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Identification of eighteen flutter derivatives
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Abstract. Wind tunnel experiments are often performed for the identification of aeroelastic parameters
known as flutter derivatives that are necessary for the prediction of flutter instability for flexible
structures. Experimental determination of all the eighteen flutter derivatives for a section model facilitates
complete understanding of the physical mechanism of flutter. However, work in the field of identifying all
the eighteen flutter derivatives using section models with all three degree-of-freedom (DOF) has been
limited. In the current paper, all eighteen flutter derivatives for a streamlined bridge deck and an airfoil
section model were identified by using a new system identification technique, namely, Iterative Least
Squares (ILS) approach. Flutter derivatives of the current bridge and the Tsurumi bridge are compared.
Flutter derivatives related to the lateral DOF have been emphasized. Pseudo-steady theory for predicting
some of the flutter derivatives is verified by comparing with experimental data. The three-DOF suspension
system and the electromagnetic system for providing the initial conditions for free-vibration of the section
model are also discussed.

Keywords: system identification; elastic suspension system; flutter derivatives; wind tunnel testing;
pseudo-steady theory.

1. Introduction

Aeroelasticity refers to the phenomenon wherein aerodynamic forces and structural motions
interact significantly. Flutter is a self-excited oscillation of a structural system that occurs due to
aeroelastic interaction. Flutter speed and frequency of a structure can be calculated by a frequency-
domain method using flutter derivatives that are experimentally obtained from wind-tunnel testing
of section models (Scanlan 1978). Sarkar, Jones, and Scanlan (1994) were successful in identifying
eight flutter derivatives simultaneously from noisy displacement time histories by modified Ibrahim
time domain (MITD) method. Brownjohn and Jakobsen (2001) used Covariance block Hankel
matrix (CBHM) method for parameter extraction of a two-degree-of-freedom (DOF) system. The
CBHM method was also extended to cater for three-DOF, however, the principles were illustrated
for a two-DOF system and eight flutter derivatives were experimentally extracted. Gu, Zhang, and
Xiang (2000) and Zhu, et al. (2002) used an identification method based on unifying least squares
(ULS) theory to extract flutter derivatives of a two-DOF model. Although the ULS method could
theoretically identify all the eighteen flutter derivatives using a three-DOF section model, only eight
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flutter derivatives were extracted due to lack of a more inclusive experimental setup to accommodate
the three-DOF section model.

Identification of all the eighteen flutter derivatives of a streamlined bridge deck was first
attempted by Singh, et al. (1995). They extended the MITD method developed by Sarkar, Jones,
and Scanlan (Sarkar 1992). The trends of some of the indirect flutter derivatives, namely, H6*, A5*,
A6*, P3*, P5*, and P6*, are difficult to predict due to the scatter in the data presented in the plots by
Singh, et al. (1995); for the other flutter derivatives, specific trends are evident from the plots.
Chen, He, and Xiang (2002) used general least-squares theory for identifying eighteen flutter
derivatives of bridge sections. Experimental results were compared to results from computational
fluid dynamics (CFD) methods. At lower reduced velocities, the experimental results were
consistent with the CFD results for the lateral flutter derivatives. At higher velocities, the results of
most lateral derivatives differed between both approaches. When comparing two-DOF and three-
DOF sectional model experiments, good agreement was found for flutter derivatives H1*, H2*, H3*,
A1*, A2*, A3*, but deviations were noted for H4* and A4*.

It is evident from the literature mentioned above that the work in the field of identifying all the
eighteen flutter derivatives for section models is limited and needs further investigation. Efficient
extraction of all the eighteen flutter derivatives requires an effective system identification technique
and a versatile three-DOF elastic suspension system. This motivated the development of a new
system identification method and a versatile three-DOF elastic suspension system which together
are capable of efficiently extracting all the eighteen flutter derivatives for section models involving
different DOF-combination testing. The current paper describes their implementation for extraction
of eighteen flutters derivatives for an airfoil and a bridge deck section model and it mainly
highlights the results of flutter derivatives related to the lateral DOF. The system identification
method involves digital filtering of noisy displacement time histories and numerically generating
their higher derivatives (velocity and acceleration) using finite difference formulation. The current
formulation has the following advantages− (i) a single computer program is capable of extracting
flutter derivatives for various DOF combination cases (e.g., 1-DOF, 2-DOF, and 3-DOF cases), (ii)
effective stiffness and damping matrices are directly obtained from acquired free-vibration
displacement time histories and numerically generated velocity and acceleration time histories using
digital filtering and finite differencing (thus avoiding extraction of eigenvalues and eigenvectors),
and (iii) accurate parameter identification can be performed, as has been validated numerically and
experimentally, where different DOF combinations were used. 

2. Iterative Least Squares (ILS) system identification method

Experimentally obtained flutter derivatives are used for flutter analysis in the frequency domain.
In this formulation, the aeroelastic forces acting on a structure are modeled by means of flutter
derivatives. For a three-DOF section model, the three degrees of freedom are the vertical deflection,
h, and the horizontal deflection, p, of the local center-of-gravity (c.g.), and the rotation, α, about
that c.g. 

A new system identification technique that uses iterative least squares approach has been
developed for the extraction of flutter derivatives from free vibration displacement time histories
obtained from a section model testing in the wind tunnel. The method will be referred hereafter as
the Iterative Least Squares (ILS) method. The aeroelastically-modified equations of motion can be
represented as the state-space model:
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  where, , , (1)

The A matrix is a  square matrix, where n is the number of degree of freedom for the
dynamic system and I is the identity matrix of size . Ceff and Keff are the aeroelastically
modified effective damping and stiffness matrices, respectively, that include the aeroelastic force
vector components (aeroelastic lift Lae, moment Mae, and drag Dae) written as follows (Scanlan and
Jones formulation as in Sarkar 1992):

                  (2)

where, ρ is the air density; U is the mean cross wind velocity; K=Bω /U is the non-dimensional
reduced frequency ; ω is the circular frequency of oscillation.

The non-dimensional aerodynamic coefficients Hi
*, Pi

*, and Ai
*  (i = 1, 2, ..., 6) are called the

flutter derivatives and they evolve as functions of the reduced velocity U /fB (where f= ω /2π is the
frequency of oscillation). These coefficients can be determined from wind-tunnel experiments on
section models excited by initial displacements.

The A matrix in Eq. (1) can be identified if displacement ( ), velocity ( ), and acceleration ( )
data can be recorded for all n degree of freedom for at least 2n different instants of time (Ibrahim
and Mikulcik 1976).  Practically, measurement of all three responses is not feasible so an alternate
procedure has been formulated. In this procedure, the noisy displacement time histories are only
measured and filtered numerically to remove the high frequency noise components (if any).
MATLAB is used for zero-phase digital filtering of the noisy displacement time history and a low-
pass digital ‘Butterworth’ filter is programmed for this purpose. The cutoff frequency for the filter
can be estimated from the knowledge of approximate zero-wind speed frequencies of the dynamic
system. This filtered displacement data are then used to generate velocity and acceleration time
histories by finite difference formulation. The digitally filtered displacement and the numerically
obtained velocity and acceleration time histories deviate from the actual time histories at the two
extreme ends of the total time range. This is an inherent error for zero-phase digital filtering using
MATLAB function. To circumvent the misfit at the two ends, a ‘windowing’ method was applied,
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which used only the middle portion of each of the three time histories for system identification. A
‘window’ that discards the first and last quarter of each time history was found suitable for
obtaining parameters through system identification. Thus, only middle half of each time history is
considered for extracting elements of the A matrix by the ILS approach.

The noise levels in the filtered displacement time history and numerically-generated velocity and
acceleration time histories that is obtained from the filtered data are of concern. It is important to
show that these noise levels are less than the noise in the displacement time history. This can be
assessed only by numerical simulation since the noise level in any recorded time history is usually
unknown. A displacement time history that is similar to the recorded one was generated and
contaminated with Gaussian white noise where the noise-to-signal ratio was specified as 20%. The
noisy displacement time history, as shown in Fig. 1(a), was then digitally filtered and used to
generate velocity and acceleration time histories by finite difference formulation. The numerically-
generated acceleration time history is shown Fig. 1(b). The error (in the same sense as noise to
signal ratio defined in terms of RMS values) in the filtered displacement time history, as compared
to the exact one, was calculated as 2.58%; the errors in the generated velocity and acceleration time
histories, as compared to the exact ones, were calculated as 2.54% and 2.58%. This exercise proved
that the noise in the numerically obtained velocity and acceleration time histories from a filtered
displacement record is less than the one that are expected if these were measured values (assuming
similar noise levels as in the displacement record).

The A matrix obtained for zero wind case will give the Cmech and Kmech matrices. The A matrix
obtained for non-zero wind speeds will give the Ceff and Keff matrices. After estimating the elements
of these matrices, the frequency-dependent flutter derivatives are calculated. Based on the ILS
approach, a computer code has been developed to identify the elements of A matrix from noisy
displacement time histories. The algorithm of ILS approach is presented here as follows.

Fig. 1 (a) Noisy displacement time-history (b) Generated acceleration time-history
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3. Experimental setup

3.1. Component description and assembly of the elastic suspension system

A three-DOF elastic suspension system (Fig. 2) has been developed and built for testing at the
Wind Simulation and Testing (WiST) Laboratory, Department of Aerospace Engineering, Iowa State
University. This system enables simultaneous vertical, horizontal, and torsional motion of the
suspended model. The schematic diagram of the system is shown in Fig. 3. Extensive details of this
suspension system can be found in Sarkar, Gan Chowdhury, and Gardner (2004).

The system comprise of six cylindrical-pneumatic bushing assemblies supported by six polished
steel shafts− three bushing assemblies and three shafts at each end of the system; two bushing
assemblies on two parallel vertical shafts and one bushing assembly on a horizontal shaft. Each end
of the horizontal shaft is attached to a vertical bushing.

The suspension system uses extension springs, as shown in Fig. 3, for allowing the section model
to vibrate in vertical and lateral directions. Extension springs, with particular configurations, were
chosen to undergo large deflections. 

The torsional motion of the system is generated using a torsional-assembly (Fig. 3) on either side
of the system. Each torsional-assembly uses a pair of extension springs for allowing the rotational
motion. The axis of the section model, which is a circular shaft, is supported by a high precision
ball bearing mounted on the front wall of each torsional-assembly. The shaft is then connected to a
rotating block. A solid aluminum rod runs through the rotating block. The pair of extension springs
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is connected to a rigid bar at the bottom and the solid aluminum rod at the top that can undergo
oscillatory motion. The distance between the extension springs can be adjusted to vary the torsional
stiffness of the system. The torsional-assemblies allow the model to undergo rotational motion under
wind loading and the torque-sensor measures the elastic moment.

3.2. Elastic force and torque measurement system

The elastic spring force generated as a result of linear vertical or lateral motion needs to be
measured to get the displacement time histories. These force measurements are accomplished with
strain gage force transducers applied to four of the spring attachment points at the end of the
polished shafts, two vertical (out of a maximum of sixteen springs) and two horizontal (out of a
maximum of four springs). In the current studies, miniature load cells with 111 N (25 lb) capacities
were used as force transducers.

For measuring the elastic moment proportional to the generated torsional motion, a torque-sensor
is fixed to the back wall of one of the two torsional-assemblies. The front end of the torque sensor
is connected to the rigid bottom bar, and thus it can measure the torque produced by the pair of

Fig. 2 Three-DOF elastic suspension system with streamlined bridge deck model B1

Fig. 3 Schematic diagram of three-DOF elastic suspension system



Identification of eighteen flutter derivatives of an airfoil and a bridge deck 193

springs. A low-capacity light-weight torque sensor with a capacity of 11.29 N-m (100 lb-in.) was
used for the experiments.

3.3. Electromagnetic system for initial conditions

An electromagnetic system (Fig. 4) is designed to provide desired initial displacement conditions
to the model and then release it to undergo oscillatory motions. The initial conditions are provided
through high strength thin spectra cables. Six cables (three on each side of the system) are used to
generate the initial conditions. One end of each cable is connected to the model end plate and the
other end is wrapped around a pulley fixed on an aluminum shaft. Cranks are used for rotating the
shafts to pull down the cables by specific amounts. Thus, a model can be displaced to a position
such that the desired initial conditions are imposed. Each cable is then clamped between a plate and
an electromagnet. All the cables are clamped to attain the initial conditions. A single switch is used
to turn off all the magnets simultaneously to allow the model to vibrate starting from the initial
displaced position.

3.4. Airfoil and bridge deck section models

For wind tunnel testing, a NACA 0020 airfoil section model (Fig. 3) and a streamlined bridge
deck section model (Fig. 5) were used. The airfoil was symmetric about its chord and had a
maximum thickness-to-chord ratio of twenty percent. The center-of-gravity of the airfoil model was

Fig. 4 Electromagnetic system for initial conditions

Fig. 5 Cross-section of bridge B1 (not to scale)
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purposely coincided with the elastic axis to avoid static imbalance. The bridge deck model represented a
shallow box girder section with semi-circular fairings for the edges. The thickness-to-chord ratio
was seven percent for the bridge model. Each model was about 0.6 m long with a chord length of
0.3 m. Two Plexiglas end plates were used to reduce aerodynamic end effects for both models. 

4. Results and discussions

4.1. Numerical simulations

The purpose of the numerical simulation was to determine the percentage of error for the elements
of the damping and stiffness matrices, which were extracted from noisy displacement time histories.
ILS method was programmed and tested for one, two, and three-DOF dynamic systems whose
mass, stiffness, and damping matrices were assumed. Cases with different noise-to-signal ratios
were considered during numerical simulation. The average errors for the stiffness and damping
terms for two-DOF and three-DOF dynamic systems are given in Table 1.

The errors in diagonal terms are less compared to the errors in non-diagonal terms for the stiffness
and damping matrices. The parameter errors increased with increasing noise level. Also, errors
increased with increasing number of degree of freedom. Thus, it is recommended to generate all the
eighteen flutter derivatives from different two-DOF combinations instead of performing a single
three-DOF testing. The current method is capable of generating good estimates of parameters even
for high noise-to-signal ratio for two-DOF systems (e.g., maximum error in extracted parameters is
≈5% for 20% noise level).

4.2. Experimental results

Eighteen flutter derivatives were obtained for the NACA 0020 airfoil model and the streamlined
bridge model by using the ILS approach. The versatility of the three-DOF elastic suspension system
remains in the fact that all possible two-DOF combinations could be tested in the wind tunnel.
Since the three-DOF test proved to be more challenging and less accurate as shown in numerical
simulations, three different sets of two-DOF testing, namely, vertical-torsional, vertical-lateral, and
lateral-torsional, were performed to extract all the eighteen flutter derivatives. 

A sampling rate of 800 Hz was used. The data points of the decaying sinusoidal motions that
were below a certain amplitude were discarded during analysis to avoid high noise-to-signal ratio.
An ensemble of ten displacement records was taken at each wind speed. The ILS program was used

Table 1 Average percentage errors* for numerical simulations 

Case Noise-to-Signal
Ratio

Diagonal
Stiffness Terms

Non-Diagonal
Stiffness Terms

Diagonal
Damping Terms

Non-Diagonal
Damping Terms

2-DOF (ILS) 10% 0.06 0.82 0.56 1.41
2-DOF (ILS) 20% 0.13 0.96 2.01 5.04
3-DOF (ILS) 10% 0.89 2.34 4.83 8.43

* Average percentage error=Σ | Xi − Yi |×100/Yi , where Xi is estimated value, Yi is exact value, i=1 to M and

 M is number of terms that is considered for averaging.

1
M
----
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for processing the data. The cut-off frequency of the Butterworth filter was chosen slightly higher
than the maximum zero-wind speed natural frequency of the dynamic system (i.e., around 4 Hz
associated with the torsional motion of both the models). Any cut-off frequency chosen between 5
to 6 Hz was found to work effectively for filtering purposes. Finite difference formulation (central-
difference with truncation error of O[(∆t)2]) was used to obtain the velocity and acceleration time

Fig. 6 (a) Vertical flutter derivatives (Hi
* , i=1, 2, 3)



196 Arindam Gan Chowdhury and Partha P. Sarkar

histories from the digitally filtered displacement data. 
In the experiments presented here, flutter derivatives were obtained from different DOF

combinations (V: vertical; T: torsional; L: lateral) for a NACA 0020 airfoil and a streamlined bridge
deck as described earlier. The zero-wind vertical frequency of the dynamic system was used to
obtain the non-dimensional reduced velocity for all these cases. However, for a comparative study,
flutter derivatives of another airfoil (NACA 0018) and two other streamlined bridge deck models
are used. These models are numbered as follows for future reference: 

Fig. 6 (b) Vertical flutter derivatives (Hi
* , i=4, 5, 6)
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A1: Current NACA 0020 airfoil with a maximum thickness-to-chord ratio of 20%
A2: NACA 0018 airfoil with a maximum thickness-to-chord ratio of 18% (data for this airfoil is

obtained from Blevins 1992 because it is similar to A1)
B1: Current streamlined bridge deck with semicircular fairings and thickness-to-chord ratio of 7%
B2: Streamlined bridge deck with tapered edges and thickness-to-chord ratio of 9.6% (Tsurumi

bridge − single-deck configuration, Sarkar, Jones, and Scanlan 1994)

Fig. 7 (a) Torsional flutter derivatives (Ai
* , i=1,2,3) 
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B3: Streamlined bridge deck with tapered edges and thickness-to-chord ratio of 9.8% (model ‘a’
from Chen, He, and Xiang 2002).

The flutter derivatives are plotted in Figs. 6 to 8. For the current bridge deck (B1), good
agreement is seen for direct lateral flutter derivatives (P1*, P4*) obtained from different two-DOF
combinations, thus showing the consistency of experimental results (refer Eq. (2) for definition of
flutter derivatives in three-DOF formulation). The lateral derivative P1* for the current bridge deck,
which represents the damping of lateral displacement, has a steeper slope than that of the NACA

Fig. 7 (b) Torsional flutter derivatives (Ai
* , i=4,5,6)
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0020 airfoil (A1) suggesting that higher lateral damping rate is associated with the bridge deck
model as compared to the airfoil model. Also, as opposed to the airfoil model case (A1), distinct
trend is noted for P4* of ‘B1’, which represents the frequency of lateral displacement, suggesting
monotonic increase in lateral displacement frequency with wind speed. For other experimental
lateral derivatives, similar trends are noted for the airfoil (A1) and bridge deck (B1). For the
Tsurumi bridge deck section model (B2) and the current bridge deck section model (B1), similar

Fig. 8 (a) Lateral flutter derivatives (Pi
* , i=1, 2, 3)
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trends have been found for the vertical and torsional flutter derivatives H1*, H2*, H3*, H4*, A1*,
A2*, A3*, A4*.

4.3. Pseudo-steady formulation

Pseudo-steady formulation for P1*, P2*, P3* are given by Scanlan (1987) as :

Fig. 8 (b) Lateral flutter derivatives (Pi
* , i =4,5,6)
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;  ;  (3)

The pseudo-steady formulation for P1*, P3*, P5*, H1*, H3*, H5*, A1*, A3*, A5*, as derived
independently by the co-authors, are presented here:

;  ;  ;

;  ;  ;

;  ;  (4)

Chen, He, and Xiang (2002) also presented the pseudo-steady formulation for P1*, P2*, P3*, P5*,
H5*, A5*. These formulae can be modified and re-written to match the flutter-derivative convention
of Scanlan, Jones and co-workers.  The formulae for P1*, P3*, P5*, H5*, A5* given in Eq. (4) match
with these modified forms, whereas P2* is given as

(5)

In Eqs. (3-5), CD, CL, CM are the static drag, lift, and moment coefficients, respectively, and αw is
the angle of incidence of the wind. Static coefficients were not measured for the current bridge deck
model. Static drag coefficient of the current bridge section (B1) was assumed as 0.64 based on
Blevins’ data (Blevins 1992) for a thin rectangular section with a semicircular leading edge and an
aspect ratio of 6.0. Thus, only pseudo-steady P1* for ‘B1’ is plotted. Using the static coefficients of
the single-deck configuration of Tsurumi bridge (B2), given by Sarkar (1992) as CD = 0.104,
CL= −0.176, CM = 0.003, dCL /dαw= 3.100, dCM /dαw= 0.832, its flutter derivatives H1*, H3*, H5*,
A1*, A3*, A5*, P1* are plotted based on Eq. (4). P2*, P3* and P5* of B2 could not be calculated
since dCD/dαw was not known. Also, based on the pseudo-steady formulation, flutter derivatives
P1*, P2*, P3*, P5* are plotted for another streamlined bridge deck (B3) as given by Chen, He, and
Xiang (2002). Pseudo steady H1* and H3* are plotted for a NACA 0018 airfoil (A2) based on
available static coefficient values, CD = 0.01 and dCL/dαw= 5.73 (Blevins 1992). In the following
comparisons, it should be noted that ‘A1’ and ‘A2’ are airfoils with almost same thickness-to-chord
ratios and ‘B1’, ‘B2’ and ‘B3’ are all streamlined decks with similar aspect ratios.

For bridge ‘B2’, experimental H1*, H3*, A1*, A3* matched very well with their pseudo-steady
counterparts, thus validating the pseudo-steady formulation for these flutter derivatives as presented
in the current paper. Also, experimental H1* and H3* for airfoil ‘A1’ are in agreement with the
pseudo-steady plots for airfoil ‘A2’.

H5* and A5* of bridge ‘B2’ (not originally obtained by Sarkar 1992) based on pseudo-steady
theory have good agreement with the experimentally obtained plots for bridge ‘B1’.

Trends of P2*, P3*, P5* for bridge ‘B3’, based on the pseudo-steady formulation, match with those
experimentally obtained for bridge ‘B1’. For P1*, the pseudo-steady plots for bridges ‘B2’ and ‘B3’
agree well with that of the airfoil ‘A1’. For bridge ‘B1’, the experimental P1* plot shows a
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comparatively steeper slope. This particular phenomenon could be caused as a result of higher drag
coefficient generated by semi-circular fairings of the current bridge deck that are relatively more
bluff compared to the tapered edges of ‘B2’ and ‘B3’. As mentioned earlier, the static drag
coefficient of ‘B1’ was assumed based on Blevins’ data for a section with semicircular edge. The
pseudo-steady plot thus obtained for P1* shows good agreement with the experimentally obtained
P1* for ‘B1’.  The overall agreement of the experimental and the pseudo-steady theory based flutter
derivatives bolsters the pseudo-steady formulation given in the current paper.       

5. Conclusions

Eighteen flutter derivatives for an airfoil section model and a streamlined bridge deck model were
extracted using a new system identification method (ILS method). There is consistency in the values
of flutter derivatives that were obtained from more than one set of DOF combination (only
comparison for direct lateral flutter derivatives is shown here). The vertical and torsional flutter
derivatives (H1*, H2*, H3*, H4*, A1*, A2*, A3*, A4*) for the airfoil, A1, and bridge deck, B1, have
similar trends. Also, comparison with the two-DOF flutter derivatives of Tsurumi bridge deck model
(single-deck configuration) shows that the trends are similar with those for the current bridge model.
The lateral derivatives P1* and P4* differed for the airfoil and current bridge model and their
significances are discussed. Pseudo-steady formulation for P1*, P2*, P3*, P5*, H1*, H3*, H5*, A1*,
A3*, A5* are discussed. Bridge deck flutter derivatives, obtained from both experiments and pseudo-
steady theory, are compared to validate the pseudo-steady formulation.
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