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Abstract. This paper presents a time-domain approach for analyzing nonlinear random vibratio
long-span suspended cables under transversal wind. A consistent continuous model of the cab
accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of 
correlation are properly included by modeling wind velocity fluctuation as a random function of time
of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1
random field. Within the context of a Galerkin’s discretization of the equations governing cable mot
very efficient Monte Carlo-based technique for second-order analysis of the response is propose
procedure starts by generating sample functions of the generalized aerodynamic loads by us
spectral decomposition of the cross-power spectral density function of wind turbulence field. Relyi
the physical meaning of both the spectral properties of wind velocity fluctuation and the mode sha
the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation pro
according to which just the first few significant loading and structural modal contributions are retaine

Keywords: suspended cable; wind velocity; random field; digital simulation; Proper Orthogo
Decomposition; nonlinear vibrations.

1. Introduction

Due to their light weight associated with great flexibility and low structural damping, suspe
cables are prone to large amplitude vibrations under external and parametric excitations. The
and experimental investigations have shown that the issues related to wind-induced oscillat
cables are of great concern at the design stage, in order to prevent damage and fatigue pro
cable structures and overhead transmission lines. Such problems are mainly caused by
instability phenomena like rain-wind induced vibrations, vortex-shedding, galloping, etc.

In some recent works, dealing with cable oscillations under wind loading, consistent mech
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models of the cable able to include both geometrical and aerodynamic nonlinearities, hav
adopted (Desai, et al. 1995, Luongo, et al. 1998, Pasca, et al. 1998, Gattulli, et al. 2001, Martinelli,
et al. 2002, Carassale and Piccardo 2003).

In view of the inherent nonlinearities, Monte Carlo simulation (MCS) technique may be reg
as the only accurate and versatile tool so far available for analyzing random vibrations of 
excited cables. A key step of any Monte Carlo-based procedure is the numerical simulation o
histories of input processes with given spectral density distribution. The cross-correlation be
wind velocity fluctuations at different point locations of extended wind-exposed structures req
the use of appropriate tools for digital simulation of the ensuing aerodynamic forces. Many a
tackled the problem assuming the loads concentrated at scattered points of the structure. 
achieved by discretizing the stationary Gaussian random field modeling wind turbulence into anV-
1D stochastic process, i.e., an n-vector collecting 1V-1D processes (depending only on time), wh
represent the realizations of wind velocity fluctuation at n selected points of the structure. In th
same way, the Cross-Power Spectral Density (CPSD) function of the turbulence field is disc
into a matrix of order n, providing the complete probabilistic characterization of the normal nV-1D
stochastic process.

Basically, two classes of techniques are commonly used for digital simulation of statio
Gaussian nV-1D random processes: the wave-superposition-based methods (see e.g., Shinozuk
Shinozuka and Jan 1972, Grigoriu 1993, Deodatis 1996, Shinozuka and Deodatis 1996) and t
series approaches, which include the auto-regressive (AR) and auto-regressive moving average (
algorithms (see e.g., Spanos and Mignolet 1986, Naganuma, et al. 1987, Deodatis and Shinozuk
1988, Li and Kareem 1990). The first methods require the repetitive factorization of the CPSD
matrix at each frequency step, which is usually performed by means of Cholesky decompo
The most important issue in practical applications of spectral methods concerns the comp
speed and the storage requirements as the number of simulation points increases. On the oth
the main drawback of time series approaches is the difficulty in choosing a suitable model o
obtain good match with the target flow properties. Several improved algorithms have been pro
to enhance the computational efficiency of both spectral approaches and ARMA-based tech
In this regard, it has to be mentioned that the Proper Orthogonal Decomposition (POD) (
1955, Papoulis 1965) represents an effective tool to overcome the severe limitations imposed
number of simulation points. The POD expresses a multi-dimensional/variate random proc
summation of fully coherent component processes uncorrelated in some statistical sense, wh
referred to as modes of the process. Li and Kareem (1993, 1995) proposed an approach b
stochastic decomposition, which transforms the original space to one in which the comp
processes are either fully coherent or non-coherent. Furthermore, through the joint application
POD and classical modal analysis, a technique called Double Modal Transformation (DMT
been set up to evaluate the dynamic response of linear structures subjected to random
(Carassale, et al. 2001). Recently, the POD has been successfully applied to develop a very ef
wave-superposition-based technique for digital simulation of multivariate wind velocity proce
(Di Paola 1998, Di Paola and Gullo 2001). This procedure expresses the target proces
summation of fully coherent independent stochastic processes, taking full advantage o
decomposition of the CPSD matrix into the frequency-dependent basis of its eigenvectors
attractiveness of this particular choice lies in the meaningful physical interpretation o
eigenproperties of the CPSD matrix. Within a continuous formulation, the POD of a bi-dimens
non-homogeneous process has also been employed in a recent work (Carassale and Solari 2
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the evaluation of the dynamic response of wind-excited mono-dimensional linear structures. 
In the present work, second-order analysis of nonlinear in-plane and out-of-plane ra

vibrations of long-span suspended cables under transversal wind is carried out by exten
simulation technique recently proposed by the authors (Di Paola, et al. 2002) for shallow cables on
the left of the first crossover point (Irvine 1981). This procedure stems from the applicatio
DMT concept within a nonlinear setting. Since to the authors’ knowledge, DMT method has
so far applied to linear problems only, one of the main purposes of the paper is to investig
performances of such approach in the dynamic analysis of nonlinear structures under sto
excitation. The cable is modeled as a mono-dimensional elastic continuum, fully accounting for
geometrical nonlinearities (Luongo, et al. 1984). By referring the analysis to flat-sag cables, wh
may be reasonably regarded as horizontal string-like exposed structures, wind velocity fluctua
treated as a one-variate bi-dimensional (1V-2D) zero-mean Gaussian random field (depend
time and a single spatial variable ranging over the span), stationary in time and isotropic in 
The aerodynamic forces are defined referring to a spring-mounted damped rigid cylind
indefinite length in the quasi-static regime (i.e., at much lower oscillation frequencies tha
vortex-shedding frequency (Simiu and Scanlan 1996)), under the assumption of small turb
with respect to the mean wind component (Piccardo 1993). Numerical investigations 
demonstrated that the influence of nonlinear aerodynamic terms on first and second-order st
moments of cable response is negligible. Since the proposed approach is aimed at secon
analysis of wind-induced cable vibrations, linearized expressions of the aerodynamic forces (
et al. 1998) are here assumed in order to simplify the theoretical formulation and reduc
computational effort. The time-domain analysis of cable response is carried out by Gale
method, expressing the displacement components in terms of eigenfunctions of the associate
problem and generalized coordinates. Following closely the wave-superposition-based ap
proposed in Refs. (Di Paola 1998, Di Paola and Gullo 2001) for multivariate 1D processes, 
efficient technique for digital simulation of the generalized aerodynamic loads is developed s
from the POD of wind turbulence field into the basis of the frequency-dependent eigenfunctio
the CPSD function. The joint application of the POD of wind velocity fluctuation and Galerkin’s me
provides considerable computational savings in buffeting response analysis of long-span sus
cables. In particular, the physical meaning of both the eigenproperties of the CPSD function a
mode shapes of the vibrating cable suggests a natural truncation procedure according to wh
the first few significant loading and structural modal contributions are retained.

Some numerical results concerning two cables with different geometrical and mech
properties are presented. Beside the accuracy and efficiency of the simulation technique de
in the paper, the appropriate selection of the order of the discretized model and the effect of
correlation of wind turbulence on cable vibrations are also examined.

2. Suspended cable under turbulent wind: continuous formulation

2.1. Cable model

Consider a uniform elastic cable hanging under its own weight between two fixed level su
subjected to turbulent transversal wind (Fig. 1). Let Oxyz be a Cartesian coordinate system wi
origin O at the left-hand support of the cable ( ) and the z axis aligned with the mean wind
direction. Following the Lagrangean approach, cable motion is referred to the initial 

O A≡
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equilibrium configuration �0, which lies in the vertical plane (Oxy) and is represented by the
function y(s),  being a curvilinear abscissa and lc the unstretched cable length. The varie
configuration � I under external excitation is described by the dynamic displacement compo
u(s,t), v(s, t) and w(s,t) of a given point P(s), measured from the initial undisturbed configuratio
�

0 along the coordinate axes x, y and z, respectively.
By referring the analysis to shallow cables, namely those with small sag-to-span ratio, d /l , (i.e.,

 (Irvine 1981)), a curvilinear element ds can be approximated with dx. Consequently, the
static equilibrium configuration �0 can be adequately described through the parabolic pro
y(x)=4d[x/ l−(x/l )2], which in turn implies a constant static tension equal to its horizo
component . Furthermore, the following assumptions are introduced (Luongo, et al.
1984): i) the gradient of the horizontal component of the dynamic displacement is negligible
respect to unity, i.e., moderately large rotations occur in the motion; ii) the initial strain is negl
with respect to unity, which entails , where E and A denote the modulus of elasticity an
the cross-sectional area of the cable, respectively.

Under the previous assumptions, the extended Hamilton’s principle yields the following s
nonlinear coupled partial differential equations, governing wind-induced cable vibrations refer
to the configuration �0 (Pasca, et al. 1998) :

(1)

(2)

(3)

where a dot and a prime indicate derivative with respect to time t and abscissa x, respectively; m is
the cable mass per unit length; µu, µv and µw are the damping coefficients of the cable; fy(x, t) and
fz(x, t) denote the aerodynamic loads along the y and z directions, whose explicit expressions will b
given in the next section; at last, ε (x, t) is the Lagrangean strain, defined as follows :

(4)

Eqs. (1)-(3) are supplemented by homogeneous boundary conditions in [0, l ].

s 0 l c,[ ]∈

d l⁄ 1 8⁄≤

N0 s( ) H≅

H EA⁄ 1«

mu·· x t,( ) µuu· x t,( ) EAε x t,( )[ ]′–+ 0=

mv·· x t,( ) µvv· x t,( ) Hv′ x t,( ) EA y′ x( ) v′ x t,( )+[ ]ε x t,( )+{ }′–+ fy x t,( )=

mw·· x t,( ) µww· x t,( ) w′ x t,( ) H EAε x t,( )+[ ]{ }′–+ fz x t,( )=

ε x t,( ) u′ x t,( ) y′ x( )v′ x t,( ) 1
2
--- v′2 x t,( ) w′2 x t,( )+[ ]+ +=

Fig. 1 Suspended cable under transversal wind
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In view of the assumptions on cable geometry previously introduced, the inertial term 
Eq. (1) can be neglected and the horizontal displacement component u(x, t) can be eliminated by a
standard condensation procedure. So operating, the elongation turns out to be a function 
alone, given by:

(5)

where the superscript in parentheses stands for “condensed”.
Substituting the previous relation into Eqs. (2) and (3), the following two reduced partial int

differential equations in the transversal displacement components v(x, t) and w(x, t) are recovered:

(6)

(7)

Eqs. (6) and (7) contain both quadratic and cubic nonlinearities, which are due to initial cur
and cable stretching, respectively. The aforementioned equations are accurate for st
suspended cables used in overhead transmission lines. 

2.2. Stochastic modeling of wind loads

Once a consistent continuous model of the suspended cable, fully accounting for geom
nonlinearities, has been defined, the aerodynamic loads, fy(x, t) and fz(x, t) (see Eqs. (6) and (7)),
need to be properly characterized on the basis of a realistic model of natural wind.

Neglecting the contribution of the horizontal and vertical turbulence fluctuations, the instanta
wind velocity is defined just by its component in the along-wind direction (z axis), i.e.:

(8)

where the first and second term on the right-hand side represent the mean and fluct
respectively. The mean wind velocity  is modeled as a deterministic function of the heih
above ground, measured at the level supports (A and B). The fluctuating component  is
treated as a random function of time t and the spatial variable , namely as a one-vari
bi-dimensional (1V-2D) stationary zero-mean Gaussian random field, whose complete proba
characterization is ensured by the knowledge of the Cross-Power Spectral Density (CPSD) function.
If xj and xk are the abscissas of two different point locations Pj and Pk along the cable and ω
denotes the circular frequency, neglecting the imaginary part (q-spectrum), the CPSD function o

 and  can be expressed as follows:

(9)

In Eq. (9)  is the PSD function of  for , which is assum
constant over the spatial domain [0,l ], as usual for extended horizontal structures under w
action. Since in the present context, the random field  is isotropic, i.e., its autocorre

mu·· x t,( )

ε c( ) t( ) 1
l
--- y′ x( )v′ x t,( ) 1

2
--- v′2 x t,( ) w′2 x t,( )+[ ]+

 
 
 

0

l

∫ dx=

mv·· x t,( ) µvv· x t,( ) Hv′ x t,( ) EA y′ x( ) v′ x t,( )+[ ]ε c( ) t( )+{ }′–+ fy x t,( )=

mw·· x t,( ) µww· x t,( ) w′ x t,( ) H EAε c( ) t( )+[ ]{ }′–+ fz x t,( )=

W x t,( ) W h( ) W̃ x t,( )+=

W h( )
W̃ x t,( )

x 0 l,[ ]∈

W̃ xj t,( ) W̃ xk t,( )

SW̃j W̃k
xj xk ;ω,( ) SW̃W̃ ω( )CohW̃ vjk ω,( )=

SW̃W̃ ω( ) SW̃j W̃j
xj xj, ;ω( )≡ W̃ x t,( ) xj xk≡

W̃ x t,( )
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function depends only upon the absolute value of the separation distance vjk=|µjk | = |xk− xj | between
two point locations Pj and Pk, the coherence function  is defined according 
Davenport model (1968), as follows:

(10)

where Cx is an appropriate exponential decay coefficient.
It has to be mentioned that the stochastic model of natural wind above defined is refer

shallow cables, which may be reasonably regarded as horizontal string-like exposed structu
cover also deep-sag cables, the present formulation should duly account for the variability 
PSD function over the spatial domain [0,l ], caused by the change of the mean wind velocity alo
cable profile. Furthermore, a consistent definition of the coherence function should be assume

The aerodynamic forces are determined referring to a spring-mounted damped rigid cylin
indefinite length with two translational degrees-of-freedom subjected to the mean wind veloci

 and the longitudinal zero-mean fluctuation , in the quasi-static regime (i.e., at m
lower oscillation frequencies than the vortex-shedding frequency (Simiu and Scanlan 1
(Piccardo 1993). Numerical experience has shown that the first and second-order statistical m
of cable response are weakly influenced by the nonlinear aerodynamic terms. Since the pr
procedure is aimed at second-order analysis of wind-induced cable vibrations, such terms a
neglected to enhance the computational efficiency. It is worth noting, however, that the p
formulation can be properly extended to include nonlinear aerodynamic contributions as well. 
the previous hypotheses and assuming small turbulence with respect to the mean wind veloc
linearized expressions of the drag force components acting on a cable of circular cross-sectio
the y and z axes read, respectively (Pasca, et al. 1998):

(11)

(12)

where ρ is the air density, CD is the drag coefficient and b denotes a characteristic dimension of th
body, which in the present case coincides with cable diameter (indefinite circular cylinder). N
that the drag force component in the across-wind direction fy(x, t) (Eq. (11)) provides just a positive
aerodynamic damping contribution, so that in-plane vibrations are only indirectly excited thr
the nonlinear coupling terms. Conversely, in the along-wind direction, beside a linear aerody
damping, the blowing wind induces two external excitations, a constant ( ) a
time-varying one ( ), associated with the mean and fluctuation of wind velo
respectively. Owing to the random nature of wind turbulence, the time-varying term gives rise
stochastic dynamic excitation.

3. Monte Carlo-based analysis of wind-induced nonlinear cable vibrations

In view of the nonlinearity of the equations governing cable motion (see Eqs. (6)-(7)), M
Carlo simulation (MCS) method is here selected as an effective tool for the probabstic
characterization of wind-induced random vibrations in terms of first and second-order stat

CohW̃ vjk ω,( )

CohW̃ vjk ω,( ) α ω( )vjk–[ ]exp= ;     α ω( ) ω
2π
-------=

Cx

W h( )
-------------

W h( ) W̃ x t,( )

fy x t,( ) 1
2
---ρCDbW h( )v· x t,( )–=

fz x t,( ) 1
2
---ρCDbW

2
h( ) ρCDbW h( )w· x t,( ) ρCDbW h( )W̃ x t,( )+–=

ρCDbW
2

h( ) 2⁄
ρCDbW h( )W̃ x t,( )
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moments. According to Double Modal Transformation (DMT) approach (Carassale, et al. 2001), the
time-domain analysis of buffeting response is carried out through the joint application of Gale
method and the Proper Orthogonal Decomposition (POD) of wind turbulence field. So opera
computationally efficient technique for digital simulation of the generalized aerodynamic loa
developed, as will be outlined in the following.

3.1. Galerkin’s discretization of the equations of motion

The time-domain analysis of cable response to the aerodynamic loads defined in the p
section is here performed by assuming the following expressions of the transversal displa
components v(x, t) and w(x,t):

(13)

where ϕi(x) and ψk(x) are the in-plane and out-of-plane (or swinging) eigenfunctions of 
associated linear problem obtained dropping all the nonlinear terms in Eqs. (6) and (7
Appendix A). Hereinafter, therefore, ϕi(x) and ψk (x) will be referred to as linearized
eigenfunctions; qi( t) and rk(t) are the corresponding generalized coordinates.

Substituting the previous relations into Eq. (5), an approximate expression of the time-va
elongation ε(c)( t) is recovered:

(14)

where the superimposed hat (^) means that use has been made of the series expansions (1
 and  are coefficients defined in Appendix B. By applying Galerkin’s method and ta

into account Eq. (14), the partial integro-differential Eqs. (6) and (7) are replaced by the follo
set of nv+nw nonlinear coupled ordinary differential equations in the generalized coordinatesqi(t)
and rk(t):

(15)

(16)

where  and  are modal damping coefficients including the positive contribution due to 
aerodynamic damping (see Appendix B); ωwk denotes the natural frequency of the k-th out-of-plane
mode for the associated linear problem (see Appendix A); aij

(1) , ai
(2) , aij

(3) and ak
(4) are coefficients

whose expressions, listed in Appendix B, depend on both cable parameters and the selecte
shapes. Furthermore, the generalized force on the right-hand side of the k-th out-of-plane modal Eq. (16)

v x t,( ) ϕ i

i 1=

nv

∑ x( )qi t( );      = w x t,( ) ψk x( )
k 1=

nw

∑= r k t( )

ε̂
c( )

t( ) bj
1( )qj t( )

j 1=

nv

∑ bij
2( )

i j 1=,

nv

∑ qi t( )qj t( ) bk
3( )r k

2 t( )
k 1=

nw

∑+ +=

bj
1( )

bij
2( ) bk

3( )

q··i t( ) µ̂viq· i t( ) aij
1( )qj t( )

j 1=

nv

∑ ai
2( ) aij

3( )qj t( )
j 1=

nv

∑+ ε̂ c( ) t( )+ + + 0,      = i 1 2 ... nv, , ,=( );

r··k t( ) µ̂wkr·k t( ) ωwk
2 r k t( ) ak

4( ) ε̂ c( ) t( )rk t( )+ + + Fzk F̃zk+ t( ) ,       = k 1 2 ... nw, , ,=( )

µ̂vi µ̂wk
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is expressed as sum of a constant load of deterministic nature, , associated with the mea
velocity, and a stochastic time-varying excitation, , related to wind turbulence:

(17)

(18)

where  and  are coefficients defined in Appendix B.

3.2. Proper Orthogonal Decomposition of wind velocity fluctuation

Embedding the above defined Galerkin-type discretized model into a Monte Carlo frame
requires the digital simulation of the fluctuating generalized drag forces  (Eq. (18)), whi
here performed by properly extending a procedure recently proposed for multivariate 1D ra
processes (Di Paola 1998, Di Paola and Gullo 2001). This technique starts by decomposing 
2D stationary zero-mean Gaussian random field, , modeling wind turbulence in the s
domain [0,l ], as a summation of fully coherent independent stochastic fields (Li and Kareem 1
according to the POD (Loeve 1955, Papoulis 1965):

(19)

The previous representation is not unique as the definition of the random fields  de
on the way in which the CPSD function of wind velocity fluctuation  is decompos
Within a discrete setting, in Refs. (Di Paola 1998, Di Paola and Gullo 2001), the decomposit
the CPSD matrix into the frequency-dependent basis of its eigenvectors has been a
emphasizing the physical meanings and the computational advantages connected with this p
choice. In a similar way, since, by definition, the CPSD function is bounded, symmetric
positive-definite, the following spectral decomposition is here exploited for digital simula
purposes:

(20)

where λp(ω) and φp(x, ω) denote the frequency-dependent eigenvalues and eigenfunctions o
CPSD function, respectively. It can be verified that, if  is decomposed accordin
Eq. (20), the Priestley (1999) representation of the random fields  takes the follo
expression:

(21)

Fzk

F̃zk t( )

Fzk
1
2
---ρCDbFzk

1( )W
2

h( )=

F̃zk t( ) ρCDbFzk
2( )W h( ) ψk

0

l

∫ x( )W̃ x t,( )dx=

Fzk
1( ) Fzk

2( )

F̃zk t( )

W̃ x t,( )

W̃ x t,( ) Ṽr x t,( )
r 1=

∞

∑=

Ṽr x t,( )
W̃ x t,( )

SW̃j W̃k
xj xk; ω,( ) λp ω( )φp xj ω,( )φp xk ω,( )

p 1=

∞

∑=

SW̃j W̃k
xj xk; ω,( )

Ṽr x t,( )

Ṽr x t,( ) λr ω( )φr x ω,( )eiωtdBr ω( )
-∞

+ ∞

∫=
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i being the imaginary unit and Br(ω) a zero-mean normal complex random process hav
orthogonal increments, i.e.:

(22)

where E[ .] and the star mean stochastic average and complex conjugate, respectively; δ rs is the
Kronecker delta symbol (δrs=0, ; δrs=1, r=s). Indeed, the autocorrelation function of th
random field  decomposed as in Eq. (19) with  expressed by Eq. (21) coin
with the Inverse Fourier Transform of the CPSD function (20):

(23)

Sorting the eigenvalues λp(ω) in decreasing order and taking into account that only the first 
spectral modes, say M, exhibit a significant power, the random field  can be expressed
means of the following truncated series expansion:

(24)

If the circular frequency domain is uniformly discretized, the previous relation may be emp
to digitally generate wind velocity time-histories at selected point locations.

The eigenproperties of the CPSD function, exploited in the above described orthogonal decomp
of wind turbulence field, are the non-trivial solutions of the following Fredholm integral equatio
the second kind:

(25)

which, substituting Eqs. (9) and (10), may be rewritten as:

(26)

Since the CPSD function (9) is real, symmetric and positive-definite, it possesses real and non
negative eigenvalues λp(ω); the eigenfunctions φp(x,ω) are real, form a complete set and can 
normalized so as to satisfy the following condition:

(27)

It can be verified that the eigenfunctions and eigenvalues solutions of Eq. (26) read, respe
(Carassale and Solari 2002):

E dBr ω( )[ ] 0;  dBr ω( ) dBr
*= ω–( );  E dBr ωm( )dBs

* ωn( )[ ] δrs= δmndωm=

r s≠
W̃ w t,( ) Ṽr x t,( )

RW̃j W̃k
µ jk τ,( ) E W̃ xk t, τ+( )W̃*

xj t,( )[ ] λr
-∞

+ ∞

∫
r 1=

∞

∑ ω( )φr xj ω,( )φr xk ω,( )eiωτdω= =

W̃ x t,( )

W̃ x t,( ) Ṽr

r 1=

M

∑ t( ) λr ω( )
-∞

+ ∞

∫
r 1=

M

∑ φr x ω,( )eiω tdBr ω( )= =

SW̃j W̃k
0

l

∫ xj xk; ω,( )φp xj ω,( )dxj λp ω( )φp xk ω,( )=

SW̃W̃ ω( ) 
0

l

∫ α– ω( ) xk xj–[ ]exp φp xj ω,( )dxj λp ω( )φp xk ω,( )=

φp

0

l

∫ x ω,( )φq x ω,( )dx δpq,   ω∀=
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where Cp are constants defined imposing the normalization condition (27), while βp(ω) are the roots
of the following trascendental equation:

(29)

The solution of Eq. (26) may be found also in Refs. (Van Trees 1968, Spanos and Ghanem
where different expressions for odd and even eigenproperties are given. Likewise out-of
linearized mode shapes of a suspended cable, odd and even eigenfunctions are symme
antisymmetric about cable mid-span, respectively. Furthermore, it is worth noting tha
eigenfunctions depend only indirectly upon circular frequency ω through the functions βp(ω).

The main drawback of the previous POD of the random field  consists in the evaluation 
frequency-dependent eigenproperties of the CPSD function, which implies the numerical solu
the trascendental Eq. (29) at each frequency step. In this regard, it would be desirable to
analytic expressions of the solutions of the eigenproblem (26), like the approximate ones der
Ref. (Carassale and Solari 2002). Though their evaluation may be time-consuming, the eigenpro
of the CPSD function lend themselves to a meaningful physical interpretation, which enlightens the
mutual interaction between wind loading and structural vibrations within the framework of m
superposition analysis. It appears, in fact, that the eigenvalues and eigenfunctions may be rega
the powers of the random fields  (see Eq. (21)) and the mode shapes associated wit
velocity field, respectively. Therefore, Eq. (24) suggests an analogy between the above de
representation of wind velocity fluctuation  and classical modal analysis. Specifically, 
structural vibration is decomposed into a series of independent structural mode shapes, in th
way, the 1V-2D random field  is expressed as summation of a sufficient number of 
coherent uncorrelated fields which, therefore, can be called blowing modes of wind velocity field.

3.3. Digital simulation of the generalized aerodynamic loads

As far as digital simulation of the aerodynamic loads on a wind-excited suspended ca
concerned, the previous orthogonal decomposition of the random field  (see Eq. (2
conjunction with Galerkin’s discretization of the motion equations (see Eqs. (15) and (16)), pro
substantial computational savings, mainly related to the above discussed physical interpreta
this connection, let us substitute Eq. (24) into Eq. (18), so that the fluctuating component 
generalized aerodynamic loads  can be expressed as follows:

(30)

where:

(31)

φp x ω,( ) Cp sin βp ω( )x[ ]
βp ω( )
α ω( )
--------------cos βp ω( )x[ ]+

 
 
 

;     λp ω( )
2SW̃W̃ ω( )α ω( )

βp
2 ω( ) α2 ω( )+

-------------------------------------==

2 l βp ω( )[ ]cot
βp ω( )
α ω( )

---------------- α ω( )
βp ω( )
--------------–=

W̃ x t,( )

Ṽr x t,( )

W̃ x t,( )

W̃ x t,( )

W̃ x t,( )

F̃zk t( )

F̃zk t( ) ρCDbFzk
2( )W h( ) λr ω( )

-∞

+∞

∫
r 1=

M

∑ Dkr ω( )ei ωtdBr ω( ),   = k 1 2 ... nw, , ,=( )

Dkr ω( ) ψk x( )φr x ω,( )dx
0

l

∫=



Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads117

 into
ful

ent

riance

),
are

,

by
the

erical
lation
llowing

.

are functions of the circular frequency ω, obtained by projecting the r -th blowing mode shape on
the k-th out-of-plane linearized eigenfunction of the cable. Subdividing the frequency range
intervals of equal amplitude ∆ω , Eq. (30) can be rewritten in the following discretized form, use
for digital simulation purposes:

(32)

where ωn=n∆ω, N∆ω =ωc is the upper cut-off frequency and  denote mutually independ
zero-mean normal complex random variables with unit variance, i.e.:

(33)

Alternatively, Eq. (32) may be rewritten in real form as follows:

(k=1,2,...,nw) (34)

where  and  are mutually independent zero-mean normal random variables with va
1/2, representing the real and imaginary part of , respectively, that is .

The shapes of the eigenfunctions ψk(x) (see Appendix A) and φr(x,ω) (Eq. (28)) are such that for
k odd (symmetric out-of-plane cable mode shape) and r even (antisymmetric blowing mode shape
or vice-versa, the integrals Dkr(ω ) (Eq. (31)) vanish identically, since structural and wind modes 
orthogonal. Furthermore, numerical investigations have shown that when k and r are both odd or
even the contributions of the integrals Dkr(ω) with different indices ( ) are almost negligible
namely ψk(x) and φr(x,ω) are quasi-orthogonal. Since the functions Dkr(ω), (r=1,2,...,M), may be
regarded as a measure of the influence of the first M blowing modes on the k-th cable swinging
mode, physically this means that the k-th out-of-plane structural mode is actually dominated just 
the k-th wind mode. It follows that at least nw blowing modes should be considered to simulate 
first nw random loads . Moreover, it has been observed that the functions Dkr(ω) are nearly
constant except in a very small low-frequency range, as will be shown next through num
results. In view of these interesting properties, the computational efficiency of the digital simu
technique based on the use of Eq. (34) may be greatly enhanced by means of the fo
assumptions: i) only the terms related to the functions Dkk(ω) with equal indices (r=k) are retained
in the summation; ii) over the whole frequency range each function Dkk(ω) is given the constant
value Dkk(ωc), corresponding to the upper cut-off frequency ωc. According to these hypotheses, Eq
(34) may be conveniently simplified setting Dkr(ω)=0 for  and Dkk(ω)=Dkk(ωc)=const, i.e.:

(k=1,2,...,nw) (35)

F̃zk t( ) ρCDbFzk
2( )W h( ) λr ωn( )∆ω

n N–=

N

∑
r 1=

M

∑ Dkr ωn( )e
iωnt

Pn
r( ),  k 1 2 ... nw, , ,=( )=

Pn
r( )

E Pn
r( )[ ] 0; E Pn

r( )Pm
s( )*

[ ] δrsδnm; Pn
r( ) P n–

r( )*

= = =

F̃zk t( ) ρCDbFzk
2( )W h( ) λr ωn( )∆ω Dkr ωn( ) Rn

r( )cos ωnt( ) I n
r( )sin ωnt( )–[ ],  

n N–=

N

∑
r 1=

M

∑=
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r( ) iI n

r( )+=
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F̃zk t( )
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The previous relation ensures a drastic reduction of the computer time required by digital sim
of the random processes . The main advantages associated with the use of Eq. (35) 
summarized as follows: i) it is required the evaluation of very few eigenproperties of the C
function, say nw, as many as are the out-of-plane linearized mode shapes of the cable inclu
Eq. (13); ii) the integrals Dkk(ω) (Eq. (31)) and, therefore, the eigenfunctions φk(x, ω) need to be
calculated only for ω =ωc; iii) the onerous evaluation of the double summation appearing in 
(34) is avoided.

It can be easily demonstrated that the k-th fluctuating load , defined by Eq. (30), is a 1V
1D random process, whose PSD function, , is proportional to the k-th eigenvalue λk(ω) of

, i.e.:

(36)

Hence, once the first nw eigenproperties of the CPSD function of wind turbulence field  
known, digital simulation of the aerodynamic forces acting on the suspended cable m
performed through conventional wave-superposition-based procedures commonly employed f
1D random processes with given spectral distribution (see Eq. (35)). So operating, the p
procedure is able to model the cross-correlation between wind velocity fluctuations at different
locations more efficiently than widely used approaches based on the spatial discretization o
turbulence field into an nV-1D stochastic process, n being the number of the selected simulatio
points. In particular, conventional spectral methods for digital simulation of stationary Gau
multivariate random processes require the repetitive factorization of the CPSD matrix at each
frequency step, which is usually performed by Cholesky decomposition. It can be verified th
the CPSD matrix is decomposed as the product of two frequency-dependent triangular matric
computer time for the generation of an nV-1D random process increases with the law n(n+1)/2,
becoming actually prohibitive when a large number of variates is involved. Therefore, the main drawback
of these procedures lies in the severe limitations imposed on the number of simulation points.

Based on the previous observations, it may be stated that the proposed simulation alg
allows one to carry out a Monte Carlo-based analysis of wind-induced cable vibrations with a
reasonable computational effort. The following steps are involved in implementing the o
procedure:

1) evaluation of the first nw eigenvalues λr(ω) of , with ω ranging over the
interval [0, ωc], and of the corresponding eigenfunctions φr(x,ω) just for ω =ωc;

2) calculation of the integrals Dkk(ω), (k=1,2, ..., nw), for ω =ωc;
3) digital simulation of samples of the random processes , (k=1,2,...,nw) through Eq. (35);
4) evaluation of response time-histories by numerical integration of Eqs. (15) and (16);
5) processing of response samples to obtain the desired statistics.

4. Numerical applications

In this section, the effectiveness of the proposed procedure for analyzing wind-induced
vibrations is demonstrated by examining two different cables, referred to as cable No1 and No2. The
main geometrical and mechanical properties of cable No1 are defined as follows: l = 266.984 m,
d/1=1/45, EA/H=486, m=1.8 kg/m and b= m. The same properties for cable No2 are

F̃zk t( )

F̃zk t( )
SF̃zk

ω( )
SW̃j W̃k

xj xk;ω,( )

SF̃zk
ω( ) ρCDbFzk

2( )W h( )Dkk ωc( )( )2λk ω( ),  k 1 2 ... nw, , ,=( )=

W̃ x t,( )

SW̃j W̃k
xj xk, ; ω( )

F̃zk t( )

2.81 102–⋅
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given by: l=850 m, d/ l=1/25, EA/H=735.257, m=2.52 kg/m and b= m. The elasto-
geometric parameter λ2=64(EA/H)(d /l )2 (Irvine 1981), governing cable dynamics (see Append
A), takes the value λ2=15.36, on the left of the first crossover point (λ2=4π2), for cable No1 and
λ2=75.29, between the first and second (λ2=16π2) crossover point, for cable No2 (see Fig. 11). In
Table 1 the first four in-plane and out-of-plane linearized mode shapes of the two cables alon
the corresponding natural frequencies are reported.

The mean wind velocity is here assumed to vary as a function of the height h above ground,
according to the well known logarithmic profile :

(37)

where u* [m/s] is the shear velocity, k=0.4 is the Von Karman’s constant and z0 [m] is the roughness
length. The two-sided PSD function of wind velocity fluctuation proposed by Kaimal et al. (1972)
is adopted:

(38)

The parameters characterizing wind velocity field and the ensuing aerodynamic loads are sele
follows: =25 m/s, ρ =1.25 kg/m3, CD=1, Cx=16 (see Eq. (10)), z0=0.01 m, h=20 m for cable
No1 and h=50 m for cable No2. The upper cut-off frequency ωc is set equal to 6 rad/s. Moreove
the modal damping ratios are assumed equal for all modes, setting ζv=ζvi=0.004 and ζw=ζwk=0.001
for both cable No1 and No2 (see Appendix B). Newmark-β method (β=1/4, γ=1/2) associated with
full Newton-Raphson iterative procedure is applied to integrate the nonlinear ordinary differ
Eqs. (15) and (16) ruling cable response in the generalized space. 

Before examining the computational and physical aspects connected with the analysis o
vibrations by the proposed procedure, the main features of the spectral decomposition of theCPSD
function of wind velocity fluctuation are briefly outlined (see Eq. (20)). For this purpose, s
numerical results concerning the representation of wind turbulence field on cable No1 are presented.
In Fig. 2 the first six eigenvalues λp(ω) of  versus frequency are plotted. Notice th
in the low-frequency range the first eigenvalue dominates the other ones, while for higher val
ω all the eigenvalues tend to the same value. Physically, this means that for low frequencies t
blowing modes exhibit the major power content so that they represent almost complete
random field . In Fig. 3 the first six eigenfunctions φp(x,ω) of  for different

3.58 102–⋅
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Table 1 First four in-plane and out-of-plane linearized mode shapes and natural frequencies (Cables o1 and
No2)

Cable No1 (λ2<4π2) Cable No2 (4π2<λ2<16π2)

In-plane ωv[rad/s] Out-of-plane ωw[rad/s] In-plane ωv[rad/s] Out-of-plane ωw[rad/s]

1o Sym. 2.1338 1o Sym. 1.4282 1o Antisym. 1.1932 1o Sym. 0.5966
2o Antisym. 2.8565 2o Antisym. 2.8565 2o Sym. 1.4574 2o Antisym. 1.1932
3o Sym. 4.3238 3o Sym. 4.2847 3o Sym. 1.9574 3o Sym. 1.7899
4o Antisym 5.7129 4o Antisym 5.7129 4o Antisym. 2.3865 4o Antisym 2.3865
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values of frequency are shown. It can be seen that the blowing mode shapes vary appreciab
low frequency range, while after a certain value of ω they remain practically unchanged. As alread
mentioned, the eigenfunctions φp(x,ω) indeed depend only indirectly upon frequency through 
functions βp(ω) (see Eq. (28)), which are nearly constant except for low frequencies (Di Paola, et al.

Fig. 2 First six eigenvalues of the CPSD function versus frequency ω (cable No1)

Fig. 3 First six blowing mode shapes for different values of frequency ω (cable No1)
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2002). Furthermore, it is interesting to underline the similarity between the blowing mode s
and the corresponding out-of-plane linearized eigenfunctions of the suspended cable. As 
shown next, the aforementioned similarity actually represents the core of the proposed sim
algorithm. In Fig. 4 the convergence of the eigenfunction expansion of the PSD and CPSD
functions to the target spectra is illustrated for xj=xk=l /2 and xj =l /4, xk=l /2, respectively. Notice
that in both cases few eigenproperties are enough to obtain a satisfactory match with the
spectrum, though for the PSD function (Fig. 4a) the convergence is rather slower.

Let us now focus our attention on the time-domain analysis of cable response under wind lo
For a better understanding of the simplifications introduced in Eq. (35), in Fig. 5 the func
Dkr(ω) (Eq. (31)) associated with the first four out-of-plane linearized eigenfunctions ψk(x),
(k=1,2,...,4), of cable No1 and the first six wind mode shapes φr(x,ω), (r=1,2,...,6), are plotted. It
clearly appears that the contribution of the cross terms, i.e., Dkr(ω) with , can be reasonably
neglected. Moreover, the frequency dependence of the functions Dkk(ω) with equal indices can be
disregarded as well, assuming for convenience Dkk(ω)=Dkk(ωc). In Fig. 6a the legitimacy of the
above discussed assumptions concerning the integrals Dkr(ω) is demonstrated through an appropria
comparison between samples of the random process  generated by Eq. (34) and Eq. (
k=1). Fig. 6b displays an analogous comparison between the corresponding samples of m
out-of-plane vibrations of cable No1, computed assuming nv=nw=M=4. It appears that Eq. (34) ca
be conveniently replaced by Eq. (35) for digital simulation purposes, without affecting remarka
the accuracy of results.

A crucial aspect to be investigated is represented by the suitable number of wind (M) and cable
modes (nv and nw) to be included in the analysis. Numerical experience has revealed tha
number of blowing modes affecting cable vibrations is less than the one required to accu

r k≠

F̃z1 t( )

Fig. 4 Comparison between target power spectrum of wind velocity fluctuation and eigenfunction exp
for an increasing number p of spectral modes (Eq. (20)): (a) xj=xk=l /2; (b) xj =l /4 and xk=l /2 (cable
No1)



122 M. Di Paola, G. Muscolino and A. Sofi

t

retized
3), is

Fig. 7

model
ee

 fact,
 pure
 and
l

, since
patially

ncept
 cable
represent wind turbulence field over the spatial domain [0,l ]. Specifically, it has been observed tha
samples of cable response may be adequately predicted considering just the first nw wind modes
according to Eq. (35). On the other hand, the appropriate order of the Galerkin-type disc
model, obtained approximating the transversal displacement components through Eq. (1
dictated by the geometrical and mechanical properties of the cable (Irvine parameter λ2) as well as
by the phenomena to be investigated within the framework of nonlinear dynamic behavior. In 
samples of out-of-plane vibrations of cables No1 and No2 at x=l /4, obtained including one to three
structural and wind modes, are plotted. Notice that a two-degree-of-freedom discretized 
(nv=nw=M=1) seems satisfactory for cable No1, whose first in-plane eigenfunction is symmetric (s
Table 1). Conversely, such a model is quite inadequate to predict the response of cable No2, since
its first in-plane mode is antisymmetric and therefore is not excited by the first wind mode. In
in that case the nonlinear coupling terms appearing in Eq. (15) vanish identically and a
swinging motion of the cable is devised. It follows that at least the first two structural (in-plane
out-of-plane) and loading modes (nv=nw=M=2) should be included to allow for the vertica
vibrations to be excited. Nevertheless, further investigations reveal that a two-degree-of-freedom
discretized model is always inaccurate, even for cables on the left of the first crossover point
it is unable to capture the loss of coherence induced in the response process by the s
correlated wind turbulence. Indeed, including only one blowing mode (M=1) in the orthogonal
decomposition (24) means assuming that wind velocity field is fully coherent. The previous co
is exhaustively illustrated in Figs. 8 and 9. Fig. 8 shows samples of out-of-plane vibrations of
No1 at xj=l /4 and xk=3l /4 (ν jk=133.492 m) evaluated assuming both nv=nw=M=1 (Fig. 8a) and

Fig. 5 Functions Dkr(ω) versus frequency ω, for k=1,2,..., 4 and r=1,2,...,6 (cable No1)
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Fig. 6 Comparison between samples of (t) simulated through Eq. (34) and Eq. (35) for cable No 1 (a).
Comparison between samples of mid-span out-of-plane response of cable No1 to the generalized loads

(t), (k=1,2,...,4), simulated through Eq. (34) and Eq. (35) (b)

F̃z1

F̃zk

Fig. 7 Samples of out-of-plane vibrations at the quarter-span point obtained retaining one to three cable
(nv=nw) and wind (M ) modes: (a) cable No1 and (b) cable No2
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nv=nw=M=2 (Fig. 8b). It can be seen that, if a two-degree-of-freedom discretized model is emp
identical responses at the two point locations are predicted, since as stated previously, for M=1 Eq. (24)
actually represents a fully coherent random field. Conversely, just the second wind mode a
second swinging cable mode (both antisymmetric) are enough to reveal the loss of coh
between the random processes w(xj, t) and w(xk, t). Fig. 9 displays the projection of the steady-sta
out-of-plane mean configuration plus/minus one standard deviation, , on the Oxz plane for
cables No1 and No2. The comparison between the results provided by discretized models of diff
orders shows once more the fundamental role played by cable and wind modes of higher order th

The previous results point out that the effects of spatial correlation of wind velocity fluctu
over long-span suspended cables are quite important. For comparison purposes, the mean v
standard deviation of in-plane (µv, σv) and out-of-plane (µw, σw) vibrations of the two cables here
examined have been computed also under the assumption of uniform wind turbulence. To th
a conventional wave superposition-based technique has been employed to simulate the 1V-1
velocity process. In order to quantify the effect of spatial correlation, the following percentage
is introduced:

(39)

where the subscripts s=v, w denotes in-plane and out-of-plane vibrations; the superscripts
parentheses, C and U, indicate that the response statistic q is evaluated assuming spatially correlate
and uniform wind velocity fluctuation, respectively. Tables 2 and 3 list the percentage errors

µw σw±

εq
s( ) %( ) qs

C( ) qs
U( )–

qs
C( )

------------------------ 100× ;       q µ σ,==

εq
s( )

Fig. 8 Samples of out-of-plane vibrations of cable No1 at xj=l /4 and xk=3l /4: (a) nv=nw=M=1 and (b)
nv=nw=M =2
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9

obtained employing Galerkin-type discretized models of different orders for cables No1 and No2,
respectively. Equally spaced points xi=i∆x, i=1,2,...,7, with ∆x=33.373 m for the first cable and
∆x=106.25 m for the second one, are considered. According to the concepts outlined above, 
shows that a two-degree-of-freedom discretized model yields constant percentage errors ove
span. It can be seen that both the mean value and standard deviation of in-plane and out-
vibrations are, in general, overestimated when uniform wind turbulence is assumed. An ana
conclusion may be drawn from Fig. 10, which displays the comparison between the projecti

Fig. 9 Steady-state out-of-plane mean configuration plus/minus one standard deviation computed by M
two different orders of the Galerkin-type discretized model: (a) cable No 1 and (b) cable No2

Table 2 Effect of spatial correlation of wind velocity fluctuation upon mean and standard deviation 
plane and out-of-plane cable displacements at different point locations xi : percentage errors defined
by Eq. (39), (Cable N01)

xi=i∆x
nv=nw=M=1 nv=nw=M=3

εµ
(v) (%) εµ

(w) (%) εσ
(v) (%) εσ

(w) (%) εµ
(v) (%) εµ

(w) (%) εσ
(v) (%) εσ

(w) (%)

x1 3.7877 7.7122 139.3087 72.7837 3.3006 0.8985 123.6801 73.805
x2 3.7877 7.7122 139.3087 72.7837 3.4568 0.8172 131.8017 71.875
x3 3.7877 7.7122 139.3087 72.7837 3.6221 0.7201 140.5465 69.038
x4 3.7877 7.7122 139.3087 72.7837 3.6983 0.6598 144.5902 67.331
x5 3.7877 7.7122 139.3087 72.7837 3.6221 0.6696 140.5465 68.051
x6 3.7877 7.7122 139.3087 72.7837 3.4568 0.7287 131.8017 70.007
x7 3.7877 7.7122 139.3087 72.7837 3.3006 0.7886 123.6801 71.355
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the steady-state out-of-plane mean configuration plus/minus one standard deviation on thOxz
plane, obtained through a six-degree-of-freedom discretized model both including and neg
spatial correlation of wind turbulence. The previous results show that the widely used mo
wind velocity fluctuation as a stationary zero-mean Gaussian random process, uniform ov
spatial domain, turns out to be conservative when extended wind-exposed structures, such a
span suspended cables, are dealt with.

Table 3 Effect of spatial correlation of wind velocity fluctuation upon mean and standard deviation 
plane and out-of-plane cable displacements at different point locations xi: percentage errors defined
by Eq. (39), (Cable N02)

xi=i∆x
nv=nw=M=2 nv=nw=M=3

εµ
(v) (%) εµ

(w) (%) εσ
(v) (%) εσ

(w) (%) εµ
(v) (%) εµ

(w) (%) εσ
(v) (%) εσ

(w) (%)

x1 0.8371 1.0358 92.9411 62.4320 1.0426 0.9353 69.6493 70.744
x2 0.8371 1.0018 92.9411 68.1167 1.1197 0.7804 71.7121 67.419
x3 0.8371 0.9509 92.9411 73.9280 1.1830 0.5919 75.0675 62.363
x4 0.8371 0.8908 92.9411 75.2942 1.2176 0.4682 77.4852 59.024
x5 0.8371 0.8306 92.9411 70.3921 1.1830 0.4735 75.0675 59.722
x6 0.8371 0.7795 92.9411 62.3431 1.1197 0.5734 71.7121 62.672
x7 0.8371 0.7453 92.9411 55.7033 1.0426 0.6785 69.6493 64.867

Fig. 10 Effect of spatial correlation of wind velocity fluctuation upon steady-state out-of-plane m
configuration plus/minus one standard deviation (nv=nw=M=3): (a) cable No1 and (b) cable No2
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5. Conclusions

A Monte Carlo-based approach for analyzing buffeting response of long-span suspended
has been presented. Aiming at second-order analysis of the response, this procedure fully a
for geometrical nonlinearities inherent in cable behavior while it neglects nonlinear aerodyn
terms in view of their weak influence on first and second-order statistical moments. By referrin
analysis to flat-sag cables, wind velocity fluctuation is treated as a one-variate bi-dimensiona
mean Gaussian random field, stationary in time and isotropic in space. The time-domain ana
cable response is carried out through the joint application of the Proper Orthogonal Decomp
of wind turbulence field and Galerkin’s discretization of the equations of motion, accordin
Double Modal Transformation technique. Following a recently proposed approach, the P
Orthogonal Decomposition of wind velocity fluctuation is performed on the basis of the freque
dependent eigenfunctions of the CPSD function. So operating, a very efficient technique for 
simulation of the generalized aerodynamic forces is developed. The main drawback of this ap
is that it requires the evaluation of the frequency-dependent eigenproperties of the CPSD fu
which may be time consuming. However, the similarity detected between the blowing mode s
and the along-wind linearized eigenfunctions of the cable provides remarkable computa
advantages, mainly due to the orthogonality properties shared by wind and cable mode sha
particular, by virtue of these properties time-histories of spatially correlated wind loads ca
generated via numerical simulation of few one-variate one-dimensional random processes, a
as are the out-of-plane vibration modes of the cable included in the Galerkin-type discretized 
Hence, the cross-correlation of wind velocity fluctuations at different point locations is modeled
more efficient way than conventional spectral approaches, which rely on the spatial discretiza
wind turbulence field itself and the subsequent factorization of the CPSD matrix at each freq
step. Some numerical results have been presented and discussed in the paper, in order to a
accuracy and efficiency of the proposed simulation procedure. The appropriate selection of th
of the discretized model and the effects of spatial correlation of wind velocity fluctuation
buffeting response have also been investigated through numerical applications.

Appendix A-Linearized eigenfunctions and natural frequencies of a suspended cable

The symmetric in-plane eigenfunctions and the corresponding natural circular frequencies of a sus
cable are given by Irvine (1981):

(A.1)

(A.2)

where Ai is a normalization constant and  are the roots of the characteristic equation

(A.3)

λ2=64(EA/H)(d/l )2 being the Irvine parameter.
The antisymmetric in-plane eigenfunctions and the associated natural circular frequencies are def

follows:
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uous
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(A.4)

(A.5)

The out-of-plane eigenfunctions and the corresponding natural circular frequencies are given by:

(A.6)

(A.7)

Fig. 11 shows the dependence of the dimensionless natural frequencies 
 of in-plane and out-of-plane modes, respectively, on the cable parameter λ /π . For

conciseness, Sym.v and Antisym.v denote the symmetric and antisymmetric in-plane modes, respectively, w
the out-of-plane modes are simply indicated by the letter w. Notice that only the natural frequencies of th
symmetric in-plane modes vary with the elasto-geometric parameter λ /π , as they are the roots of the trasce
dental equation (A.3). Moreover, internal resonance conditions occur at the crossover points, Cj , which are
located at λ /π =2j, ( j =1,2,...). Physically, the modal crossover phenomenon is explained by the contin
transition from the behavior akin to a taut string to the one of a sagging cable.

Appendix B-Coefficients of the discretized equations of motion

In order to define the expressions of the coefficients appearing in the discretized equations of moti
following integrals are first introduced:

ϕi x( ) iπx
l

------- 
 sin=

ωvi
iπ
l

---- H
m
--- ,    i 2 4 6 ..., , ,=( )=

ψk x( ) kπx
l

-------- 
 sin=

ωwk
kπ
l

----- H
m
--- ,   k 1 2 3 ..., , ,=( )=

ωvi l π⁄( ) m H⁄ ϑ i π⁄=
ωwk l π⁄( ) m H⁄ k=

Fig. 11 Dimensionless natural frequencies of in-plane and out-of-plane vibration modes of a suspende
versus the elasto-geometric parameter λ /π
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where ϕi(x) and ψk(x) are the in-plane and out-of-plane linearized eigenfunctions of a suspended cabl
Appendix A).

The coefficients bj
(1), bij

(2)  and bk
(3)  introduced in Eq. (14) are given by:

(B.2)

while the coefficients aij
(1) , ai

(2) , aij
(3) and ak

(4)  appearing in Eqs. (15) and (16) are defined as:

(B.3)

Furthermore, under the assumption of mass-proportional damping,  and  (see Eqs. (15) and (1
given by:

(B.4)

ζvi and ζwk being the modal damping ratios for the i-th in-plane mode and k-th out-of-plane mode, respectively
At last, the coefficients Fzk

(1) and Fzk
(2) (see Eqs. (17) and (18)) are defined as follows:

(B.5)
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