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Abstract. The evaluation of the accumulation of permanent set for inelastic structures due to wind
action is important in establishing a criterion to select a reduced design wind load and in incorporating
the beneficial ductile behaviour in wind engineering. A parametric study of the accumulation of the
permanent set as well as the ductility demand for bilinear single-degree-of-freedom (SDOF) systems is
presented in the present study. The dynamic analysis of the inelastic SDOF system is carried out using the
method of Newmark for artificially generated time history of wind speed. Simulation results indicate that
the mean of the normalized damage rate is highly dependent on the natural frequency of vibration. This
mean value is relatively insensitive to the damping ratio if the damping ratio is larger than 5%. The
scatter associated with the accumulation of the permanent set is very significant. The consideration of the
postyield stiffness can significantly reduce the accumulation of the permanent set if the ratio of the yield
strength to the expected peak response is small. The results also show that the ductility demand due to
the wind action over a period of one hour for flexible structures can be much less than that for rigid
structures or structures with larger damping ratio if the SDOF systems are designed with a reduced peak
response caused by the fluctuating wind.
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1. Introduction

The accumulation of wind induced damage for structures has been investigated by Vickery (1970),
Wyatt and May (1971), Tshcanz (1983) and Chen and Davenport (2000). The damage is measured
using the accumulation of permanent set or plastic deformation. The study of Vickery (1970) was
based on the random vibration of an elastoplastic single-degree-of-freedom (SDOF) system, and
considered that the permanent set due to wind load on a lightly damped SDOF elastoplastic system
can be estimated from the analysis of an equivalent linear elastic SDOF system. Simple analytical
equations were derived for evaluating the mean and coefficient of variation of the permanent set.
The derivation of these equations was based on the assumption that only one maximum exists
between successive upcrossings. Therefore, possible clumping effect was not considered. Further, it
was indicated that the derived equations are accurate if the permanent set due to each upcrossing is
not very significant and the ratio of the force induced by the fluctuating wind to the difference
between the yield force and the force associated with the mean wind speed is relatively small. The
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approach for evaluating the permanent set given by Wyatt and May (1971) is similar to that of
Vickery (1970). Wyatt and May (1971) indicated that the strain-hardening can be important in
reducing the permanent set, however, details on how to estimate such an effect were not provided.
They also indicated that by considering the ductility of structures more economical design could be
achieved. Recently, Chen and Davenport (2000) carried out a study for structures subjected to
hurricanes. Since the mean wind speed for hurricanes varies in time, they divided the wind actions
in blocks to evaluate the accumulation of the permanent set. For each block, the mean wind speed
is considered to be a constant, and the permanent set was evaluated using the approach develop by
Vickery (1970). They showed that by considering the ductility capacity savings could be achieved
in designing structures under wind actions.

In the present study, a numerical simulation analysis was carried out for evaluating the
accumulation of the permanent set considering bilinear inelastic SDOF systems. The analysis is
aimed at validating and assessing the accuracy of the results available in the literature for bilinear
inelastic SDOF systems. For the simulation of the fluctuating wind, the longitudinal turbulent
spectrum given by Davenport (1961) was employed and the time history of the wind speed was
generated using an algorithm developed by Shinozuka (1972, 1987). The method of Newmark
(Chopra 2000) was employed to evaluate the accumulation of the inelastic deformation of SDOF
bilinear hysteretic systems. The simulation results for elastoplastic SDOF systems subjected to the
wind load over a period were used to assess the mean and the coefficient of variation of the
accumulation of the permanent set as well as the ductility demand. The results were compared with
those given by Vickery (1970). Also, simulation results were provided for bilinear SDOF systems to
illustrate the impact of the post yield stiffness on the accumulation of the permanent set and the
ductility demand.

2. Peak response of bilinear SDOF systems

Consider an SDOF system shown in Fig. 1 with xy representing the yield displacement, Fxy

denoting the yield force and γ representing the ratio of the post yield stiffness to the initial stiffness
k0. The system is subjected to the wind load that is usually expressed as the superposition of the

Fig. 1 Schematic of bilinear system
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mean and fluctuating components. Let U and u(t) denote the mean and fluctuating components of
the wind speed. The wind force F(t) can be approximated by Simiu and Scanlan (1996),

(1)

where ρ is the density of air, CD is the drag coefficient, A is the projected area normal to the flow.
The deflection caused by the mean wind load, x0, equals (ρCDAU2/2) / k0. By removing this
displacement, the deflection due to the fluctuating wind force, y, y=x−x0, satisfies the following
governing equation:

(2)

where ξ is the damping ratio, ωn is the natural vibration frequency, m is the mass, and ky (y, ) is
the stiffness. The yield displacement, yy, equals xy−x0.

The fluctuating wind speed u(t) is usually treated as a stationary process that can be characterized
by a power spectrum density (PSD) function Su(ω). For the analysis to be carried out in this study,
we adopt the PSD function of the fluctuating wind developed by Davenport (1961) (see also Simiu
and Scanlan 1996),

(3a)

where u* is the shear friction velocity, U(10) (m/s) is the mean wind speed at a height of 10 meters
from the ground. Note that if w(t) equals u(t) /u* , the PSD function of w(t), Sw(ω, U(10)), is given by

(3b)

Therefore, by letting

z= y/B (4)

and the yield displacement zy = yy / B, Eq. (2) can be re-written as,

(5)

where B=ρCDAUu* / m. Using this equation rather than Eq. (2) simplifies the parametric analysis
since z is independent of U, u*, A, and CD.

If the nonlinear behaviour is ignored in Eq. (5) (i.e., kz(z, ) /k0= 1), the peak displacement due to
the fluctuating wind over a period T can be evaluated using the method developed by Davenport
(1964). For nonlinear systems, however, the evaluation of the peak displacement is usually based on
the time step integration methods such as the method of Newmark (Chopra 2000). By using this
method, the time history of the fluctuating wind or w(t) in this case is required. For the generation
of the artificial time history of w(t) based on Sw(ω, U(10)), one can use the method given by
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Shinozuka (1972, 1987) leading to,

(6)

where ωi =(i−1/2)∆ω , Ai= , ∆ω is a selected constant frequency interval, and φ i

are uniformly distributed random variables between 0 and 2π.
Note that since the PSD function of w(t) depends on the velocity U(10), the response z depends

on U(10) as well. To further simply the analysis one can select an arbitrary “standard” value of
U(10), say, 30 (m/sec). By defining α =U(10) / 30, z=ζ /α2, t= τ /α, ωn=α , and ωi=a , and
substituting Eq. (6) into Eq. (5) results in,

(7)

where  and  represent the first- and second-order derivatives of ζ with respect to τ . This
equation shows that the response ζ depends only on  and ξ but independent of U(10) and α. It is
noteworthy that by ignoring the nonlinear behaviour (i.e., kζ (ζ , ) /k0=1), the peak displacement
due to the fluctuating wind over a period Tτ depends on the zero-upcrossing rate ( ) and the
standard deviation σζ ( )  which are given by Davenport (1964),

(8)

and

(9)

where

(10)

Let ζI denote the permanent displacement of the system after the system has sustained the
fluctuating wind and, ζy, ζy=α2zy, denote the yield displacement. Given the values of , ξ , and
the duration Tτ , the numerical assessment of the normalized damage rate per each zero-upcrossing
(i.e., (ζ I −ζy) / , can be carried out as follows:

(1) Evaluate ( ) and σζ( ) according to Eqs. (8) to (10);
(2) Generate the values of the random variables φ i ;
(3) Select a value of ζy /σζ ( ), and calculate ζy ;
(4) Solve Eq. (5) using the method of Newmark, and find ζ I ;
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(5) Repeat Step 3) and Step 4) for a set of selected values of ζy /σζ ( ); and
(6) Repeat Steps 2) to 5) sufficient times to obtain the statistics of ζI , or the normalized damage

rate per each zero-upcrossing.
The obtained simulation results can be used in establishing the relationship between
(ζI −ζy) /( ( )Tτσζ( )) and ζy/σζ ( ) which will be discussed in the following.

If the nonlinear behaviour in Eq. (5) is ignored, it can be shown that for a mean wind speed at a
height of 10 m, U(10), the zero-upcrossing rate for the response z, (ωn, U(10)), and the standard
deviation of z, σz(ωn, U(10)), are given by,

(11)

and

(12)

Similarly, it can be shown that the zero-upcrossing rate for the response y, (ωn, U(10)) equals
(ωn , U(10)), and that the standard deviation of y, σy(ωn , U(10)), equals Bσz(ωn, U(10)). Based

on the above, we have,

(13)

and

(14)

where the definition of xI is similar to that of ζI except that it is in terms of the response x.
This shows that the relation between (ζI −ζy) /( Tτσζ ) and ζy /σζ  is equivalent to

the relation between (xI −xy) /  and (xy−x0) /(σy(ωn, U(10))) which
describes the original nonlinear SDOF system. In particular, it is expected that if the excursions into
the yield region are rare events, this relationship developed based on the simulation results should
follow closely to the one given by Vickery (1970),

(15)

where E( ) denotes the expectation. Eq. (15) can be further approximated by (Wyatt and May 1971,
Chen and Davenport 2000),

(16)

A simple plot of Eqs. (15) and (16) will show that Eq. (16) provides slightly higher predicted
normalized damage rate per each zero-uprossing than Eq. (15) for a given value of (xy−x0) /σy(ωn,
U(10)).

The coefficient of variation (cov) of the normalized damage rate average over a period T, vc, (i.e.,
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the cov of the accumulation of the permanent set (xI −xy) over a period T) given in Vickery (1970)
for the response based on the original elastoplastic SDOF system is,

(17a)

where d= . By noting that d is equal to ( ),
and (ωn, U(10))T is equal to Tτ, Eq. (17a) can be rewritten for the response based on ζ
as follows:

(17b)

which represents the cov of the accumulation of the permanent set (ζI −ζy) over a period Tτ . Based
on the above, statistics of the accumulation of the permanent set obtained from simulation results
based on the response ζ can be used to characterize the statistics of the accumulation of the
permanent set for the original system whose response is represented by x.

3. Simulation results

3.1. Elastoplastic SDOF systems

The numerical results presented in this section are for the elastoplastic hysteretic SDOF systems
only. Consider that =618, ξ = 1%, and Tτ =3600 (sec). The mean of the normalized damage rate,
E(ζI −ζy) /( ), and the cov of the accumulation of the permanent set (ζI −ζy) over a
period Tτ , vc, (see Eq. (17)) obtained using the aforementioned analysis procedure with the number
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Table 1 Comparison of the statistics of the accumulation of damage rate

Mean Coefficient of variation

ζy /σζ( ) E(ζI −ζy) / (v+
ζ0 ( )Tτσζ( )) vc

j=250 j=500 Eq. (15) j=250 j=500 Eq. (17)

0.2 1.51E+01 1.51E+01 1.05E+00 0.053 0.053 0.011
0.25 1.18E+01 1.17E+01 1.01E+00 0.054 0.055 0.011
0.5 3.01E+00 3.00E+00 7.73E-01 0.157 0.163 0.014
1 2.04E-01 2.03E-01 3.98E-01 0.399 0.383 0.022
1.25 8.84E-02 8.93E-02 2.65E-01 0.209 0.197 0.028
1.5 5.04E-02 5.09E-02 1.67E-01 0.138 0.136 0.036
1.75 3.05E-02 3.08E-02 1.00E-01 0.148 0.148 0.046
2 1.80E-02 1.82E-02 5.70E-02 0.216 0.211 0.061
2.25 9.83E-03 9.92E-03 3.06E-02 0.375 0.366 0.081
2.5 4.75E-03 4.79E-03 1.56E-02 0.692 0.662 0.111
3 8.10E-04 7.34E-04 3.38E-03 1.818 1.888 0.226
3.5 5.85E-05 4.75E-05 5.83E-04 6.344 6.563 0.513
4 7.08E-06 3.54E-06 7.94E-05 15.811 22.361 1.313

ω̃n ω̃n ω̃n
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of simulation cycles, j , equal to 250 were presented in Table 1. By using the same parameters
except that the simulation cycles equals 500, the simulation was carried out again. The mean of the
normalized damage rate and the cov of the accumulation of the permanent set obtained for j = 500
were also shown in Table 1 and compared with those obtained based on 250 simulation cycles and
with the ones given by Eqs. (15) and (17). The table shows that for ζy /σζ ( ) less than 1.0 the
mean obtained by the simulation is less than about 50% of the value given by Eq. (15), and that the
cov values obtained from simulation differ significantly from those given by Eq. (17). It also
indicates that use of j = 250 provides results that are almost identical to those obtained with j = 500.
Therefore, in all the following numerical analyses Tτ = 3600(s) and j = 250 were employed. It must
emphasized that to describe the mean of the normalized damage rate per each zero-upcrossing and
the cov of the accumulation of the permanent set based on the response x, it is sufficient to replace
E(ζI −ζy) /( ) by E(xI −xy) /( ) and,  by
(xy−x0) /  in Table 1. Further note that the frequency  is related to ωn through ωn

= U(10)/30.
For sets of values of ξ and , the zero-uprossing rate ( ) and the standard deviation

σζ( ) were evaluated and presented in Table 2. Based on Eqs. (11) and (12), these values can be
used to evaluate the zero-upcrossing rate (ωn, U(10)),

(18)

and the standard deviation σy(ωn, U(10)),

(19)

where B is defined previously.
Simulation analyses for the combinations of ξ and  shown in Table 2 were carried out for

elastoplastic hysteretic SDOF systems (i.e., with γ = 0). The obtained simulation results that can be
used to establish the relation between the mean of the normalized damage rate per each zero-
upcrossing and (xy−x0) /(σy(ωn, U(10)) expressed as, 

(20)

were shown in Fig. 2. In Eq. (20), fm ( ) denotes a function that can be determined based on the
results presented in Fig. 2. Similarly, the results obtained from the simulation analyses that can be
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+ ωn, U 10( )( )Tσy ωn U 10( ),( )( )⁄ fm xy x0–( ) σy⁄ ωn U 10( ),( ) ξ γ, ,( )=

Table 2 Zero-upcrossing rate and standard deviation

ξ =10π =2π =π =0.4π =0.2π

v+
ζ0 ( ) σζ( ) v+

ζ0 ( ) σζ( ) v+
ζ0 ( ) σζ( ) v+

ζ0 ( ) σζ( ) v+
ζ0 ( ) σζ( )

1% 3.8530 0.0039 0.9073 0.1442 0.4704 0.7004 0.1938 5.7159 0.0983 27.5494
2% 3.2057 0.0032 0.8358 0.1103 0.4455 0.5218 0.1882 4.1517 0.0966 19.7453
5% 2.2288 0.0028 0.6910 0.0836 0.3889 0.3755 0.1738 2.8205 0.0921 12.9616

10% 1.5763 0.0026 0.5554 0.0724 0.3284 0.3111 0.1558 2.1973 0.0859 9.6637
20% 1.0975 0.0025 0.4192 0.0658 0.2606 0.2716 0.1319 1.7908 0.0766 7.4152

ω̃n ω̃n ω̃n ω̃n ω̃n

ω̃n ω̃n ω̃n ω̃n ω̃n ω̃n ω̃n ω̃n ω̃n ω̃n
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employed to establish the relation between the cov of the accumulation of the permanent set, vc, and
(xy−x0)/(σy(ωn,U(10)) expressed as,

vc= fc((xy−x0)/σy(ωn, U(10)), ξ, γ ) (21)

were presented in Fig. 3. The function fc ( ) relates the quantity on the left hand side of Eq. (21) to
the quantities on the right hand side of Eq. (21). This relation may be empirically determined from
the results depicted in Fig. 3.

Fig. 2 shows that the mean of the normalized damage rate increases as the damping ratio
increases. However, for the damping ratio greater than 10% the increase in the mean of the

Fig. 2 Mean of the normalized damage rate for elastoplastic systems (ωn= U(10)/30)ω̃n
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normalized damage rate as compared to that of the damping ratio equal to 5% is insignificant. It
must be noted that the same mean of the normalized damage rate for different damping ratios does
not necessary lead to the same accumulation of the permanent set because the latter depends not
only on the damage rate but also on the upcrossing rate (ωn, U(10)) and the standard deviation
σy(ωn, U(10)). The results shown in the figure also indicate that Eq. (15) serves as a conservative
estimate for the mean of the normalized damage rate if (xy−x0)/σy(ωn, U(10)) is greater than about 2
and  is small. Eq. (15) becomes increasingly inaccurate as (xy−x0)/σy(ωn, U(10)), decreases and/
or  increases.

vy0
+

ω̃n

ω̃n

Fig. 3 Coefficient of variation of the normalized damage rate for elastoplastic systems (ωn= U(10)/30)ω̃n
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The cov values presented in Fig. 3 are greater than those given by Eq. (17). The former in some
cases can be orders of magnitude higher than the latter. The differences between the former and the
latter decrease as the damping ratio ξ increases and/or the frequency  decreases (i.e., the
structure becomes very flexible). This indicates that the analytical equation given by Vickery
(1970), which was derived by approximating an elastoplastic hysteretic SDOF system by a linear
elastic SDOF system, is unconservative in estimating the cov of the damage accumulation.

3.2. Bilinear SDOF systems

To investigate the effect of the (isotropic) strain-hardening on the mean of the normalized damage
rate per each zero-upcrossing, simulation analyses for ξ = 1%, 2%, 5%, 10% and 20% and 
equal to 0.4π were carried out for γ = 0.05 and 0.10. The obtained results were shown in Figs. 4
and 5, respectively. Comparison of the results shown in Figs. 2(d) and 4 indicates that the strain-
hardening reduces the mean of the normalized damage rate. The reduction depends on the ratio of
the post yield stiffness to the initial stiffness, γ, and is most significant for (xy−x0)/σy(ωn, U(10))
less than 2.0.

ω̃n

ω̃n

Fig. 4 Mean of the normalized damage rate for bilinear systems with =0.4π and different damping ratioω̃n

Fig. 5 Coefficient of variation of the normalized damage rate for bilinear systems with =0.4π and
different damping ratio

ω̃n
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Results shown in Figs. 3(d) and 5 suggest that the variation of vc for different values of the
damping ratio ξ is decreased if the strain-hardening effect is considered and (xy−x0)/σy(ωn, U(10)) is
less than about 1.0. However, for (xy−x0)/σy(ωn, U(10)) greater than about 1.0 the values of vc are
similar for the cases considering or ignoring the strain-hardening.

4. Ductility demand

While the philosophy in seismic design is to allow the structures subjected to severe earthquake
excitations to undergo a permanent inelastic deformation, the design for wind actions requires the
structures to remain in the elastic range. To investigate the ductility demand due to wind actions on
inelastic SDOF systems, consider that for a specified wind speed U(10) equal to un, that
corresponds to the 50-year return period value, the elastoplastic hysteretic SDOF systems are
designed such that the yield displacement, xy, is given by,

xy = αd(x0+RgPgnσyn) (22)

where αd is the design wind load factor, x0 is the displacement due to the design mean wind speed
Pgn, pgn= +05772/ , represents the peak factor for the design wind speed
of un, , , and Rg is a (reduction) factor applied to the response
due to the fluctuating wind. Let R0, R0=x0/(Pgnσyn), denote the ratio of x0 to the mean peak
displacement due to the fluctuating wind, and let µ, µ=xI /xy, denote the ductility demand due to the
wind actions. Based on the above and Eqs. (20) and (21), it can be shown that the mean of µ, mµ,
and the cov of µ, vµ , due to the specified wind speed over a period T are given by,

(23)

and

  

(24)

By adopting that the duration of the wind storm is 3600 (s) and the mean wind speed is constant
during this period (Vickery 1970), the values of mµ and vµ are calculated using the above equations
and some of the simulation results presented in Figs. 2 and 3 for un = 30 (m/s) and αd = 1.0. The
calculated results were depicted in Figs. 6 and 7. Fig. 6 shows the results for ξ = 0.05 while Fig. 7
for ωn = 0.4π.

The results presented in Figs. 6(a) and 7(a) indicate that if the elastoplastic systems designed
based on the mean peak response (i.e., Rg = 1.0), the expected ductility demand mµ equals 1.0 (i.e.,
on average the structures under the specified wind action behave elastically). In general, the
ductility demand increases as the vibration frequency and/or damping ratio increases. The ductility
demand increases as the static component (i.e., R0) becomes smaller. For a wide range of natural
vibration frequencies, the expected ductility demand as shown in Fig. 6(a) is less than about 2.0 for
Rg = 0.8. This implies that if the ductile behaviour of the designed structures with a ductility

2 vy0n
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capacity of 2.0 is considered, a value of Rg less than 0.8 could be used. The value of this reduction
factor can be smaller for flexible structures with a higher ductility capacity. For example, if the
natural frequency of vibration of the structure equals 0.4π (i.e., natural vibration period equal to 5
(sec)), and the ductility capacity equals 5, a value of the reduction factor less than 0.6 may be considered
(see Fig. 7(a)). The cov of the ductility demand varies significantly as shown in Figs. 6(b) and 7(b).
It attains highest value for Rg between about 0.4 to 0.8 for the considered SDOF systems.

Similarly, for the bilinear systems under the same design condition as above, the obtained mean
and cov of the ductility demand for γ = 0.05 were shown in Fig. 8. Comparison of results shown in
Fig. 7 to those presented in Fig. 8 indicates that the expected value and the scatter of the ductility
demand are largely decreased if the strainhardening is considered.

Note that if one repeats the above analysis by maintaining the wind action equal to the specified
wind action used for design but varying αd up to 1.4 which takes into account that the design wind
load effect is higher than the specified wind load effect, the obtained results are similar to those
shown in Figs. 6 to 8 except that for the same ductility levels a smaller value of Rg as compared to
the case with αd = 1.0 may be considered. This implies that the reduction factor could be further
reduced as αd is increased. However, a design code calibration must be carried out for providing a
definite recommendation on the values of Rg.

Fig. 6 Ductility demand for SDOF systems with ξ = 0.05

Fig. 7 Ductility demand for SDOF systems with ωn = 0.4π
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5. Conclusions

A numerical analysis is carried out for evaluating the accumulation of permanent set considering
bilinear inelastic single-degree-of-freedom systems. The results indicate that the mean of the
normalized damage rate is sensitive to the natural vibration frequency. The mean for structures with
a damping ratio larger than 5% is similar to that obtained for structures with a damping ratio of 5%.

The ductility demand due to the wind action over a period of one hour for flexible structures
could be much less than that for rigid structures. The strain-hardening reduces significantly the
ductility demand. However, in all cases, the scatter associated with the ductility demand can be very
higher.

A reduction that applies directly to the peak factor could be obtained from the provided results. A
value of this factor less than 0.8 may be employed to design the structures to limit the ductility
demand less than 2.0, and less than 0.6 for ductility demand less than 5. It must be emphasized that
this conclusion should be limited to the case that the wind action is equal to that used for design
and the mean wind speed is a constant during the wind storm. Therefore, to provide definite
recommendation on the values of Rg for codified design, a code calibration analysis must be carried
out by considering, among other uncertainty quantities, the uncertainty in the ductility demand,
ductility capacity, the wind speed and the duration of the wind.
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