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Abstract. The classical two-degree-of-freedom (2-d-o-f) “sectional model” is of common use to stud
dynamics of suspension bridges. It takes into account the first pair of vertical and torsional modes
bridge and describes well global oscillations caused by wind actions on the deck, yielding very 
information on the overall behaviour and the aerodynamic and aeroelastic response; however, it d
consider relative oscillations between main cables and deck. On the contrary, the 4-d-o-f model desc
the two Parts of this paper includes longitudinal deformability of the hangers (assumed linear ela
tension and unable to react in compression) and thus allows to take into account not only global osci
but also relative oscillations between main cables and deck. In particular, when the hangers go slac
nonlinear oscillations are possible; if the hangers remain taut, the oscillations remain small and ess
linear: the latter behaviour has been the specific object of Part I (Sepe and Augusti 2001), while the 
Part II investigates the nonlinear behaviour (coexisting large and/or small amplitude oscillations) 
harmonic actions on the cables and/or on the deck, such as might be generated by vortex shedding.
of the discontinuities and strong nonlinearity of the governing equations, the response has been inve
numerically. The results obtained for sample values of mechanical and forcing parameters seems to 
that relative oscillations cannot a priori be excluded for very long span bridges under wind-induced
and they can stimulate a discussion on the actual possibility of such phenomena.
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1. Introduction

The 4-d-o-f “deformable section” model proposed in this paper extends the 2-d-o-f rigid sect
model classically used to describe the response of long span suspension bridges under wind 
and draws the attention on the possibility of relative displacements and rotations between the de
and the main cables, allowed by the deformability of the suspending hangers. These are a
linear elastic in tension and ineffective in compression (Fig. 1): thus, the proposed model is a
describe the oscillations of the bridge for the whole range of behaviour of the hangers. T
writers’ knowledge, no analytical sectional model had before ever been related to these r
oscillations.

As long as the hangers remain taut, the oscillations are small and essentially linear but, 
this range, some or all the hangers of a row (pre-stressed by the dead loads in the re
configuration) may become slack and the generalised stiffness of the sectional model is 
reduced (cf. Part I of this paper: Sepe and Augusti 2001). Because of the discontinuity and th
consequent strong nonlinearity of the equations of motion in this range, the full behaviour 
proposed model can be found only by step-by-step integration. 

In Part I some related previous works have been discussed; then, the conditions hav
determined that guarantee small amplitude oscillations (hangers always taut) around the equ
configuration under dead loads: this analysis has shown that the possibility of the large am
oscillations (with alternatively hangers loosening and tightening) cannot be excluded for long
bridges subject to winds with speeds within realistic limits.

The present Part II investigates the nonlinear dynamic behaviour of the model for wind-in
forces both on the main cables and on the deck: several cases are treated numerically and th
discussed. In particular, it will be shown that the negative displacements between main cab
deck (hanger ends “getting closer”) can become one or two order of magnitude larger th
displacements due to the global oscillations described by the classical 2-d-o-f model, especlly in
case of small structural damping. 

In order to make this part of the paper self-contained, in Section 2 the equations of moti
presented again and the main results of Part I recalled.

Fig. 1 The 4-d-o-f “deformable section” model
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2. The model: equations of motion

In the proposed model, while cables and deck are assumed to behave elastically, hang
considered as linear elastic in tension and ineffective in compression (Fig. 1). However, the h
are pre-stressed in the reference configuration by the deck weight: therefore, the unilateral be
is significant only if the amplitude of the relative displacement ∆Yi between main cables and dec
becomes larger than the elastic elongation ∆Y0 of the hangers in the reference configuration (Fig. 
Note also that no other source of nonlinearity is introduced in the model: the restraints on the
and the deck are assumed as linear, without considering any “geometrical nonlinearity”.

In order to obtain a still relatively simple model, it is assumed that the three principal compo
of the bridge, namely the main cables and the deck, oscillate with the same longitudinal shapψ(x),
although not with the same amplitudes. As a consequence of this assumption, all sections be
a similar way and therefore the bridge response can be described by a “sectional model”:
present case, a “deformable section” model, that improves the classical 2-d-o-f rigid-section 
because it is able to account for relative vertical displacements between main cables and dec
possible by the elasticity of the hangers in tension and their “slackness” in compression; the
displacements are neglected in both models. 

Let Y(t) and Θ (t)(Fig. 1) denote the generalised displacement and rotation of the deck rela
the assumed pseudo-modal shape ψ (x), while Z1(t) and Z2(t) denote the generalised displacement
of the two main cables; let also mc be the generalised mass of each cable and my, I the generalised
mass and torsional inertia of the deck, respectively, while it is assumed that the mass of the 
can be neglected with respect to mc, my.

Indicating by the suffixes 1 and 2 each cable, the relevant equations of motion are (Se
Augusti 2001):

mc +2ζcωcmc +KcZ1−δ1Kh0(Y+bΘ−Z1)+(1−δ1)Kh0∆Y0=Fc1(t)

mc +2ζcωcmc +KcZ2−δ2Kh0(Y−bΘ−Z2)+(1−δ2)Kh0∆Y0=Fc2(t)

my +2ζyωymy +KyY+Kh0[δ1(Y+bΘ −Z1)−(1−δ1)∆Y0+δ2(Y−bΘ−Z2)−(1−δ2)∆Y0]=Fy(t)

I +2ζθωθ I +KθΘ +Kh0b[δ1(Y+bΘ −Z1)−(1−δ1)∆Y0−δ2(Y−bΘ−Z2)+(1−δ2)∆Y0]=Mθ(t) (1)

Z
··

1 Z
·

1

Z
··

2 Z
·

2

Y
··

Y
·

Θ
··

Θ·

Fig. 2 Generalised force Nh transmitted by hangers between the main cables and the deck vs. the gene
relative displacement ∆Yi , according to Eq. (1) and Eq. (8)

Nh=δi Kh0(∆Yi+∆Y0)
δi =1, if ∆Yi ≥−∆Y0; δi =0, if ∆Yi <−∆Y0; i=1, 2
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where also damping terms ζc, ζy, ζθ have been introduced, while b=B/2 denotes the half-width of
the deck (Fig. 1); ωc, ωy, ωθ are the natural pulsations (angular frequencies) of cables and deckKc,
Ky, Kθ , Kh0 are respectively the vertical (geometrical) generalised stiffness of each cable, the v
and torsional generalised stiffness of the deck and the generalised stiffness of a row of hang
δ i (i=1,2; ) is a stiffness-reduction coefficient (in principle, time-dependent) that ta
into account the possible “slacking” of the hangers (and depends on the amplitude of oscill
being related to how many hangers go slack). Eqs. (1) include the forcing terms (vertical forc
moments) Fc1, Fc2, Fy, Mθ acting on the main cables and on the deck (as shown in Fig. 1), whil
loads on the hangers have been considered.

Introducing non-dimensional variables and parameters 

(2)

where g is the gravitational acceleration, the equations of motion become

+2ζcωc + q1−δ1 (q3+q4−q1)+(1−δ1) d0= f1(t)

+2ζcωc + q2−δ2 (q3−q4−q2)+(1−δ2) d0= f2(t)

+2ζyωy + q3+β1 [δ1(q3+q4−q1)−(1−δ1)d0+δ2(q3−q4−q2)−(1−δ2)d0]= f3( t)

+2ζθωθ + q4+β2 [δ1(q3+q4−q1)−(1−δ1)d0−δ2(q3−q4−q2)+(1−δ2)d0]= f4(t) (3)

In all examples presented in this paper, the forcing terms have been assumed to vary harm
with time (in fact, they are intended to represent wind-induced loads due to Kármán v
shedding). With regard to the actions on the main cables, the amplitude fc and the pulsation Ωc are
assumed to be the same for both cables, with a phase lag ∆ϕ , i.e.,

f1(t)=fc sinΩc t, f2(t)=fc sin (Ωct +∆ϕ) (4)

It has been shown in the Part I of this paper (Sepe and Augusti 2001) that the phase lag ∆ϕ could
significantly affect the dynamic response; it has also been shown that one of the values ∆ϕ=0 (in-
phase forcing) or ∆ϕ =π (forcing in phase-opposition) maximises the length variation of the hang
and therefore could amplify the slacking effect. As an example, the value of ∆ϕ=π/4 has been
considered in the numerical investigations, to show how rich the dynamical response can be;
other hand, the determination of the “true” value of ∆ϕ for a given specific problem is outside th
aim of the present paper.
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As for the actions on the deck, the force amplitude is denoted by fd, and the moment Mθ is
introduced by means of an eccentricity ed: 

f3(t)=fd sinΩd t, f4(t)=edf3(t) (5)

3. Linear elastic oscillations

3.1. Free oscillations

Linear elastic oscillations are obtained putting δ1=δ2=1 into Eqs. (3). Assuming the dampin
coefficients ζc, ζy, ζθ to be zero, a classical eigenvalue analysis yields the four natural pulsationω1,
ω2, ω3, ω4 of the sectional model. As shown in Part I, the first two natural modes correspo
motions with small deformations of the hangers (denoted in the following as global vertical and
torsional modes, Fig. 3(a),(b)) and their pulsations ω1, ω2 are much lower than the pulsations ω3, ω4

corresponding to relative modes (i.e., oscillations with cables and deck moving vertically out
phase, Fig. 3(c),(d)).

3.2. Forced oscillations: limit of linear behaviour

As anticipated at the beginning of Section 2, if ∆Y1 and ∆Y2 are the generalised relative
displacements of the two rows of hangers, respectively, and ∆Y0 the corresponding elastic elongatio
of the hangers due to the weight of the deck, the response of the model is certainly elastic li
long as

(6)

Therefore, the conditions

(7)

provide a sure boundary for the elastic behaviour of the model.
Lines corresponding to Eqs. (7) have been obtained in Part I assuming harmonic forces f1, f2 of

the same amplitude fc, and pulsation Ωc acting only on the cables (cf. Eq. (4)) with a given phas

∆Y1 t( ) ∆Y0 ;  ∆Y2 t( ) ∆Y0–≥–≥

max ∆Y1 t( ) ∆Y0=  ;  max ∆Y2 t( ) ∆= Y0

Fig. 3 Diagram of the linear modes of the 4-d-o-f sectional model and corresponding angular frequen
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lag ∆ϕ ( f3=f4=0); this load condition enhances high frequency relative motions, complementa
slow global motions well described through the rigid section model and mainly due to actio
the deck. 

Note that ∆ϕ=0 represents in-phase actions on the cables, that excite only vertical motions (
and relative), without torsional motions of the deck. In this case, in the high frequency rang
contribution of the global modes to the length variation of the hangers is negligible. Sim
∆ϕ=π represents actions in opposition of phase, and only the (global and relative) torsional 
develop.

For ∆ϕ different from 0 and π, both vertical and torsional modes are excited. However, it 
been demonstrated (Part I) that the limit condition for arbitrary ∆ϕ is given by the lower fc value
corresponding to either ∆ϕ=0 or ∆ϕ=π , that can therefore be taken as a safe boundary for ela
response.

In the case of zero damping, all limit curves go obviously to zero (fc=0) in conditions of
resonance, i.e., for Ωc=ωi (with i=1, 2, 3 or 4); an example of such a boundary is qualitativ
shown in Fig. 4 (analogous to Fig. 4 of Part I). For small damping, the boundary presents h
(i.e., small fc values) in the vicinity of resonance ( ).

In the next section, cases that violate the elastic boundary (that in Part I have been show
not unrealistic) will be investigated.

4. Nonlinear analysis

When inequalities (6) are violated, the stiffness-reduction coefficients δi in Eq. (3) assume values
between 0 and 1, that vary in time as a consequence of the amplitude of oscillations. 
numerical analyses, the simplifying and limit assumption has been introduced that the valueδi

can only be either 0 or 1, depending on sign and value of the generalised relative displacem∆Yi

(i=1,2) between main cables and deck with respect to the elastic elongation ∆Y0 of the hangers in
the reference configuration, namely (Fig. 2),

δ i=1, if ; δi=0, if ; i=1,2 (8)

This assumption of discontinuity in the stiffness of the cable-to-deck connections, that w

Ωc ω i≈

∆Yi ∆Y0–≥ ∆Yi ∆Y0–<

Fig. 4 Diagrammatic non-dimensional loading amplitude fc=Fc/mcg of the vortex-shedding force on the mai
cables corresponding to upper limit of elastic behaviour (Eq. (3) for δi=1) vs. angular frequency Ωc,
for zero damping (mcg=cable weight). A numerical example is reported in Part I (Fig. 4, Tab. 1)
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seem trivial if the section model shown in Fig. 1 were considered in isolation, represents o
limit approximation when the section model is used to describe the dynamics of the whole b
in fact, while it is very close to the real behaviour if the assumed ψ(x) is a no-node shape (e.g.
half-length of a sine wave, as in Part I), for different pseudo-modal shapes Eqs. (8) is on
approximation of the actual softening behaviour of the structure due to the unilateral charact
of the secondary suspension system.

The discontinuities that are thus introduced in the equations of motion (3) call for a great att
in the search of the numerical solutions, that are very sensitive to initial conditions; more
multiple stable and/or unstable solutions may coexist.

Inspection of Eqs. (2)-(3) shows that the ten parameters ωc, ωy, ωθ, ωh, ζc, ζy, ζθ , β1, β2, b fully
define the mechanical properties of the system, on which the four natural pulsations of the br
the elastic range ω1, ω2, ω3, ω4 depend.

Six parameters, namely ω1, ω2, ω3, β1, β2, b, have been varied in the performed investigatio
while the other parameters, in accord with Part I and previous examples (Augusti, et al. 1997,
Augusti and Sepe 1999), have been given the constant values

ωy=0.10 rad/s, ζc=0.002, ζy=0.003, ζθ=0.005

except Figs. 9, 10, 11 where the damping coefficients have been assumed smaller to highligh
characteristics of internal resonance. Note that ωy is the pulsation of the first bending mode of th
deck alone, as it were isolated from the other parts of the structure. The values attributed
parameters are shown in Table 1, where, instead of ω1, ω2, ω3, the ratios 

(9)

are indicated. The ratio α1 between the pulsation ω1 of the first global bending mode of the system
and the pulsation ωy of the analogous mode of the deck alone, underlines the contribution o
suspension (main cables plus hangers) to the global system stiffness; α2 is the ratio between the
pulsation ω2 of the global linear torsional oscillation and the corresponding bending pulsation ω1;
finally, α3 is the ratio between the pulsation ω3 of the relative vertical deck-cables motion and th
system global bending pulsation ω1, and therefore is an indication of the stiffness of the hang
assumed to remain in the linear range of behaviour.

Table 1 shows also the values of the ratio α4=ω4/ω3 which, although depending on the othe
parameters, gives a direct indication on the possible internal resonance between vertic
torsional relative mode (that occurs for α4=2 and implies a substantial difference in the dynam
response of the system).

Like in the examples considered in Part I, also in this paper the pseudo-modal shape ψ(x) has
been always assumed as a sinusoidal half-wave, that presents displacements of the same s
the whole span (no-node shape).

With regard to the loading conditions, harmonic actions (intended to mimic vortex shedding
the suspension cables or from the deck) have been considered, with pulsation Ωc or Ωd close to a
natural pulsation of the system, i.e., such that they can synchronise with the structure in a re
large range of wind speed (lock-in): more specifically, forcing pulsations close to the natu
pulsations, ω3 or ω4, of the relative motions between cables and deck (Fig. 3) have been consi
In these conditions, in fact, significant relative displacements between the main cables and th

α1

ω1

ωy

------= α2

ω2

ω1

------= α3

ω3

ω1

------=
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take place, with a consequent slacking of the suspending hangers, that the proposed def
section model allows to reproduce, differently from the classical 2-d-o-f model.

The relation between the forcing pulsation Ωc or Ωd and the pulsations ω3 or ω4 of the excited
relative mode, is expressed through detuning parameters σ3, σ4 defined by

, (10)

The main results of the numerical investigation are reported in Fig. 5 to Fig. 13 and discus
Sect. 5. The ranges of variation of the mechanical parameters and of the forcing charact
adopted are representative of situations of long span suspended bridges, even if, in o
highlight the potentiality of the proposed sectional model, sometimes the forcing intensity has
assumed larger than generated by vortex shedding, as underlined in the Sect. 5. For examp
the assumed numerical values (cf. Table 1): the frequency ω1=α1ωy of the vertical mode ranges
between 0.20 rad/s and 2 rad/s, comparable to the corresponding values of typical bridges (e
rad/s for the Akashi-Kaykio bridge and 1.4 rad/s for the Vincent Thomas bridge); the ratα2

between the torsional and the vertical global frequencies ranges between 1.4 and 3.4, corres
to typical values (around 1.33 for the Messina Bridge, and 2.2 for the Akashi-Kaykio); the valu
the ratio α3 between the relative and global vertical modes, ranging between 4 and 160, in
both the situations of relatively short bridges with a stiff deck (lower values) and the limit situa
of decks with negligible stiffness in comparison with the stiffness of the suspensions syste
also Part I of the paper). On the other hand, the main aim of this paper was to stimu
discussion on the actual possibility of this kind of phenomena.

σ3

Ω ω3–
ω3

------------------ Ω Ωc Ωd,=( )= σ4

Ωd ω4–
ω4

--------------------=

Table 1 Cases considered in the numerical investigation, in combination with several harmonic actions
main cables or on the deck. For all cases, ωy=0.10 rad/s

Case αl=ω1/ωy α2=ω2/ω1 α3=ω3/ω1 α4 β1 β2 b (m) Ref. Fig.

1 6 3 5 2.32 0.40 2.25 15 7,8,12
2 6 2.51 5 2 0.40 2.25 15 9,10,11
3 2 3 5 2.32 0.40 2.25 15 12
4 20 3 5 2.32 0.40 2.25 15 5,6,12
5 4 2 4 2.15 0.25 3.15 17.75 13
6 4 2 5 2.19 0.25 3.15 17.75 13
7 4 2 10 2.22 0.25 3.15 17.75 13
8 4 2 50 2.25 0.25 3.15 17.75 13
9 4 2 160 2.42 2.25 3.15 17.75

10 4 3.23 10 2.32 0.25 3.15 17.75
11 6 3.43 5 3 0.40 2.25 15
12 4 2.88 50 3 0.40 2.25 15
13 6 1.4 5 1.71 0.40 2.25 15
14 2 2.96 5 2.33 0.40 2.25 15
15 6 3 10 1.83 0.40 2.25 15
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5. Numerical investigation and discussion

5.1. Typical results

The time histories of the responses have been obtained by step-by-step numerical integra
the equations of motions, Eq. (3), with the discontinuity conditions of Eq. (8). In all cases, u
explicitly indicated, steady state response are reported (i.e., the values obtained when the am
of velocities and displacements have stabilised). As examples, however, time-histories 
transient part of the response have also been included in Figs. 5(a) and 7(a).

Numerical investigations were performed on all cases in Table 1 for several different forcin
the main cables or on the deck. Because of space limitations, only a limited portion of the 
obtained can be presented here; full details are reported in Diaferio (2002).

Fig. 5 shows the steady-state time-histories and phase-planes of vertical displacements of t
centroid obtained for case 4 in Table 1, with no internal resonance between vertical and to
relative modes, for a given frequency and intensity of the forcing action on the main cables. F
same case and the same forcing intensity, Fig. 6 reports the amplitude of the response as a 

Fig. 5 Deck displacement q3 and hangers elongation ∆Yi for case 4 of Table 1 (α4=2.32, no internal
resonance). Transient (a) and stationary (b) time-history and stationary phase planes (c),(d) for 
the main cables of given pulsation, close to resonance with the relative vertical mode: Ωc=0.95ω3 (σ3=
−0.05), fc=0.0025 (0.25% of the cable weight mcg), ∆ϕ=π /4, ζc=0.002, ζy=0.003, ζθ=0.005
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of the forcing frequency, at several values near to the frequency of the relative vertical motion
Fig. 7 shows, in terms of time-histories and phase-planes, the response of the case 1 of Ta

Fig. 6 Deck displacement and hangers elongation for case 4 of Table 1 (α4=2.32, no internal resonance)
Frequency-response curves for load on the main cables, nearly resonant with the relative vertica
σ3=(Ωc−ω3)/ω3, fc=0.0025, ∆ϕ=π/4, ζc=0.002, ζy=0.003, ζθ=0.005. (a) Vertical displacement of the dec
(b) Elongation of the hangers

Fig. 7 Deck displacement q3 and hangers elongation ∆Yi for case 1 of Table 1 (α4=2.32, no internal resonance)
Transient (a) and stationary (b) time-histories and stationary phase planes (c),(d) for centric (ed=0) load
on the deck of given pulsation, close to resonance with the relative vertical mode: Ωd=0.85ω3 (σ3=
−0.15), fd=0.005, ζc=0.002, ζy=0.003, ζθ=0.005
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an action of given frequency and intensity, assumed acting on the deck along the bridg
(eccentricity ed=0, cf. Eq. (5)); Fig. 8 reports, for different intensities of the force acting on 
deck, the frequency-response curves around the natural frequency of the relative vertical 
However, while the forcing intensities fc=0.5% and 1% are compatible with vortex shedding und
realistic wind speeds, the higher value fc=5% must be considered only as a limit assumption.

In case of internal resonance between the vertical and torsional relative modes (case 2 of T
the response to a centric force acting on the deck is illustrated in Fig. 9 through the phase-pla
a given forcing frequency, and in Fig. 10 through the frequency-response curves; the da
introduced in this case (ζy=ζθ=0.001) is smaller than in the other ones, to highlight the effects
the internal resonance.

For the same geometrical and mechanical parameters of the internally resonant case 2 of 
Fig. 11 shows the response to an eccentric force acting on the deck and near-resonant w
relative torsional mode. 

For a given intensity of the load on the main cables, close to resonance with the vertical r
mode, Fig. 12 compares the responses for different values of the ratio α1 (cf. Eq. (9)), that
correspond to the cases 1, 3 and 4 (no internal resonance) in Table 1: note that α1 is smaller when

Fig. 8 Deck and cables displacements and hangers elongation for case 1 of Table 1 (α4=2.32, no internal
resonance). Frequency-response curves for centric (ed=0) load on the deck, close to resonance with t
relative vertical mode: σ3=(Ωd−ω3)/ω3, fd varying between 0.005 and 0.05 (0.5 to 5% of the de
weight mdg), ζc=0.002, ζy=0.003, ζθ=0.005;  (a) vertical displacement of the deck, (b) vertic
displacement of the main cables, (c) elongation of the hangers



462 Vincenzo Sepe, Mariella Diaferio and Giuliano Augusti

orter.
rce on

fness of
.
f the

 can be

nce

of the
the deck stiffness is larger with respect to the stiffness of the cables, i.e., when the span is sh
Similarly, Fig. 13 compares the frequency-response curves to the same type of excitation (fo

the deck, near-resonant with the relative vertical mode) for different values of the parameter α3, that
indicates the stiffness of the secondary suspension system (hangers) with respect to the stif
main cables and deck; they correspond to the cases 5 to 8 (no internal resonance) in Table 1

In Figs. 12 and 13, to highlight the effects of the stiffness reduction due to the slacking o
hangers, values of the forcing intensity have been considered that, depending on the case,
significantly larger than realistic.

Fig. 9 Deck and cables displacements and hangers elongation for case 2 of Table 1 (α4=2, internal
resonance). Phase-planes for centric (ed=0) load on the deck with a given pulsation, close to resona
with the relative vertical mode: Ωd=0.995ω3 (σ3=−0.005), fd=0.02, ζc=0.002, ζy=0.001, ζθ=0.001 (a)
vertical displacement of the main cables, (b) vertical displacement of the deck, (c) elongation 
hangers, (d) torsional rotation of the deck
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5.2. Discussion: effects of the properties of the action (frequency and intensity)

Consider, as a typical example, the structural system with α1= 20, α2=3, α3=5 (case 4 in Table 1),
subjected on the suspension cables to an action with pulsation close to the pulsation ω3 of the
relative vertical motion between deck and cables.

When the action amplitudes are comparatively small (in the example considered smalle
approximately 0.20% of the weight of a cable, ), the hangers turn out to be always
and the oscillations, always with small amplitude, are practically coincident with those given b
linear model and result asymptotically stable and symmetric with respect to the (static) equili
configuration. 

For a forcing amplitude higher than this threshold value, instead, the model can show sm
large amplitude oscillations, depending on initial conditions. In particular, Fig. 5 reports
responses of the model (both transient and stationary) caused by a forcing amplitude equal to
of the weight of the cables (fc=0.0025) and pulsation Ωc=0.95ω3(σ3=−0.05), with phase-lag ∆ϕ=π/4.

fc 0.0020<

Fig. 10 Deck and cables displacements and hangers elongation for case 2 of Table 1 (α4=2, internal
resonance).  Frequency-response curves for centric (ed=0) load on the deck, nearly resonant with th
relative vertical mode: σ3=(Ωd−ω3)/ω3, fd=0.02, ζc=0.002, ζy=0.001, ζθ =0.001 (a) vertical
displacement of the main cables, (b) vertical displacement of the deck, (c) elongation of the ha
(d) torsional rotation of the deck
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When the pulsation is varied between Ωc=0.94ω3 and Ωc=1.02ω3 (Fig. 6) it can be noted that the
steady-state amplitudes show a softening behaviour of the system; for a forcing frequency smal
than the frequency ω3 of the relative vertical motion, two stable and periodic solutions coexist w
the same frequency of the forcing action, but characterised by very different amplitud
oscillation; as typical of this kind of systems, unstable solutions can also exist, but cann
obtained by a step-by-step numerical integration; indeed they are not crucial for the objecti
this paper.

While small amplitude oscillations practically coincide with those that can be forecast throug
2-d-o-f linear model commonly used, large amplitude oscillations, corresponding to the slack
hangers, can be even one or two orders of magnitude larger. These oscillations are non-sym
with respect to the static equilibrium configuration (cf. Fig. 5), correspondingly to the 
symmetric constitutive behaviour of the secondary suspension (Fig. 2).

The behaviour so far described is analogous to the behaviour of 1-d-o-f systems with piec
linear restoring forces (Shaw and Holmes 1983, Natsiavas 1990), for which the plot in the 
plane consists of two branches of ellipse with a common tangent in the intersection point.

Fig. 11 Deck and cables displacements and hangers elongation for case 2 of Table 1 (α4=2, internal
resonance). Frequency-response curves for eccentric load on the deck, nearly resonant w
relative torsional mode: σ4=(Ωd−ω4)/ω4, fd=0.02, ed=b/3, ζc=0.002, ζy=0.003, ζθ=0.002 (a) vertical
displacement of the main cables, (b) elongation of the hangers, (c) torsional rotation of the dec
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Fig. 12 Role of the stiffness of the suspension system (parameter α1 in Eq. (9)) on the elongation of the hangers.
(a) case 3 of Table 1, α1=2;  (b) case 1, α1=6;  (c) case 4, α1=20; for all cases α4≠2 (no internal
resonance), ζc=0.002, ζy=0.003, ζθ =0.005. Frequency-response curves for load on the main cables,
nearly resonant with the relative vertical mode: σ3=(Ωc−ω3)/ω3, fc=0.005, ∆ϕ=π/4. (d) elongation of
the hangers normalised with respect to ∆Y0

Fig. 13 Frequency-response curves of relative end displacement of the hangers for different α3 (cases 5, 6, 7,
8 of Table 1) and forcing on the deck nearly-resonant with the relative vertical mode: σ3=(Ωd−ω3)/ω3,
fd =0.01, α4≠2 (no-internal resonance), ζc=0.002, ζy=0.003, ζθ =0.005
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From the frequency-response curves reported in Fig. 6, a sharp “knee” in the slope 
backbone curve can be observed, due to a sharp modification of the stiffness characteristics
system, differently from what can be found for systems with smooth nonlinearities, in whic
slope of the backbone curve varies smoothly. As shown in the next Section, the change of s
the knee of the backbone curve depends on the ratio between the stiffness of the sec
suspension system (hangers) and the stiffness of the deck, and therefore on the parameter α3.

In the same examples presented in Figs. 5-6, it has been noted that also for large am
motions the torsional oscillations due to the phase-lag between the actions on the main cable
the same order of magnitude of those given by the linear model, and this independently of the
of the phase-lag (as confirmed by results presented in Diaferio 2002); this is due to the abs
internal resonances between the relative vertical component of the motion, directly excited, a
relative torsional component, with a higher frequency. 

The behaviour of the system is similar with actions applied on the deck (Fig. 7, Fig. 8
forcing frequencies smaller than the natural one ω3, also in this case two stable solutions with th
same frequency and different amplitude may coexist with unstable solutions, that cannot be
through numerical integration. 

Also for a forcing action on the deck, the plot in the phase-plane (Fig. 7(c),(d)) is analogo
that described by Shaw and Holmes (1983) for a 1-d-o-f model with piece-wise restoring force
also this time, without internal resonance, the absence of torsional components of the actioned=0)
implies, even for large amplitude oscillations and for large fd, the absence of torsional rotations.

The behaviour is completely different in case of internal resonance between the relative v
and torsional modes (α4=2). In this case, in fact, even if the action on the deck is not eccentric, a
relative torsional motion can start for appropriate initial conditions, with amplitude comparab
that of the vertical motion, and this kind of behaviour cannot be forecast by means of the cl
2-d-o-f sectional model.

This condition is shown by the examples whose main results are presented in Figs. 9 and 1
centric action on the deck with angular frequency close to ω3. It is possible to individuate two
classes of large amplitude oscillations, both stable for the values of parameters under consid
(apart from unstable solutions, not found numerically). The first solution (defined unimodal, see Fig.
9 and 10) has the same period than the action, and is analogous to the solutions of the case
discussed, i.e., is characterised by oscillations of the system in the vertical plane only, with in
motion of the main cables and no torsional rotations. In the second solution (called bimodal, and
found only in a small range of frequencies) the vertical component of the deck motion has the
period of the forcing action, but torsional oscillations are also present, with period multiple o
forcing period (subharmonic response): these torsional rotations are due to the energy transf
the directly excited vertical mode to the internally resonant torsional one. 

Finally, Fig.11 shows the effect of an eccentricity ed of the action on the deck, again in case 
internal resonance between the relative vertical and torsional modes (α4=2), but this time
synchronised with the frequency ω4 of the relative torsional mode between main cables and d
The frequency-response curves of the torsional rotation and of the length variation of the h
(Fig. 11(b),(c)) underline the coexistence of small and large amplitude solutions, while, notwithsta
the internal resonance, the vertical oscillations of the deck turn out small, of the same or
magnitude of those that could be obtained with the classical 2-d-o-f sectional model, becau
time the excited mode is the higher frequency one.

In all cases considered, it can be observed that the deck oscillate around an average confi
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different from the initial one, as a consequence of the non-symmetric behaviour of the hange
is the more evident as the larger are the oscillations.

5.3. Discussion: effects of mechanical parameters

In this Section the role of the mechanical parameters of the system is examined, again in t
of actions on the main cables nearly resonant with the angular frequency ω3 of the relative motion
between main cables and deck. Fig. 12 shows the frequency-response curves of the length v
of the hangers for three different values of the parameter α1 (α1=2, α1=6 and α1=20), while other
parameters are kept constant.

It can be observed that the different value attained by ∆Yi in the knee of the response curve (valu
that corresponds to ) can be explained considering that the value of α1 is the larger the
stiffer is the main suspension system; on the other hand, for increasing α1 the parameter α3 can be
kept constant, as assumed, only if the hangers stiffness Kh0 increases in the same ratio, with 
consequent reduction of the initial elongation ∆Y0 under dead loads.

And in fact, if the relative displacement between the two ends of the hangers is normalise
respect to this value ∆Y0, the frequency-response curves for different values of α1 are almost
coincident (Fig. 12(d)).

The role of the hanger stiffness, represented by the parameter α3, is shown in Fig. 13. 
It can be observed that for an increasing stiffness of the secondary suspension system (h

and therefore of the parameter α3, the numerical evaluation of the steady-state solution beco
more and more difficult. According to the objectives of this paper, mainly devoted to describe
general way the conditions under which large amplitude oscillations are possible and to chara
them, it has not been investigated if the numerical difficulties found for large values of α3 (namely
α3=160, case 9 of Table 1) are due to the algorithm used or are, instead, related to some 
characteristics of the response (e.g., because it is non-periodic, or even chaotic). 

On the other hand, the difficulties that have been found are justified considering that a s
with  is analogous, in all respects, to the limit case in which the suspending hange
modelled through unilateral constraints not deformable in traction, with consequent impu
phenomena for each crossing of the discontinuity described by Eq. (8).

In similar cases, the great dependence of the response on the accuracy of numerical calc
(and on the initial conditions, of course) has already been noted by other Authors (e.g., Na
1990).

In the case of an action on the deck with frequency close to ω3, and without internal resonance
the role has been investigated of the parameter α2 that characterises the global torsional stiffness
the system, whose values have been varied between 1.4 and 3.23; the numerical results, rep
detail in Diaferio (2002), show that α2 does not influence the structural response when the forcin
not eccentric. 

6. Conclusions

A 4-d-o-f sectional model, able to describe the wind-induced response of long-span bridges
into account the longitudinal deformability of the unilateral hangers, has been proposed
analyzed. In Part I (Sepe and Augusti 2001) the elastic response and its limits have
investigated, while this Part II investigates numerically the non-linear behaviour under harm

∆Yi ∆Y0≅

α3 50>
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actions on the cables and on the deck, like those that could be e.g., generated by vortex shed
The oscillations started by such actions on the main cables or on the deck have been so

numerical integration of the ordinary differential equations that describe the motion (Eq. 
outside the range of small oscillations, in fact, these equations become nonlinear due 
unilateral behaviour of hangers.

The results reported here underline that as a consequence of this characteristic behaviou
suspending hangers, it is possible to observe oscillations with amplitude one or two ord
magnitude larger than those evaluated through the classical 2-d-o-f sectional model (hangers 
elongation), with a dynamic behaviour particularly interesting and complicated when intern
external resonance conditions occur.

To simplify the approach, the numerical investigations performed so far have assumed a ha
action, in order to catch at least the main aspects of the response under loads induced by
shedding (Simiu and Scanlan 1996). Possible developments of the research should include 
accurate modelling of this kind of actions (e.g., D’Asdia, et al. 1998).

The deformable section model could also allow to evaluate the wind induced oscilla
(buffeting) in the sub-critical range of wind speed, i.e., far from self-excited or resonant oscilla
Also of interest are the relative oscillations due to the different nature and intensity of the
actions on the main cables and the deck, which for very long span bridges are significantly 
from each other.

A possible further improvement of the model might be to attribute (by numerical technique
the stiffness reduction coefficient δ1 values in the whole range between 0 and 1, depending on 
many hangers are slack. Along a similar line, the model could also be extended to describe th
motion of a part of the bridge, taking into account, for example, higher vibration modes o
cables, with frequencies in between those of the pseudo-modal shapes here considered, de
on the wave length. 

To describe local oscillations and/or travelling waves a convenient alternative to the sec
model may be the technique of “equivalent” nonlinearisation proposed in the PhD thesis of o
the writers (Diaferio 2000, Diaferio and Sepe 2001); it consists in the substitution of each r
unilateral hangers with a suspension system characterised by a regular constitutive law,
equivalent through an energy criterion to the real one. This allows to obtain continuous mode
smooth nonlinearities (polynomial, in Diaferio 2000, Diaferio and Sepe 2001), for which, u
periodic action, it is possible to obtain closed form solutions through perturbative techniques.

All such studies tend to show that suspension bridges much longer than existing ones
experience unusual (and unexpected) phenomena, that have sometimes been described b
Authors (McKenna, Walter 1987): these results should warn designers not to limit a priori their
considerations to phenomena already observed and studied for existing bridges. 

To this respect, the paper aims at stimulating discussion on the possibility of the phen
descibed, whose actual significance can be assessed only through ad hoc calculations and specific
experimental research.

Acknowledgements

This paper has been prepared within the “Research Project of National Interest” (PRIN) on
Engineering WINDERFUL, partially supported by the Italian Ministry for Instruction, Univers
and Research. Some of the results reported here have been included in the paper presente



A “deformable section” model for the dynamics of suspension bridges. Part II 469

 

on
writers to the seventh Italian Conference on Wind Engineering (Augusti, et al. 2002).

Notation

∆Yi amplitude of the relative displacement between i -th main cable and deck
∆Y0 elastic elongation of the hangers in the reference configuration
t time
ψ(x) longitudinal shape
Y(t) generalised displacement of the deck
Θ(t) generalised rotation of the deck
Z1(t), Z2(t) generalised displacement of the two main cables
mc generalised mass of each cable 
my generalised mass of the deck
I generalised torsional inertia of the deck
ζc damping coefficient of the main cables
ζy damping coefficient of the vertical motion of the deck
ζθ damping coefficient of the torsional motion of the deck
b half-width of the deck 
ωc natural pulsation of cables
ωy vertical natural pulsation of the deck, considered as isolated
ωθ torsional natural pulsation of the deck, considered as isolated
Kc vertical generalised stiffness of each cable
Ky vertical generalised stiffness of the deck
Kθ torsional generalised stiffness of the deck
Kh0 generalised stiffness of a row of hangers
δ i (i=1,2) stiffness-reduction coefficient that takes into account the possible “slacking” of the hangers
Fc1, Fc2 vertical forces acting on the main cables
Fy vertical force acting on the deck
Mθ moment acting on the deck
q1, q2 non-dimensional generalised displacement of the main cables
q3 non-dimensional generalised vertical displacement of the deck
q4 non-dimensional generalised torsional rotation of the deck
d0 non-dimensional elastic elongation of the hangers in the reference configuration
g gravitational acceleration 
f1, f2 non-dimensional vertical forces acting on the main cables
f3 non-dimensional vertical force acting on the deck
f4 non-dimensional moment acting on the deck
β1=mc/my cable to deck mass-ratio
β2=mcb

2/ I cables to deck rotational-inertia-ratio
wh

2 =Kh0/mc

fc amplitude of the actions on the main cables
Ωc pulsation of the force on the cables 
Ωd pulsation of the force on the deck 
∆ϕ phase lag between the forces acting on the cables 
fd force amplitude on the deck
ed eccentricity between the direction of the force and the centre of the deck 
ω1 pulsation of the global vertical mode
ω2 pulsation of the global torsional mode 
ω3 pulsation of the relative vertical mode 
ω4 pulsation of the relative torsional mode 
α1 ratio between the pulsation ω1 of the first global bending mode of the system and the pulsati

ωy of the analogous mode of the deck alone
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 Part I:
α2 ratio between the pulsation ω2 of the global linear torsional oscillation and the correspondin
bending pulsation ω1

α3 ratio between the pulsation ω3 of the relative vertical deck-cables motion and the system global
bending pulsation ω1

α4 ratio between the pulsation ω4 of the relative torsional deck-cables motion and the system rela-
tive vertical deck-cables motion ω3

σ3=(Ω −ω3)/ω3 (Ω =Ωc, Ωd) detuning parameter
σ4=(Ωd−ω4)/ω4 detuning parameter
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