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Abstract. A method of numerical analysis without conducting 3D wind tunnel model tests was
examined in our previous study for predicting vortex-induced oscillation of bridge girders with span-wise
varying geometry. The aerodynamic damping forces measured for plural wind tunnel 2D models were
used in the analysis. A further study was conducted to examine the precision of solution obtained by this
method. First, the responses of vortex-induced oscillation of two rocking models and a taut-strip bridge
girder model with span-wise varying geometry were measured. Next, the responses of these models were
numerically analyzed by means of this method, and then a comparison was made between the obtainec
Vr-A-9, contour diagram of each 3D model in the wind tunnel test and the diagram in the numerical
analysis. Since close correlations were observed between eackrifved, diagrams obtained in the

model test and in the analysis in cases where the 3D model did not have strong three-dimensionality, our
findings revealed that the predicted solution proved to be reasonably accurate.

Keywords: vortex-induced oscillation; bridge girders with span-wise varying geometry; 3D numerical
analysis; precision of solution; wind tunnel model tests.

1. Introduction

In our previous paper (Yoshimurat al. 2001), the amplitude of vortex-induced oscillation was
predicted for a medium-span sine-curved hybrid cable-stayed bridge with span-wise varying
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geometry. 3D wind tunnel model studies are generally conducted in order to examine the
aerodynamic behavior of such bridges as they have a 3D geometrical shape. However, the wind
tunnel available for our study had a working section of only a 1.5 m square cross-section, which
was not sufficiently wide to conduct 3D model tests. Therefore, it was necessary to develop the
following alternative method for predicting the amplitude of oscillation of the full-scale bridge: first,
the aerodynamic damping forces were measured for plural 2D models in the wind tunnel; next, a
linearized method for a 3D numerical analysis was prepared, and then applied to predict the
amplitude of oscillation for this bridge.

Another reason why 2D models were used was that our study was conducted at its preliminary
design stage when the cheaper 2D model tests were preferable to the more expensive 3D mode
tests. However, once the precision of the solution obtained by means of this alternative analytical
method is proved to be sufficiently high to predict vortex-induced oscillation of full-scale bridges,
this method can be applicable to their detailed wind resistant design by using a small-size wind
tunnel. Based on this consideration, further studies were conducted to examine the precision of the
predicted solution. The results of these findings were partially reported at AWAS'02 Conference
(Harada.et al 2002), but complete details of these results are reported in this paper.

2. Abstract of previous study

An abstract of our previous study (Yoshimued,al 2001) on vortex-induced oscillation of the
hybrid cable-stayed bridge shown in Fig. 1 is described in this section. The transverse inclination
and the width of the girder respectively vary from -9 to +9 % and from 23.7 to 25.6 m along the
bridge axis as its horizontal alignment has a sine curve with a maximum radius of curvature of 280 m.

First, the aerodynamic damping forces were measured for seven kinds of 1:40 scale 2D models
denoted by <1> to <7> in Fig. 1(b) where the arrow denotes the wind direction. Fig. 2 shows the
amplitude dependent aerodynamic damping coefficiéhi€z), obtained at one of the wind speeds
tested.H, (2) between <1> and <2>, ..., and <6> and <7> were obtained by linear interpolation.
Next, the lowest natural mode and frequency in vertical bending shown in Fig. 3(b) were obtained
by the eigenvalue analysis using the finite element analytical model shown in Fig. 3(a). The
aerodynamic damping forces were input to the nodal points of the analytical model, and the time-
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Fig. 1 Sine-curved hybrid cable-stayed bridge. Elevation and plane figure (a); cross-sections of girder with
transverse inclinations of +9, +6, ... -6 and -9% (b); and one of triangular fairings examined (c)
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Fig. 4 V-A-d, contour diagrams for girders without and with one of triangular fairings examined, (a) and (b),
obtained in 3D numerical analysis

history response at this wind speed was analyzed. From the results analyzed in the rage of wind
speed of 5 to 40 m/s, so-call®dA-d, contour diagrams shown in Figs. 4(a) and (b) were obtained
(& the aerodynamic damping in logarithm; Figs. (a) and (b): the results for the girder with and
without one of the triangular fairings shown in Fig. 1(c)). The findings in these figures revealed that
the triangular fairings examined was able to suppress the excitation perfectly for the deck with the
structural damping of 0.02 in logarithm as can be seen in Fig. 4. Based on these findings, it was
decided that the bridge girder with this fairing had to be included in the detailed design.

The findings in a further study revealed that the solutions with high precision could be obtained
by using not seven but only three combinationsip{z) for three 2D models.

3. Examination process

A better way of examining the precision of the predicted solutions is to make a comparison
between the response of the cable-stayed bridge in Fig. 1 in the 3D wind tunnel model test and the
response in the numerical analysis. However, the cross-section of wind tunnel working section is not
sufficiently wide to conduct 3D model tests of this bridge as described above. Therefore, the
examination was conducted by using different 3D wind tunnel models from this cable-stayed bridge



16 T. Harada, T. Yoshimura, T. Tanaka, Y. Mizuta, T. Hashiguchi, M. Sudo and M. Miyazaki

Helical Spring Helical Spring

Piano-wire Sy End-plate ;
End-plate i — N .g ~—Piano-wire Rl N }‘
P S W T
Wind L
Viscous Damper Viscous Damper
B =600 300
n B =450 450 = J K -
e~ ! K N I M 0 -
s N |° Q T ob=300 " 150 ‘
A b=1225 _ _ ! = _,_ |
225 (Unit in mm)
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Fig. 7 Taut-strip bridge girder wind tunnel model with varying transverse inclination

model.

In general, bridge girders with span-wise varying geometry are characterized by varying their
transverse inclination, depth and/or width. In this study, three kinds of 3D wind tunnel models were
prepared for the examination: a rocking model whose ‘depth’ varied along the model axis
maintaining both the transverse inclination and width constant (Fig. 5); another rocking model
whose ‘width’ varied maintaining the other two constant (Fig. 6); and a taut-strip model whose
‘transverse inclination’ varied maintaining the other two constant (Fig. 7). First, the response of
vortex-induced oscillation was measured for each 3D model in the wind tunnel by the free vibration
method andvr-A-4, contour diagram was obtained. Next, the response of each 3D model was
numerically analyzed by means of the modal analysis used in our previous study (Yoséimalra,
2001). The non-linear aerodynamic damping coefficieHts(z), measured for plural wind tunnel
2D models (so calledvr-A-H; (2) contour diagrams: reduced wind speed -amplittide(2)
diagrams) were used in the analysis. Then, a comparison was made b¥tweén contour
diagram of each 3D model in the wind tunnel test and the diagram in the numerical analysis.



Precision of predicted 3D numerical solutions of vortex-induced oscillation 17

4. Details of wind tunnel models
4.1. Rocking models

One of the rocking bridge girder models shown in Fig. 5 had a constant deck Bjidih 450
mm with span-wise varying deptid) from 37.5 to 75 mm: the side ratio of cross-sectionBj
varied from 1/12 to 1/6. While, another rocking model shown in Fig. 6 had a constant depth of 50
mm with span-wise varying width from 600 to 300 mb¥B also varied from 1/12 to 1/6. The
bottom plate width of these models) (was half the deck width. In order to induce the rocking
motion in vertical bending, one of the model ends was suspended by helical springs, while the
motion of another model end was restrained by piano-wires. A viscous damper was installed for
vibration control in span-wise direction. The natural mode and frequency of one of the models (Fig.
5) is shown in Fig. 8.

4.2. Taut-strip model

As shown in Fig. 7, the 475 mm wide, 58 mm deep and 140 mm long ten bridge girder model
segments were suspended by a pair of highly pre-stressed piano-wires. Each piano-wire was
connected to a hard helical spring on its end, and viscous dampers were installed for vibration
control in windward direction. Although these segments had the same cross-section, their transverse
inclinations (the angle of attacky), varied along the model axis from +2 to +8 deg. (from +3.5 to
14 %) in a windward direction as shown in Figs. 7 and 9(b). This taut-strip model had one of the 1/
50 scale cross-sections of the cable-stayed bridge girder denoted by <4> in Fig. 1(b). For the sake
of simplicity, this model had no handrails, and the mass and the structural damping were not
simulated (the model had much smaller Scruton number than the required value). The 2 mm gap
between two adjoining segments was sealed with a 0.1 mm thick silicon elastic film. The lowest
natural mode and frequency in vertical bending are also shown in Fig. 9.
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Fig. 8 Natural mode of rocking model (a) wiffig. 9 Natural mode of taut-strip model (a) with
span-wise varying depth (b) span-wise varying transverse inclination (b)
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Fig. 10Vr-A-H{ (2) contour diagrams of five 2D models with different side ratios
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measured fivéd{ (2) curves

5. Vr-A-H, (2) contour diagrams for numerical analyses
5.1. Rocking models
Since the side ratio of cross-sectidVE) for two rocking models varied along the model axis

from 1/12 to 1/6 as described above, five 2D models WiB=1/12, 1/10, 1/8, 1/7 and 1/6 were
made to obtain five/r-A-H, (2) contour diagrams which were used in the numerical analyses. The
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Fig. 12Vr-A-H; (2) contour diagrams of four 2D models with different transverse inclinations
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Fig. 13 Six H, (2) curves obtained by linear interpolation together with fblir(z) curves measured at
Vr=2.08

deck width B) of these models has a constant value of 450 mm and the deck Diep#riéd 37.5,
45, ... and 75 mm. The non-dimensional aerodynamic damping coeffitigz) was obtained by
means of the free vibration method and was definetl b{g)=-ud./ 11, wherepu= m/( psA?) is the
reduced masan the mass per unit lengtp, the air density, and =B for 3D model with constant
B (Fig. 5) orA=D for the one with constar? (Fig. 6).

Fig. 10 showsvr-A-H; (2) contour diagrams obtained for these five 2D models. In the figure, the
ordinate and the abscissa respectively represent the non-dimensional amplitude of displgeement,
y/B, and the reduced wind speaa=V/( fB), wherey is the amplitude of displacement,the wind
speed and the frequencyVr-A-H; (2) contour diagrams for 2D deck models witB between 1/

12 and 1/10, ..., and 1/7 and 1/6 were obtained by linear interpolation. For exdif@ecurves at
the reduced wind speed of 2.24 were so interpolated that they had to be denoted by the lines
between the measured fitg (2) curves shown in Fig. 11.
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5.2. Taut-strip model

Since the transverse inclination (wind angle of attack) of the ten segments in the taut-strip model
varied along the model axis from +2 to +8 deg. as described above/rt@rH, (2) contour
diagrams were necessary for the numerical analysis. Ten segments of the taut-strip model were
connected tightly to each other to form a ‘2D taut-strip model’ with transverse inclination of O deg.
The wind angles of attack of the 2D taut-strip model tested were +2, +4, +6 and +8 deg. that
corresponded to the transverse inclinations of the segments <1>, <4>, <7> and <10> in Fig. 9.

Fig. 12 showsa/r-A-H; (2) contour diagrams for the segments <1>, <4>, <7> and A0A:-H; (2)
contour diagrams for other six segments were obtained by linear interpolation. For example, the
interpolated sixH, (2) curves together with the measured féir(2) curves at the reduced wind
speed of 2.08 are shown in Fig. 13.

6. Outline of method for 3D numerical analyses

The rocking model used in the numerical analysis is shown in Fig. 14(a). The model span was
divided into forty elements with equal length4s. The nodal pointj* was located at each element
center and the equivalent lumped masswas connected at the spring-mounted model end. In the
figure, z(t) is the displacement of the nodal poijitat time t' and L;(t) the aerodynamic damping
force acting on the element. While, each segment of the taut-strip model was divided into three
elements and a lumped masgsof the element was located at its nodal point (Fig. 14(b)).

Consider the analytical taut-strip or rocking model oscillating in wind. Althdygt) is non-
linear, dependent on the amplitudeof the displacemeng(t), an approximate solution can be
obtained under the following conditions: @ach half of the cycle, only the fundamental harmonic
component of the aerodynamic damping force with the amplitude proportioHal(i&) Z is taken
into account g : the antifude of velocity at the nodal poin). Under this piece-wise linearized
condition, the modal analysis can be applied by using the finite element analytical model (Fig. 14),
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Fig. 14 Rocking model (a) and taut-strip-model (b) used in numerical analysis
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and according to Scanlan (1978) and Simiu and Scanlan (1978), the aerodynamic damping force
input to the nodal pointj* is expressed by

Li(t) = (pa [B? [ [Hi(z) [As) (1) 1)

In this study, only vortex-induced oscillation in vertical bending in 1st mode was examined, that
is, other higher modes in vertical bending and torsional modes were not considered. Therefore, the
superposition of modes was not necessary, and the equation of motion and the displacement vecto
{z(t)} are respectively expressed by Egs. (2) and (3).

(1) + 2n, T (1) + o Co(t) = £ @

{2(9} = [{$}s - { B}k - {$In] O, - 0, (1), 0, .., 0)" = { P} () ={ ¢} (D) (3)

In the above equationg(t) represents the modal coordinatgs &/(2m) the modal damping ratio
obtained in the experiment (depending on the amplitude of displaceretitg natural circular
frequency (experimental value in Figs. 8 and M);= {qb}T QM] [ ¢} the modal misl§sthp
mass matrix; L(t) = {(l)}T HL(t)} the modal aerodynamic damping forcé(t)f the
aerodynamic damping force vector wifh componentL;(t), given by Eq. (1); ¢] the mode vector
(experimental value, Figs. 8 and 9). All the componentdMihdre zero exceptn( n) component of
‘m' for the rocking model. Substitution of the velocity vector(t) }, expressed by Eqg. (4) into
{L(t)} gives Eq. (5).

(20} = {4} () @)
L(t) = | pa Wy B? CHi(z) 9P (s | (o) )
i

Thus, the term on the right in Eq. (2) is rewritten as
L(t)/M = {¢} QL(1)}/M = 2h, Coo () (6)
whereh, is the modal ‘aerodynamic’ damping ratio and is expressed by Eq. (7).
1 *
5 0.y B? [Hi(z) D97 (s

ha = ] = _—2 7
S S My 0 am v
i

By using Egs. (6) and (7), Eq. (2) is rewritten as

G(t) + 2 Qhs—h,) Do TH(t) + o’ (L) = 0 (8)
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There are two ways to obtain the solution at a given wind speed. One is the way where the ‘non-
linear’ Eg. (8) with ‘non-linear’ aerodynamic damping ratig, is solved by means of the
Newmark beta method and the time-history response, that is, the ‘divergent’, ‘convergent’ or
‘steady-amplitude’ oscillation can be obtained. Another is the way wheata given amplitude of
g(t) can directly be obtained by using Eq. (7) in only ‘steady-amplitude’ oscillation. It was verified
that the solutions obtained by both ways could result in the same solution in ‘steady-amplitude’
oscillation.

7. Comparison of results in wind tunnel 3D model tests and those in numerical
analyses

7.1. Rocking models

Vr-A- &, contour diagrams of the rocking models obtained in the wind tunnel 3D model tests and
the diagrams in the numerical analyses are shown in Figs. 15-18 where Figs. (a) and (b)
respectively illustrate the experimental and the analytical results. In these figures, the numbers on
each contour represent the aerodynamic damping in logarifgmagd the shadowed area the
negative damping region where the excitation was observed. Very close correlations can be
observed between the experimental and the analytical results for the model with span-wise varying
‘depth’ in both cases where the model end with shallow deck was spring-mounted (or moving, Fig.
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Fig. 15 Vr-A-4, contour diagrams of rocking model with span-wise varying ‘depth’ and with ‘shallow deck
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)
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Fig. 16 Vr-A-d, contour diagrams of rocking model with span-wise varying ‘depth’ and with ‘deep deck
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)
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Fig. 17 Vr-A-4, contour diagrams of rocking model with span-wise varying ‘width’ and with ‘shallow deck
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)
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Fig. 18 16Vr-A-4, contour diagrams of rocking model with span-wise varying ‘width’ and with ‘deep deck
moving’ obtained in wind tunnel (a) and diagram in numerical analysis (b)

15) and the one with deep deck moving (Fig. 16). On the other hand, different response
characteristics were observed between the experimental and the analytical results for the rocking
model with span-wise varying ‘width’ (Figs. 17 and 18).

7.2. Taut-strip model

The experimental and the analytical results of the taut-strip model with span-wise varying
transverse inclination from +2 to +8 deg. together with the ones with a constant value of +6 deg.
are respectively illustrated in Figs. 19 and 20. The wind tunnel model responses in the range of
reduced wind speed/() above 2.6 are not shown in these figures as the transition of mode from
vertical bending to torsion was observed at abwt2.7. Furthermore, it was difficult to obtain the
free vibration records with sufficiently high precision in this wind speed range as plural unstable
limit-cycles were observed. Fairly close correlations are observed in these figures between the
experimental and the analytical results.

A supplementary examination was conducted for the 2D taut-strip model. In the numerical
analysis, the mode vectop}={1} was substituted into Eqg. (3). Much closer correlations can be
observed between Figs. 21 (a) and (b).
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Fig. 19 Vr-A-4, contour diagram of taut-strip model with span-wise varying transverse inclination obtained in
wind tunnel (a) and diagram in numerical analysis (b)
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Fig. 20 Vr-A-4, contour diagram of taut-strip model with constant transverse inclination obtained in wind
tunnel (a) and diagram in numerical analysis (b)
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Fig. 21 Vr-A-4, contour diagram of 2D taut-strip model obtained in wind tunnel (a) and diagram in numerical
analysis (b)
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8. Precision of numerically predicted solutions and discussion
8.1. Precision of solutions

In the previous section, ‘qualitative’ comparisons were made betWeén o, contour diagrams
obtained in the wind tunnel tests and the diagrams in the numerical analyses. In order to discuss the
precision of numerically predicted solutions shown in Figs. 15-21, ‘quantitative’ comparisons had to
be made except Figs. 17 and 18 where different response characteristics were observed between tf
experimental and the analytical results. In this study, the error of solutions were estimated by the
following procedures: first, the ratio of the analytical to the experimental values on the following
three terms was estimated on each contour with the same valyete ‘maximum amplitude’, the
‘critical wind speed’ where the excitation started (on-set) and the ‘super-critical wind speed’ where
the excitation ended. Then, the mean value was calculated for each term. In the error estimation of
the maximum amplitude, the weighted mean value was calculated. For example, the weight of 1/5
was taken into account in the case where the maximum amplitude on a contour was one-fifth of the
absolute maximum amplitude.

The findings for the rocking model with span-wise varying depth and the taut-strip model are
respectively summarized in Figs. 22 and 23 in terms of error (positive: over-estimated). In these
figures, ‘low-speed excitation’ represents the small amplitude excitation observed in lower reduced
wind speed range centered at around 0.9 and ‘high-speed excitation’ the large amplitude excitation
in higher speed range centered at around 1.8.

Of all the cases, the error in the critical and the super-critical wind speeds denoted by a full
triangle and an ‘x’, respectively was smaller than that in the maximum amplitude denoted by a full
circle. As for the rocking model, the findings revealed that the maximum errors were about 5 and
10% in the cases of shallow deck moving ((a) in Fig. 22) and deep deck moving ((b) in Fig. 22),
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Fig. 22 Errors of predicted numerical solutions in maximum amplitude, critical wind speed and super-critical
wind speed for rocking model with span-wise varying depth
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Fig. 23 Errors of predicted numerical solutions in maximum amplitude, critical wind speed and super-critical
wind speed for taut-strip model

respectively. On the other hand, in the cases of the 3D and 2D taut-strip models, the maximum
errors were about 20% and 10%, respectively ((a, b) and (c) in Fig. 23).

8.2. Discussion
8.2.1. Rocking models

The error of 10% for the rocking model with ‘varying depth’ and with ‘deep deck moving’ ((b) in
Fig. 22) was twice the value for the one with ‘shallow deck moving’ ((a) in Fig. 22). The secondary
flow formed on the model close to the end-plate is thought to be one of the possible causes of the
larger error as the ratios of the end-plate height of 30 cm to the model depth of 7.5 and 3.8 cm for
these two cases were 4 and 8, respectively: the former was not sufficiently large (end-plate size
effects). One of the causes of the error of 100% in the 2D rectangular model shown in Fig. 22(c),
which was reported by Utsunomiya (1984), was probably due to be the end-plate size effects.

As for the rocking model with varying ‘width’ (Figs. 17 and 18), the secondary flow due to
strong three-dimensionality is thought to be one of the possible causes of the different response
characteristics. The reason for this was that the taper angle of this model deck width was 12 deg.:
considerably larger than that of the deck depth of 1.5 deg. for the model with varying ‘depth’.
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8.2.2. Taut-strip models

The error of 20% observed in the 3D taut-strip model ((a) and (b) in Fig. 23) is most likely due to
the following causes: the end-plate size effects; the secondary flow due to 3D geometrical shape;
the transition of mode which is characteristic of multi-degreleegfdom systems; the existence of a
few unstable limit-cyclés and the technical problem to introduce very high tensile force in a pair
of piano-wires. The error of 80% in the taut-strip model tests shown in Fig. 23(e), which was
reported by Utsunomiya (1984), was probably due to the same causes.

8.2.3. Precision of solution presented in our previous study

In short, the solution obtained by means of the linearized method examined in our previous study
(Yoshimura,et al 2001) proved to be reasonably accurate in predicting the response of vortex-
induced oscillation for bridge girders with span-wise varying geometry in cases where the girders
did not have strong three-dimensionality and where the size of the end-plate of 2D models for
measuring the aerodynamic damping force was sufficiently large compared to the model depth.

9. Conclusions

In order to examine the precision of solution, which was obtained by the linearized method
provided in our previous study for predicting vortex-induced oscillation of bridge girders with span-
wise varying geometry, the responses of vortex-induced oscillation of two rocking and a taut-strip
bridge girder models were measured first in the wind tunnel. The depth, the width or the transverse
inclination of each model varied along its axis maintaining the other two constant so as to form the
3D geometrical shapes. From these 3D model test reSul&; d, contour diagram was obtained
for each model. In the next stage, the response of each model was numerically analyzed by mean
of this methodVr-A-H; (2) contour diagrams obtained in 2D wind tunnel model tests were used in
the analyses. Then, comparisons were made between the obaiAed, contour diagram of each
3D model in the wind tunnel test and the diagram in the numerical analysis. In order to estimate the
precision of solutions quantitatively, the ratio of the analytical to the experimental values on the
following three terms was calculated on each contour: the ‘maximum amplitude’, the ‘critical wind
speed’ and the ‘super-critical wind speed’ where the excitation ended, and then the mean value of
the ratios, that is, the error was calculated for each term.

Our findings revealed that the errors of 5-10% were observed in one of the rocking models and a
2D taut-strip model, and that the error of 20% was observed in the 3D taut-strip model. Also the
error could hardly be estimated in another rocking model which had strong three-dimensionality as
different response characteristics were observed between the experimental and analytical results
The axial secondary flow formed on the model due to 3D geometrical shape as well as insufficient
size of the end-plate are thought to be one of the possible causes of the error above 10%. In the 3L
taut-strip model, the error is most likely due to the following causes: the transition of mode which is
characteristic of multi-degred-reedom systems; the existence of a few unstable limit-cycles; and

*An initial amplitude of velocity was imposed to the 2D model not by an actuator but by hands in the free
vibration method. Since the model had a little high natural frequency of about 6 Hz, there was a difficulty in
finding out the amplitude of a few unstable limit-cycles exactly.
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the technical problem of introducing very high tensile force in a pair of piano-wires.

Findings of our study revealed that the solutions were reasonably accurate in predicting the
response of vortex-induced oscillation for bridge girders with span-wise varying geometry in cases
where the girders did not have strong three-dimensionality and where the size of the end-plate was
sufficiently large compared to the model depth.
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