent and orthogonal eigenvectors (Kreyszig 1993). Eq. (4) can
also be simplified into the equation directly defined by the correlation matrix (since [∆A] is a scalar
matrix), as:

(5)

where , ∆a is the tributary area of each tap. However, for a non-uniform tap grid, [Cnu]

∫∫ C x y; x ′ y ′, ,( )Φ x ′ y ′,( )dx′dy ′ λΦ x y,( )=

x y;x ′ y, ′,( )
x ′ y ′,( )

C x y;x ′ y, ′,( ) Cp x y;t,( )Cp x ′ y ′, ;t( )=

C
i 1=

N

∑ xj yj xi yi,;,( )Φ xi yi,( )∆Ai λΦ xj yj,( )=

∆Ai ∆xi∆yi=

Cnu[ ] ΦΦ{ } λ Φ{ }=

Cnu[ ] C[ ] ∆∆A[ ]=

C[ ] ΦΦ{ } λ ′ ΦΦ{ }=

λ ′ λ ∆a⁄=
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is not a symmetric matrix since each diagonal element ∆Ai is not the same (this indicates that Eq.
(4) may not produce N numerically different real eigenvalues and orthogonal eigenvectors). Thus,
[Cnu] needs to be transformed into a Hermitian matrix (e.g., Glauser, et al. 1987, Jeong, et al.
2000), as

(6)

where  is an invertible diagonal matrix, and  is a real
symmetric matrix. This process is called a similarity transformation (Kreyszig 1993). According to
the properties of similar matrices, [Cnu] and [D] have the same characteristic polynomials and
eigenvalues (which are N numerically different real values since [D] is Hermitian). Furthermore, the
eigenvectors have the following relationship (Kreyszig 1993):

(7)

 can be determined by solving the following eigenvalue problem defined by the Hermitian
matrix [D]:

(8)

Then, substituting  into Eq. (7), the eigenvector  defined by  in Eq. (4) can be
recovered for non-evenly distributed pressure taps.

2.2. Reconstruction of pressure field

Having determined the modes, the corresponding time-dependent principal coordinates can be
calculated from the whole pressure field due to the orthogonality of the modes, as:

(9)

By replacing the integral with a rectangular quadrature rule, this yields the numerical approximation,

(10)

Thus, with the first few modes and the corresponding principal coordinates, the original pressure

Cnu( ) ∆∆A[ ]
1– ∆A[ ] C[ ] ∆∆A[ ]{ } ∆∆A[ ]=

T[ ] 1– D[ ] T[ ]=

T[ ] ∆∆A[ ]= D[ ] ∆∆A[ ] C[ ] ∆∆A[ ]=

Φ{ } T[ ] 1– ΦD{ }=

∆A[ ] 1– ΦD{ }=

ΦD{ }

D[ ] ΦΦD{ } λ ΦD{ }=

ΦD{ } ΦΦ{ } Cnu[ ]

ai t( )
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Φ i
2∫∫ x y,( )dxdy

--------------------------------------------------------------=

ai t( )

Cp
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∑ xj yj, ;t( )Φi xj yj,( )∆Aj

Φi
2 xj yj,( )∆Aj

j 1=

N

∑
---------------------------------------------------------------------=
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field can be reconstructed if the majority of the fluctuation energy is contained in the first few
modes, i.e., 

(11)

where M < N.
In order to evaluate the overall efficiency of the modes in representing the pressure field, the

average fluctuating energy over the ensemble is defined as the total sum of the mean-square of the
fluctuating pressure field as (e.g., Tamura, et al. 1999),

(12)

3. Extrapolation methodology

As implied by Eq. (11), pressure time series can be reconstructed as the product of the principal
coordinates and the mode shapes. The proposed extrapolation technique is based on this equation,
but with approximate forms for both ai(t) and Φi (x, y). The approximate form of the principal
coordinates will be called  while the approximate mode shape is Φi

ref(x, y). We will discuss
 first.

Eq. (10) shows that ai(t) for each mode i is the product of the area-weighted pressure coefficient
and the eigenvector at a point, summed over all taps and normalized by the summation of the area-
weighted eigenvector squared. Now, if every pressure coefficient and the magnitude of the
eigenvector at the spatial (tap) locations were nearly equal, all would participate equally in the
summation. However, if the spatial distributions were spatially non-uniform, one may be able to
choose a subset of spatial locations (taps) and neglect the remainder without serious degradation of
the results. It is well known that the latter situation is true for wind-induced pressures on low
buildings, particularly for cornering winds where most of the energy is contained near the leading
corner of the roof. Therefore, the approximation,

(13)

or, in discretized form,

(14)

where the numerical integration is performed over a subset of taps, T, may be expected to be a
reasonable approximation. Note that the normalization in the denominator of Eq. (14) is also over
the same subset of tap locations.
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In order to extrapolate to regions without pressure taps, approximate mode shapes need to be
obtained. In order to perform such an approximation, the first few mode shapes cannot be random
in the sense that they vary from building to building in an unknown manner. Rather, they must have
some aerodynamic basis so that mode shapes obtained from an “aerodynamically similar” building
could be used. Fortunately, for low buildings, it is known that, at least for the dominant modes, they
are related to building aerodynamics (Baker 1999, Bekele 2004). Chen, et al. (2003a, 2003d)
address the concept of aerodynamically similar buildings for the purpose of interpolation within the
NIST aerodynamic database for DAD. This will be discussed further below.

Also related to the approximate mode shapes is the fact that they are to be used together with
principal coordinates, , so that they should not be different in shape than those for the subset
of taps used. In other words, the mode shape in the corner bay should be nearly the same if it is
calculated using the entire roof or only the corner bay. Again, this is expected to hold for at least
the first few modes that are governed by the aerodynamics.

Then, the pressure time series in an unknown far field, , can be estimated from the
existing pressure taps (subset, T ) and the first few modes, M, as

(15)

In summary, the procedure is as follows. Pressure time history at a particular location is estimated
as a series expansion of modes and approximate principal coordinates. The modes are determined
from a “reference” building by solving the eigenvalue problem defined by Eqs. (7) and (8), while
the approximate principal coordinates are calculated from Eq. (14) using the known taps in the
corner panel. The predicted pressure time series can be used to calculate structural loads in a desired
region, or they can be input to a structural analysis program. 

4. Experimental data

One building geometry from the National Institute of Standards and Technology (NIST)
aerodynamic database (Ho, et al. 2004) is employed to test the extrapolation methodology. The
database of pressure time series was acquired from a series of 1:100 scale, gable-roofed, generic
low building models in the Boundary Layer Wind Tunnel II at the University of Western Ontario.
The building has a full-scale plan dimension of 125 ft (38.1 m) by 80 ft (24.4 m) with a roof slope
of 1 in 12 and varying roof heights of 16, 24, 32 and 40 ft (4.9, 7.3, 9.8 and 12.2 m). The building
dimensions and pressure tap layout of the roof surface are shown in Fig. 1. A total of 665 pressure
taps were instrumented over the entire surface of the building with 335 non-uniformly distributed
taps on the roof. Note that in the current work, a bay is defined as a full-scale area of 25 ft (7.6 m)
by 40 ft (12.2 m) and that this is not the standard bay definition used by structural engineers. The
bay located at the leading corner was instrumented with 120 taps.

Pressure time series were measured for four roof heights, 37 wind angles over a 180o range at 5o

interval, and two upstream terrains using a high-speed solid state pressure scanning system. Two
target upstream terrains (open country and suburban) were modeled in the wind tunnel model tests.
The characteristics of the wind tunnel flow matched the Exposure C (open country) and Exposure B
(suburban) described in ASCE 7-98 (2000). The simulated exposures have equivalent roughness
lengths, z0, of 0.03 m and 0.3 m, respectively, for open country and suburban terrain. The pressure

ai
n t( )

Ĉp x y;t,( )

Ĉp x y;t,( ) ai
n

i 1=

M

∑ t( )Φ i
ref x y,( )=
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signals were sampled at 500 Hz for 100 seconds and were measured essentially simultaneously.
Assuming that the wind tunnel/full-scale velocity ratio is 1:3, the corresponding full-scale sampling

Fig. 1 (a) The NIST building model, and (b) pressure tap layout of the roof surface and the definitions of
bays and wind direction
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frequency is 15 Hz. Each time series record (of 50000 data points) is then equivalent to 56 minutes
in full-scale. The reference wind tunnel speed for the measurements was 45 ft/s (13.7 m/s).
Typically, mean eave height speeds were about 64% of this. Pressure time series in the aerodynamic
database were corrected for residual non-simultaneity and were digitally low-pass filtered at 200 Hz.
All pressure coefficients used herein are referenced to the mean dynamic pressure in the uniform
flow at the eaves height. A more complete description of the wind tunnel experiments can be
obtained in Ho, et al. (2004).

In this study, the experimental data from a structurally important cornering wind direction (320o)
in open country terrain were employed in the POD analysis. The building with a roof height of 32 ft
(9.8 m) is used as the reference building, from which the modes will be extracted; the building with
a roof height of 24 ft (7.3 m) is used as the new building, where the far field pressure data will be
extrapolated from the corner bay.

5. Results and discussion

5.1. Estimation of modes

For extraction of modes, there are two different possibilities: using the spatial correlation matrix
calculated from the pressure field with or without inclusion of mean value components. Based on Eq. (1),
the modes can be determined from the solution of the eigenvalue problem functions using either of them.
In essence, both solutions are mathematically valid, although the estimated modes would be quite
different and thus lead to different interpretation of results (Tamura, et al. 1999, Chatterjee 2000).

Since pressure coefficients on the roof were simultaneously acquired from 335 pressure taps, the
eigenvalues and modes were obtained by solving the eigenvalue problem defined by a 335 ×335
correlation matrix. Table 1 shows the relative contributions from the first 10 eigenvalues computed
for the surface pressure field with and without the mean values for a wind direction of 320o. As
shown by other authors (e.g., Tamura, et al. 1999), this leads to significantly different results. With the
mean included, the proportion of the first mode to the total mean square is 91%, which is much larger
than that from the covariance matrix (32.5%). This difference is caused by including the mean
values in the calculation of the mean square, or “energy”, so that the first mode is dominated by the
mean field when it is included in the calculation (Tamura, et al. 1999). However, both cases have similar
eigenvalues for the following several modes, although their relative contributions differ. Figs. 2 and 3
depict the first three modes. Interestingly, there are no large differences (except right in the corner
for mode 1) between the shapes and the normalized magnitudes of spatial modes from both cases. It
is observed that the first and third modes are approximately symmetric about a quartering line on
the roof along the incident wind direction, while the second mode is observed to be antisymmetric.

Fig. 4 depicts the distributions of the mean and standard deviation (or root-mean-square of the
fluctuations, rms.) of pressure coefficient time series on the roof surface. There is a striking
similarity between the first mode from the correlation matrix with the mean included (Fig. 2(a)) and
the covariance matrix (Fig. 3(a)), the mean distribution (Fig. 4(a)) and the rms. distribution (Fig.
4(b)). This is clearly the explanation for the very high contribution of the first mode with the
correlation matrix with the mean included (91%) where both the mean field and a significant
fraction of the fluctuating field contribute at the same time. The “footprint” of the mean pressure
distribution due to the corner vortices appears to be thinner than the rms. distribution which is
reflected in mode 1 calculated both ways. The wider rms. distribution is reflected in modes 2 and 3,
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Table 1 Comparison of the first 10 eigenvalues and contributions to the total fluctuating energy on the NIST
building with a roof height of 32 ft (9.8 m) for a wind direction of 320o in open country terrain

Mean Included Without Mean

Mode Mean
square1

Eigenvalue 
(modal energy)

Accumulated
Energy

Mean
square

Eigenvalue
(modal energy)

Accumulated
Energy

1 524442.9 91.02% 91.02% 24725.8 32.53% 32.53%
2 16922.8 2.94% 93.95% 16652.4 21.91% 54.44%
3 5465.4 0.95% 94.90% 5464.3 7.19% 61.63%
4 3745.7 0.65% 95.55% 3713.6 4.89% 66.52%
5 2328.1 0.40% 95.96% 2249.0 2.96% 69.48%
6 1848.3 0.32% 96.28% 1847.2 2.43% 71.91%
7 1567.5 0.27% 96.55% 1559.0 2.05% 73.96%
8 1445.3 0.25% 96.80% 1442.1 1.90% 75.85%
9 1025.4 0.18% 96.98% 1020.7 1.34% 77.20%

10 985.8 0.17% 97.15% 974.1 1.28% 78.48%
1Note that the mean square here is not the standard deviation squared (or rms. squared), since the mean
values are included.

Fig. 2 Contour distributions of (a) 1st, (b) 2nd and (c) 3rd modes calculated from correlation matrix with the
mean values included on the NIST building with a roof height of 32 ft (9.8 m) for a wind direction of
320o in open country terrain
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though mode 2 being antisymmetric cannot represent the rms. by itself.
Fig. 5 depicts modes 1-3 from the covariance matrix (i.e., fluctuations only), but considering only

the 120 taps in the corner bay. These are quite similar to the results presented in Fig. 3, giving some
preliminary justification to the extrapolation methodology.

Geometric similarity and the use of non-dimensional groups is, of course, the cornerstone of wind

Fig. 3 Contour distributions of (a) 1st, (b) 2nd and (c) 3rd modes calculated from covariance matrix (fluctuations
only) on the NIST building with a roof height of 32 ft (9.8 m) for a wind direction of 320o in open
country terrain

Fig. 4 Contour distributions of (a) mean and (b) rms. pressure coefficients on the NIST building with a roof
height of 32 ft (9.8 m) for a wind direction of 320o in open country terrain
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Fig. 5 Contour distributions of (a) 1st, (b) 2nd and (c) 3rd modes calculated from only the corner bay pressure
field (using the covariance matrix) on the NIST building with a roof height of 32 ft (9.8 m) for a wind
direction of 320o in open country terrain

tunnel testing. Chen, et al. (2003a, 2003d) demonstrated that true geometric and flow similarity can
be relaxed for “small” perturbations and used re-scaled time series from the current 32 ft (9.8 m)
high building to estimate those on the 24ft (7.3m) high building. Given their discussion, the mode
shapes of the 24 ft (7.3 m) building are assumed to be close enough to use for extrapolation here.
Fig. 6, which shows the first three mode shapes, indicates that they are similar to those for the 32 ft
(9.8 m) building (cf., Fig. 3), again giving some preliminary justification for the extrapolation.

5.2. Reconstruction of pressure field on a reference building

This section discusses the performance of POD in reconstructing the pressure field with the first
few modes by both including and excluding the mean values. This basic reconstruction is important
for benchmarking how well extrapolation may possibly work. A point pressure time series of a
corner tap (Tap #702) and the area-averaged uplift time series of Bays 3, 5, 6 and 10 on the NIST
building with a roof height of 32 ft (9.8 m) are considered as examples (see Fig. 1 for the
definitions of the corner tap and roof zones). Bays 5 and 10, which are located away from the
leading corner and usually have low fluctuation energy (i.e., characterized with low rms. or mean-
square values), are expected to be more difficult regions for reconstruction due to low spatial
correlations between these regions. 

Table 2 summarizes the reconstruction statistics of a point pressure (Tap #702) and uplift time
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series of Bays 3, 5, 6 and 10 for a wind direction of 320o with and without the mean included in
the analysis. The comparison is at the level of basic statistics including means, rms. values, peak
suctions, and correlations, while the notation POD-i denotes that the first i modes are used for the
reconstruction. It is noted that the mean values are not compared in the case of using covariance
matrix since the pressure fluctuations have zero means (by definition). In this case, the mean values
can be reconstructed separately using other approaches, e.g., linear stochastic estimation (e.g., Chen,
et al. 2003b) or artificial neural networks (e.g., Chen, et al. 2003c), but this is beyond the scope of
the present study. 

As shown in Table 2, in both cases, the greater the number of modes that are used, the better the
reconstruction. Also, both of the methods perform better in the regions with larger fluctuation
energy (i.e., larger rms.); for bays further from the leading corner, the performance is relatively
poorer using only 1 or 2 modes. Not unexpectedly, it is also found that the mean value of the
pressure field can be captured accurately with a maximum error of less than a few percent, given
only the first mode. 

Interestingly, the POD analysis including the mean values appears to exhibit similar overall
performance for reconstruction of the corner pressure tap’s time series and bay uplift time histories,
as compared to using the covariance matrix. For some locations, it is slightly better, for others,
slightly worse. For example, in Bay 6 (located in the high energy region), an excellent representation of
the uplift time series can be obtained using mean values with only one mode, where the error in the
reconstructed rms. is -6.4%, as opposed to the much larger error of -24% in the case of using

Fig. 6 Contour distributions of (a) 1st, (b) 2nd and (c) 3rd modes calculated from the covariance matrix on the
NIST building with a roof height of 24 ft (7.3 m) for a wind direction of 320o in open country terrain
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covariance matrix. Opposite examples also occur. Fig. 7 shows autospectra of the measured and
reconstructed uplift time series of Bays 5 and 6. As shown, the reconstructed autospectra are
basically similar, consistent with the above comparison of statistics. Based on the above results, it
can be concluded that the POD approach using only one or two modes, with or without mean
values, yields reasonable results although the design-related peak values are somewhat underestimated.

5.3. Extrapolation of existing pressures to far field on a new building

Following the computational steps discussed in Section 3, pressure time series in bays adjacent to
the corner bay on the NIST building with a roof height of 24 ft (7.3 m) are extrapolated with the

Table 2 Comparison of the performance of the POD analysis for reconstructing pressure time series of Tap
#702 and the uplift time series of Bays 3, 5, 6 and 10 on the NIST building with a roof height 32 ft
(9.8 m) for a wind direction of 320o in open country terrain. “CorrCoef ” is the correlation coefficient
between the real and reconstructed fluctuations

Zone Case
Correlation matrix with inclusion of means Covariance matrix

without inclusion of means

Mean Rms. Min. CorrCoef Rms. Min.* CorrCoef

Bay 3

Real -0.5065 0.1468 -1.3887 0.1468 -1.3887
POD-1 -0.5072 0.1117 -0.9866 0.78 0.1244 -1.0855 0.85
Error (%) 0.14% -23.91% -28.96% -15.26% -21.83%
POD-2 -0.5061 0.1382 -1.2053 0.93 0.1364 -1.1974 0.93
Error (%) -0.08% -5.86% -13.21% -7.08% -13.78%

Bay 5

Real -0.3996 0.1148 -0.9972 0.1148 -0.9972
POD-1 -0.3984 0.088 -0.7749 0.72 0.088 -0.8091 0.77
Error (%) -0.30% -23.34% -22.29% -23.34% -18.86%
POD-2 -0.398 0.1028 -0.9161 0.83 0.0949 -0.8803 0.83
Error (%) -0.40% -10.45% -8.13% -17.33% -11.72%

Bay 6

Real -0.8877 0.2079 -2.1502 0.2079 -2.1502
POD-1 -0.8834 0.1946 -1.7183 0.84 0.1577 -1.6216 0.76
Error (%) -0.48% -6.40% -20.09% -24.15% -24.58%
POD-2 -0.8849 0.2113 -1.8983 0.96 0.1989 -1.8589 0.96
Error (%) -0.32% 1.64% -11.72% -4.33% -13.55%

Bay 10

Real -0.2719 0.0793 -0.6246 0.0793 -0.6246
POD-1 -0.2717 0.0599 -0.5286 0.74 0.0597 -0.5495 0.75
Error (%) -0.07% -24.46% -15.37% -24.72% -12.02%
POD-2 -0.2715 0.0623 -0.5687 0.76 0.0599 -0.5593 0.75
Error (%) -0.15% -21.44% -8.95% -24.46% -10.45%

Tap#702

Real -1.6822 0.6176 -7.5350 0.6176 -7.5350
POD-1 -1.682 0.3704 -3.2716 0.60 0.3438 -3.2816 0.56
Error (%) -0.01% -40.03% -56.58% -44.33% -56.45%
POD-2 -1.6846 0.3946 -3.5361 0.66 0.4081 -3.6011 0.66
Error (%) 0.14% -36.11% -53.07% -33.92% -52.21%

Note that to obtain the minima using the covariance matrix, the actual mean values are used.
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reference modes and approximate principal coordinates according to Eqs. (14)-(15), where the
modes are estimated from the pressure field of the NIST building with a roof height of 32 ft (9.8 m).

5.3.1. Determination of approximate principal coordinates

The approximate principal coordinates are calculated from the pressure time series in only the
leading corner bay, not the whole roof, as discussed in Section 3. Since the principal coordinate

 is an approximation, it is necessary to compare them in order to determine how many 
can be included for the extrapolation. This is because the errors between  and ai(t) may be
accumulated into a much larger error if more terms are used (It is noted that this is different from
the reconstruction analysis where the more modes that are used, the better the reconstruction). Thus,
if  is in good agreement with ai(t), this should lead to good extrapolation since the POD is
capable of reconstructing these pressure time series accurately with the first few modes.

The comparison between  and ai(t) is performed on the reference NIST building (with a
roof height of 32 ft (9.8 m)). Tables 3 and 4 summarize the basic statistics for the principal
coordinate time series for the first three modes obtained from the pressure field in the corner bay by
including and excluding mean values, respectively. As can be seen from Table 3, it appears that
only the first approximate principal coordinate, , can be used for the extrapolation when the
mean values are included since only these statistics are close to those of the actual principal
coordinates for the 32 ft (9.8 m) building. The problem is that the mean value, , is significantly in
error for modes 2 and 3, although the rms. is in reasonable agreement. The use of modes 2 and 3 in

 will, therefore, not improve the extrapolation. Hence, we will use only the first mode and
approximate principal coordinate time series for the extrapolation when the mean values are
included.

Table 4 shows reasonable agreement in the statistics of  using the first three modes. Since

ai
n t( ) ai

n t( )
ai

n t( )

ai
n t( )

ai
n t( )

a1
n t( )

ai
n t( )

ai
n t( )

ai
n t( )

Fig. 7 Autospectra of the experimental and reconstructed uplift time series of (a) Bay 5 and (b) Bay 6 with
the first and two modes on the NIST building with a roof height of 32 ft (9.8 m) for a wind direction
of 320o in open country terrain
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 when mean values are excluded, higher order statistics need to be checked. The rms. of
 is reasonably accurate for the first three modes, and better than those obtained when mean

values are included in the analysis. This is likely due to reduced distortion of the mode shapes when
the covariance matrix is used (Tamura, et al. 1999). The higher order statistics also exhibit
reasonable, though not perfect, agreement. Hence, for extrapolation using the covariance matrix
approach, we will use the first three modes.

5.3.2. Performance in extrapolating bay uplift

Table 5 summarizes the basic statistics of the extrapolated and the actual (measured) uplift time
series for Bays 2 ~10 for a wind direction of 320o. It can bee seen that the proposed approach is

ai
n t( ) 0≡

ai
n t( )

Table 3 Comparison of the first three real, ai (t), and approximate, ai
n( t), principal coordinates calculated

using the whole roof and only the corner bay pressures, respectively, on the NIST building with a
roof height 32 ft (9.8 m) for a wind direction of 320o in open country terrain

Principal
Coordinates Mean Rms. Min. Max. Skewness Kurtosis Correlation

Coefficient

1st
a1(t) -707.2354 155.7595 -1375.6381 -173.5038 -0.42 3.11
a1

n ( t) -705.3294 184.1092 -1570.8979 -32.5661 -0.53 3.43 0.89
(Error %) (-0.3%) (18.2%) (14.2%) (-81.2%) (26.2%) (10.3%)

2nd
a2(t) -2.0532 130.0716 -533.0464 564.3378 -0.30 3.14
a2

n( t) -206.7174 138.9110 -936.1574 189.4330 -0.84 3.83 0.89
(Error %) − (6.8%) (75.6%) (-66.4%) (180.0%) (22.0%)

3rd
a3(t) 0.2032 73.9280 -308.3760 394.7820 0.15 3.40
a3

n( t) -70.1026 89.5315 -410.0803 382.1785 0.42 3.93 0.89
(Error %) − (21.1%) (33.0%) (-3.2%) (180.0%) (15.6%)

Mean values are included in the POD analysis.

Table 4 Comparison of the first three real, ai(t), and approximate, ai
n(t), principal coordinates calculated

using the whole roof and only the corner bay pressures, respectively, on the NIST building with a
roof height 32 ft (9.8 m) for a wind direction of 320o in open country terrain using the covariance
matrix in the POD analysis

Principal
Coordinates Mean Rms. Min. Max. Skewness Kurtosis Correlation

Coefficient

1st
a1(t)
a1

n( t)
(Error %)

0
0

157.2443
173.4405
(10.3%)

-731.6159
-793.7094

(8.5%)

532.7662
654.9665
(22.9%)

-0.44
-0.48

(9.1%)

3.17
3.35

(5.7%)
0.91

2nd
a2(t)
a2

n( t)
(Error %)

0
0

129.0442
136.3074
(5.6%)

-477.2116
-328.2273
(-31.2%)

590.5984
725.1479
(22.8%)

0.6
0.89

(48.3%)

3.42
3.95

(15.5%)
0.91

3rd
a3(t)
a3

n( t)
(Error %)

0
0

73.9210
89.4380
(21.0%)

-397.5175
-460.3844
(15.8%)

307.3899
334.3608
(8.8%)

-0.17
-0.46

(170.6%)

3.41
3.99

(17.0%)
0.91
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able to reasonably extrapolate the uplift time series near the corner bay, but appears to have
increasingly larger errors further away from the reference corner both for analyses including and
excluding the mean values. Several observations can be made. First, in terms of mean values, the
approach is capable of accurately predicting the uplift time series in each bay with a maximum
error of less than 10%. Second, in terms of rms. values and peak suctions, the peak (i.e., design)
values usually underestimated (except for bay 6). The extrapolated rms. value was observed to be
lower when using three modes, compared to using only one. So, since only one mode could be used
when mean values were included, the rms. tends to be more accurately estimated. However, this
does not necessarily translate to more accurately determined minima since, for several bays, this

Table 5 Statistics of the extrapolated and measured uplift time series on the NIST building with a roof height
24 ft (7.3 m) for a wind direction of 320o. “CorrCoef *” is the correlation coefficient between the
reference corner bay uplift and extrapolated bay uplift time series, and “CorrCoef ” is the one
between the measured and extrapolated uplift time series for the same bay

Bay Case Mean Rms. Min. CorrCoef CorrCoef*

2
Real -0.4122 0.1385 -1.1198 1 0.67

POD-1 (with mean) -0.4244 0.1166 -0.9459 0.60 0.97
POD-3 (covariance) − 0.1056 -0.9977* 0.87 0.87

3
Real -0.4219 0.1387 -1.1722 1 0.6

POD-1 (with mean) -0.4315 0.1186 -0.9617 0.53 0.97
POD-3 (covariance) − 0.1008 -1.0077* 0.80 0.84

4
Real -0.4212 0.1365 -1.2639 1 0.55

POD-1 (with mean) -0.4259 0.1170 -0.9493 0.50 0.97
POD-3 (covariance) − 0.0957 -0.9692* 0.73 0.85

5
Real -0.3432 0.1099 -0.9478 1 0.53

POD-1 (with mean) -0.3389 0.0931 -0.7554 0.49 0.97
POD-3 (covariance) − 0.0722 -0.7398* 0.67 0.87

6
Real -0.8087 0.2006 -1.7744 1 0.88

POD-1 (with mean) -0.7515 0.2065 -1.6749 0.89 0.97
POD-3 (covariance) − 0.2360 -2.0282* 0.89 0.93

7
Real -0.3277 0.0965 -0.8599 1 0.71

POD-1 (with mean) -0.3224 0.0886 -0.7187 0.64 0.97
POD-3 (covariance) − 0.0811 -0.7102* 0.64 0.99

8
Real -0.2966 0.0904 -0.6809 1 0.68

POD-1 (with mean) -0.2888 0.0794 -0.6437 0.63 0.97
POD-3 (covariance) − 0.0733 -0.6216* 0.68 0.94

9
Real -0.2428 0.0807 -0.5793 1 0.66

POD-1 (with mean) -0.2410 0.0662 -0.5372 0.60 0.97
POD-3 (covariance) − 0.0636 -0.5175* 0.63 0.96

10
Real -0.2350 0.0793 -0.5929 1 0.61

POD-1 (with mean) -0.2312 0.0635 -0.5152 0.55 0.97
POD-3 (covariance) − 0.0560 -0.4791* 0.61 0.96

Note that in the cases where only fluctuations are used, the minima are calculated using the actual mean values.
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statistic is more accurately determined in the analysis excluding mean values.
Third, the clear advantage of the covariance (fluctuations only) approach over that including the

mean values comes when one considers the correlation between the real and extrapolated time
series. The results indicate that the covariance approach using three modes “tracks” the real data
much more accurately. This is indicated in two ways. First, the correlation coefficient between the
real and extrapolated bay uplift time series (see CorrCoef column in Table 5) is usually higher than,
and never less than, that obtained including means in the analysis. Second, the correlation
coefficient between the real (reference) bay 1 uplift time series and the extrapolated (far field) bay
(see CorrCoef * in Table 5) is closer to the true value (except for bay 7). When only one mode is

Fig. 8 (a) A short segment and (b) autospectra of Bay 3 uplift time series for the measured and POD extrapolation
on the NIST building with a roof height of 24 ft (7.3 m) for a wind direction of 320o in open country
terrain
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used, the correlation between the extrapolated far field bays and the reference corner bay is
artificially high, in fact, a value of 0.97 is maintained. Clearly, the extrapolation is following the
fluctuations in the corner bay and loses the effects of turbulence in reducing this correlation. In fact,
for the end bays, the true value drops to 0.53 for bay 5. When three modes are used, the spatial
correlation is lower (e.g., 0.87 for bay 5), again indicating a more realistic tracking of the real data.
This is the main advantage of being able to use more than one mode. Fig. 8 gives a sample of the
results of the extrapolated and measured uplift time series and autospectra in Bay 3 for the wind
direction of 320o.

Fig. 9 shows the correlation coefficients relative to the corner tap #702 for a wind direction of
320o. Clearly, the bay loads in the far field are more highly correlated with the corner bay than
individual taps are with each other. This indicates that the extrapolation approach should only be
used for determining structural load effects and should not be used for local loading analyses.

It should be emphasized once again that the extrapolation technique is only applicable for
buildings whose correlation or covariance matrix is known, since the required modes over the whole
roof are extracted from correlation or covariance matrices. In this study, the correlation matrix on an
“unknown” roof is assumed to be same as that from an aerodynamically similar building. As
discussed before, this assumption is reasonable only if there is small change in geometry, terrain,
boundary layer characteristics, etc., so that the modes calculated accordingly will not change as
well, as discussed in greater detail in Chen, et al. (2003a, 2003d).

6. Conclusions

A POD-based approach has been developed for extrapolation of existing wind pressure time series
from a corner bay to adjacent bays on a low building roof. The technique is based on approximating
both the spatial and temporal decompositions, and then combining these to estimate wind-induced
pressure time series in areas on the surface of the building for which no data exist. The spatial
approximation comes via the mode shapes that are used from an aerodynamically similar building,
for which data exists, and which must cover the surfaces to be extrapolated. The temporal approximation
comes via using a set of time series to estimate the principal coordinates that do not encompass the

Fig. 9 Contour distribution of correlation coefficient relative to a corner Tap #702 on the NIST building with
a roof height of 24 ft (7.3 m) for a wind direction of 320o in open country terrain



Spatial extrapolation of pressure time series on low buildings using proper orthogonal decomposition 391

entire area for which the mode shapes will be used. The following conclusions can be made: 
(1) There are no large differences between the distribution types and magnitudes of the first few

spatial modes obtained by including or excluding mean values in the analysis. With both
ways, similar accuracy in the reconstruction of the time series with the same number of
modes is observed.

(2) The approach using correlation matrix with both inclusion and exclusion of mean values is
able to predict the uplift time series well for regions near the (known) corner, given the first
three modes and the approximated principal coordinates, but the extrapolation performance
degrades further from the corner bay as the spatial correlations decrease. In the case of using
covariance matrix, the mean values have to be predicted separately with other approaches,
e.g., linear stochastic estimation (Chen, et al. 2003b) or artificial neural networks (Chen, et al.
2003c).

(3) Extrapolation is better when using covariance matrix since more modes can be used (three, as
opposed to only one in the case of using correlation matrix with mean included). This leads to
more accurate correlations between the extrapolated and actual measured data. When only one
mode is used, the extrapolated time series tracks the reference data to closely, leading to
artificially large spatial correlations, even though the fluctuation magnitude is underestimated.
This is most likely due to the reduced distortion of the mode shapes when the covariance
matrix is used (Tamura, et al. 1999).
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