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Abstract. Flutter derivatives provide the basis of predicting the critical wind speed in flutter and
buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system
identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly
presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent
flow. Secondly, wind tunnel tests of a streamlined thin plate model and a Π type blunt bridge section
model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter
derivatives of the thin plate model identified by SSI are very comparable to those identified by the
unifying least-square method and Theodorson’s theoretical values. As to the Π type section model, the
effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind
tunnel tests for flutter derivative estimation of those models with similar blunt sections should be
conducted in turbulent flow.

Keywords: flutter derivative; modal parameter identification; stochastic subspace identification (SSI);
wind-induced vibration; bridge structure.

1. Introduction

Flutter and buffeting are two momentous forms of wind-induced vibrations for long-span cable-
supported bridges. To avoid the destructive flutter and suppress the violent buffeting, the flutter
derivatives, which measure the potential of vibrating bridges to absorb energy from wind, are of the
most importance.

In most of the current studies flutter derivatives are estimated by the traditional deterministic
system identification techniques, or by some numerical techniques, e.g., Computational Fluid
Dynamics (CFD in short). The deterministic system identification techniques involved in flutter
derivative estimations can be grouped under two heads, i.e., forced vibration methods (Chen and Yu
2002) and free vibration methods (Gu, et al. 2000, Gu, et al. 2001, Sarkar 1994, Song 2003).
Forced vibration methods are somewhat expensive since they involve sizeable equipments and
considerable time and work. Furthermore, the forced vibration of bridges is very different from their
kinetic characteristics in the natural wind. Free vibration testing seems to be more tractable than
forced vibration testing. However, at high reduced wind speeds, the vertical bending motion of the
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structure will decay rapidly due to the effect of positive aerodynamic damping, and thus the length
of time history available for system identifications will decrease, which therefore add more
difficulties to the system identifications.

The aforementioned problems of the forced testing and free testing can be readily settled if
stochastic vibration methods are utilized to estimate flutter derivatives. For stochastic methods, the
turbulent flow is regarded as excitation, hence the sizable exciting equipments are avoided
(Jakobsen 1995). Moreover, as opposed to deterministic methods, the effects of turbulent flow are
no longer noise in this case, so the Signal-to-Noise Ratio (SNR in short) is not affected by wind
speed, and the flutter derivatives at high reduced wind speeds can thus be available. These two
aspects give the stochastic system identification methods an advantage over the deterministic
methods in estimating the flutter derivatives of bridge decks.

Many stochastic system identification methods have been developed during the past decades,
among which the Stochastic Subspace Identification (Overschee 1991, Peters 1999) (SSI in short)
technique has proven to be a method very appropriate for civil engineering. The merit points of SSI
are: (1) the assumptions of inputs are congruent with the practical wind-induced aerodynamic
forces, i.e., stationary and independent on the outputs; (2) identified modes are given in frequency
stabilization diagram, from which the operator can easily distinguish structural modes from the
computational ones; (3) since the maximum order of the model is changeable for the operator, a
relatively large model order will give an exit for noise, which in some cases can dramatically
improve the quality of the identified modal parameters; (4) mode shapes are simultaneously
available with the poles, without requiring a second step to identify them. There are two kinds of
SSI methods, one is data-driven, and the other is covariance-driven.

In this paper, the covariance-driven SSI is applied to the determination of flutter derivatives of
bridge decks in turbulent flow. The method is theoretically formulated at first. Secondly, wind
tunnel tests of a streamlined thin plate model and the Π type blunt section model of Hong-guang
Bridge, a cable-supported bridge with a main span of 380 m in the southwestern China, are
conducted in TJ-1 wind tunnel at Tongji University, and the random buffeting responses are
measured. From these responses, the flutter derivatives of the models are estimated. Finally, the
identified flutter derivatives of the thin plate model are compared with its theoretical values, as well
as the results of similar models. Also the flutter derivatives of Hong-guang Bridge are compared to
those estimated in smooth flow.

2. Theoretical formulation of SSI

The dynamic behavior of a bridge deck with two Degrees-Of-Freedom (DOF in short), i.e., h
(bending) and α (torsion), in turbulent flow can be described by the following differential equations
(Scanlan 1977).

(1)

where m and I are the modal mass and mass moment of inertia of the deck distributed per unit
span, respectively. ωi is the natural frequency, and ξ i is the modal damping ratio (i=h, α). Lse and
Mse are the self-excited lift and moment, while Lb and Mb are the aerodynamic lift and moment. The
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self-excited lift and moment are given as follows (Scanlan 1978)

(2)

where ρ is air mass density, B is the width of the bridge deck, U is the mean wind speed, and
Ki=ω iB/U is the reduced frequency (i=h, α). Hi

*  and Ai
* (i=1, 2, 3) are the so-called flutter

derivatives, which can be regarded as the implicit functions of the deck’s modal parameters. The
aerodynamic lift and moment can be defined as (Simiu and Scanlan 1986)

(3)

where CL, CD and CM are the steady-state force coefficients referring to the deck width,  and 
are the derivatives of CL and CM with respect to the attack angle. u(t) and w(t) are the longitudinal
and vertical fluctuations of wind speed respectively.

By moving Lse and Mse to the left side, and merging the similar terms into column vectors or
matrices, Eq. (1) can be rewritten as follows

(4)

where {y(t)}={ h(t) α (t)} T is the generalized buffeting response, {f(t)}={ Lb(t) Mb(t)} T is the
generalized aerodynamic force. M is the mass matrix, Ce is the gross damping matrix, i.e., the sum
of the mechanical and aerodynamic damping matrices, and Ke is the gross stiffness matrix.

The fluctuations of wind speed u(t) and w(t) in Eq. (3) are random functions of time, so the
identification of flutter derivatives of bridge decks in turbulent flow can be simplified as a typical
inverse problem in the theory of random vibration, and thus can be solved by stochastic system
identification techniques.
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thus Eq. (4) is transformed into the following stochastic state equations

(7)

where

The discrete form of Eq. (7) can be written as

(8)

where A, C and {x} are known as state matrix, output shape matrix and state vector, respectively.
{mk} is the measuring noise sequence. Subscript * k denotes the value of * at time k∆t, where ∆t
means the sampling interval. Φ and I are the zero and identity matrices, respectively.

It is common to assume that {xk}, { nk} and {mk} in Eq. (8) are mutually independent and hence

(9)

Defining

(10)

then we get the following Lyapunov equations for the state and output covariance matrices

(11)

From Eq. (8) and Eq. (9), it can be deduced

(12)

Λ2=E[{ yk+2}{ yk} T]=E[(C{xk+2}+{ vk+2}){ yk} T]=E[C{xk+2}{ yk} T]=CE[{ xk+2}{ yk} T]

=CE[(A{xk+1}+{ wk}){ yk}
T]=CE[A{xk+1}{ yk}

T]=CAE[{ xk+1}{ yk}
T ]=CA2−1G (13)

x·{ } Ac x{ } n{ }+=

y{ } Cc x{ } m{ }+=



n{ } Φ

M 1– f 
 
 

=

xk 1+{ } A xk{ } nk{ }+=

yk{ } C xk{ } mk{ }+=



E xknk
T[ ] Φ=         E xkmk

T[ ] Φ=

Σ E xkxk
T[ ]=

Λ i E yk i+ yk
T[ ]=

G E xk 1+ yk
T[ ]=

          
Q E nknk

T[ ]=

R E mkmk
T[ ]=

S E nkmk
T[ ]=

Σ AΣAT Q+=

Λ0 CΣCT R+=

G AΣCT S+=

Λ1 E yk 1+{ } yk{ }T[ ] E C xk 1+{ } vk 1+{ }+( ) yk{ }T[ ] E C xk 1+{ } yk{ }T[ ] CG== = =



Determination of flutter derivatives by stochastic subspace identification technique 177

and

Λi =CAi−1G (14)

Defining a block Toeplitz  as

(15)

then one can infer from the definition of covariance matrix that  can be expressed as the
product of two block Hankel matrices Yf and Yp

(16)

where Yf and Yp are composed of the ‘Future’ and ‘Past’ measurements, respectively.

         (17)

The meanings of i and j can be inferred from Eq. (15) and Eq. (17), i.e., i denotes the number of
covariance points utilized in the identification, and j shows the number of original data points
utilized in the estimation of covariance.

In a manner similar to the classical Eigensystem Realization Algorithm (ERA in short) (Juang and
Pappa 1985), one can find

(18)

where N is model order, i.e., the maximum number of modes to be computed. U, S and V are
matrices derived from the Singular-Value-Decomposition (SVD in short) of matrix 

(19)

Thus the modal parameters can be determined by solving the eigenvalue problem of state matrix A.
By now, the theoretical formulation of covariance-driven SSI has been achieved.

According to Eq. (16), Eq. (17) and Eq. (18), a different combination of i , j and N will give a
different state matrix, and thus a different pair of modal parameters. Therefore modal parameters
should be derived from a series of combinations, rather than a single combination. In the process of
identification, N or i should be given in series for certain j to get the frequency stability chart.

Once the modal parameters are identified, the gross damping matrix Ce and the gross stiffness
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matrix Ke in Eq. (4) can be readily determined by the pseudo-inverse method.

Let

    
(20)

     

where C0 and K0 are the ‘inherent’ damping and stiffness matrices, respectively. Thus the flutter
derivatives can be extracted from the following equations

(21)

3. Case studies

To evaluate the applicability of SSI in extracting flutter derivatives, wind tunnel tests of a
streamlined thin plate model and a Π type blunt bridge section model are carried out.

3.1. Outline of wind tunnel tests

The wind tunnel tests are performed in TJ-1 wind tunnel at Tongji University in China. This
tunnel is an open circuit boundary layer wind tunnel with a working section of 1.8 m(width)×1.8 m
(height), and the wind speed can be continuously regulated between 0.5~25 m/s.

The models are tested in turbulent flow generated by grid, as shown in Fig. 1. The turbulence
intensity and integral length (Lu

x ) of the generated turbulent flow are 12% and 24.42 cm,
respectively. A pitometer is applied to measure the mean wind speed of the flow, and a hot-wire
anemometer is used to measure the fluctuations of wind speed. Fig. 2 gives the power-spectral-
density functions of the fluctuations of the longitudinal and vertical wind speed at 5 m/s wind
speed.
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The models are suspended by eight springs outside the wind tunnel (see Fig. 3). To simulate a
bridge section model with 2-DOFs, i.e., vertical bending and torsion, piano wires are used to arrest
the motion of the model in longitudinal direction(see Fig. 4).

The random buffeting responses of the models are captured by three piezoelectric acceleration
transducers mounted to the connecting rods outside the wind tunnel, as shown in Fig. 3. Thus the
vertical and torsional responses in Eq. (1) can be obtained by

    (22)h
x1 x3+

2
----------------= α

x1 x2–
2l

---------------=

Fig. 1 Grids to generate turbulent flow

Fig. 2 Auto and cross power-spectral-density functions of the fluctuations of the longitudinal and vertical
wind speed at 5 m/s wind speed
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Fig. 3 Suspension device of the model

Fig. 4 Top view of the test setup
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where x1, x2 and x3 are the measurements of transducer 1, 2 and 3, respectively. 2l is the space
between transducer 1 and transducer 2.

3.2. Case 1: thin plate model

A streamlined thin plate is firstly selected for wind tunnel test (see Fig. 5). The width to height
(thickness) ratio of the plate is about 21, so it can be reasonably regarded as an ‘ideal’ thin plate,
and thus its theoretical flutter derivatives can be extracted by Theodorson’s functions (Li 1996).

The measured buffeting responses are sampled at a rate of 100 Hz for about 14 minutes (see Fig.
6). The covariance-driven SSI technique is used to identify modal parameters from these data, and
the pseudo-inverse method is applied to estimate the stiffness and damping matrices. The natural
modal parameters are extracted from the free decay responses in the no-wind case using the ERA

Fig. 6 A segment of random acceleration responses of the thin plate at 5 m/s wind speed
(Upper: vertical  Lower: torsional)

Fig. 5 Cross section of the streamlined thin plate (unit: mm)
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technique.
The testing wind speed ranges from 4 m/s to 12 m/s. Fig. 7 shows the flutter derivatives of the

Fig. 7 The flutter derivatives of the thin plate identified by SSI in comparison with Theodorson’s theoretical
values and those identified by the unifying least-square method (Gu, et al. 2000)
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Fig. 8 Schematic cross section of Hong-guang Bridge (unit: mm)

thin plate estimated by covariance-driven SSI and those identified by the unifying least-square
method (Gu, et al. 2000), as well as Theodorson's theoretical values.

Flutter derivative A1
* , H2

*  and A3
* identified by SSI match well with the theoretical values and

those identified by the unifying least-square method (Gu, et al. 2000); and the absolute values of the
flutter derivatives H1

*  and A2
*  seem to be somewhat smaller than the theoretical values; but H3

*

shows much less absolute values. The differences between the flutter derivatives identified by the
present method and the corresponding derivatives by the other methods may be due to the different
treatments of turbulence in incoming wind, as mentioned before.

3.3. Case 2: section model of Hong-guang bridge

Encouraged by the success in the thin plate model, we proceed to estimate the flutter derivatives
of the Hong-guang Bridge, a cable-supported bridge with a Π type stiffened girder, as shown in Fig. 8.

The section model of Hong-guang Bridge is designed according to the law of similarity at a
geometric scale of one to fifty. The model is tested in turbulent flow. The testing wind speed ranges
from 4 m/s to 10 m/s, in steps of 1 m/s. The random acceleration responses are measured and flutter
derivatives are identified by covariance-driven SSI. The identified flutter derivatives and their
comparison with those of the same model in smooth flow (Song 2003) are shown in Fig. 9.

Generally speaking, the flutter derivatives of the bridge in turbulent flow identified by SSI are in
agreement with those in smooth flow (Song 2003) identified by the unifying least-square method
(Gu, et al. 2000). From Fig. 9 it can further be found that the influence of flow type on H3

*  and A3
* ,

i.e., flutter derivatives related to aerodynamic stiffness, seems to be negligible, while the other four
derivatives concerned with aerodynamic damping show rather notable deviations from those in
smooth flow, especially at high reduced wind speeds. Such deviations may reveal the fact that for
those bridges with the Π type sections similar to Hong-guang Bridge, the effects of turbulence on
aerodynamic damping may be significant. Consequently, the wind tunnel tests of such bridges for
flutter derivative estimation should be carried out in turbulent flow.
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Fig. 9 The flutter derivatives of Hong-guang Bridge in turbulent flow identified by SSI in comparison with
those in smooth flow identified by unifying least-square method
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4. Conclusions

The covariance-driven Stochastic Subspace Identification (SSI in short) technique is applied to
determination of the flutter derivatives of bridge section models in turbulent flow. Wind tunnel tests
of a streamlined thin plate and the Π type blunt section model of the cable-supported Hong-guang
Bridge are conducted in TJ-1 boundary layer wind tunnel in Tongji University. Random acceleration
responses of the models are measured, and the flutter derivatives are estimated by the suggested
covariance-driven SSI technique.

The flutter derivatives of the thin plate model identified by SSI match well with the theoretical
values and those estimated by the unifying least-square method. As to the Π type section model of
Hong-guang Bridge, the flutter derivatives of the bridge in turbulent flow identified by SSI are in
agreement with those in smooth flow identified by the unifying least-square method. The effects of
flow type on the two flutter derivatives of the bridge concerning with aerodynamic stiffness, i.e.,
H3

*  and A3
* , seem to be negligible, whereas the other four derivatives related to aerodynamic

damping characteristics show somewhat marked deviations from those in smooth flow, especially at
high reduced wind speeds. Such deviations seem to suggest that for those bridges with the blunt
sections similar to Hong-guang Bridge, the aerodynamic damping characteristics in turbulent flow
may be different from those in smooth flow. Therefore it may be proper to conduct wind tunnel
tests for flutter derivative estimation of this kind of bridges in turbulent flow.
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