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Abstract. The classical two-degree-of-freedom (2-d-o-f) “sectional model” is of common use to study the
dynamics of suspension bridges. It takes into account the first pair of vertical and torsional modes of the
bridge and describes well global oscillations caused by wind actions on the deck, vyielding very useful
information on the overall behaviour and the aerodynamic and aeroelastic response; however, it does not
consider relative oscillations between main cables and deck. On the contrary, the 4-d-o-f model described in
the two Parts of this paper includes longitudinal deformability of the hangers (assumed linear elastic in
tension and unable to react in compression) and thus allows to take into account not only global oscillations,
but also relative oscillations between main cables and deck. In particular, when the hangers go slack, large
nonlinear oscillations are possible; if the hangers remain taut, the oscillations remain small and essentially
linear: the latter behaviour has been the specific object of Part | (Sepe and Augusti 2001), while the present
Part Il investigates the nonlinear behaviour (coexisting large and/or small amplitude oscillations) under
harmonic actions on the cables and/or on the deck, such as might be generated by vortex shedding. Becaus
of the discontinuities and strong nonlinearity of the governing equations, the response has been investigatec
numerically. The results obtained for sample values of mechanical and forcing parameters seems to confirm
that relative oscillations cannot a priori be excluded for very long span bridges under wind-induced loads,
and they can stimulate a discussion on the actual possibility of such phenomena.
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1. Introduction

The 4-d-o-f Heformable sectidnmodel proposed in this paper extends the 2-d-o-f rigid section
model classically used to describe the response of long span suspension bridges under wind loading
and draws the attention on the possibility of relative diggmhents and rotations between the deck
and the main cables, allowed by the deformability of the suspending hangers. These are assumet
linear elastic in tension and ineffective in compression (Fig. 1): thus, the proposed model is able to
describe the oscillations of the bridge for the whole range of behaviour of the hangers. To the
writers’ knowledge, no analytical sectional model had before ever been related to these relative
oscillations.

As long as the hangers remain taut, the oscillations are small and essentially linear but, outside
this range, some or all the hangers of a row (pre-stressed by the dead loads in the reference
configuration) may become slack and the generalised stiffness of the sectional model is greatly
reduced (cf. Part | of this paper: Sepe and Augusti 200d4galse of the discontinuity and the
consequent strong nonlinearity of the equations of motion in this range, the full behaviour of the
proposed model can be found only by step-by-step integration.

In Part | some related previous works have been discussed; then, the conditions have beer
determined that guarantee small amplitude oscillations (hangers always taut) around the equilibrium
configuration under dead loads: this analysis has shown that the possibility of the large amplitude
oscillations (with alternatively hangers loosening and tightening) cannot be excluded for long span
bridges subject to winds with speeds within realistic limits.

The present Part Il investigates the nonlinear dynamic behaviour of the model for wind-induced
forces both on the main cables and on the deck: several cases are treated numerically and the resul
discussed. In particular, it will be shown that the negative displacements between main cables and
deck (hanger ends “getting closer”) can become one or two order of magnitude larger than the
displacements due to the global oscillations described by the classical 2-d-o-f modelllyspecia
case of small structural damping.

In order to make this part of the paper self-contained, in Section 2 the equations of motion are
presented again and the main results of Part | recalled.

C.

Fig. 1 The 4-d-o-f “deformable section” model
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2. The model: equations of motion

In the proposed model, while cables and deck are assumed to behave elastically, hangers ar
considered as linear elastic in tension and ineffective in compression (Fig. 1). However, the hangers
are pre-stressed in the reference configuration by the deck weight: therefore, the unilateral behaviour
is significant only if the amplitude of the relative displacen#Yjtbetween main cables and deck
becomes larger than the elastic elongatyp of the hangers in the reference configuration (Fig. 2).
Note also that no other source of nonlinearity is introduced in the model: the restraints on the cables
and the deck are assumed as linear, without considering any “geometrical nonlinearity”.

In order to obtain a still relatively simple model, it is assumed that the three principal components
of the bridge, namely the main cables and the deck, oscillate with the same longitudinab(shape
although not with the same amplitudes. As a consequence of this assumption, all sections behave ir
a similar way and therefore the bridge response can be described by a “sectional model”: in the
present case, a “deformable section” model, that improves the classical 2-d-o-f rigid-section model,
because it is able to account for relative vertical displacements between main cables and deck, mad
possible by the elasticity of the hangers in tension and their “slackness” in compression; the lateral
displacements are neglected in both models.

Let Y(t) and ©(t)(Fig. 1) denote the generalised displacement and rotation of the deck related to
the assumed pseudo-modal shape), while Z,(t) and Z,(t) denote the generalised dspément
of the two main cables; let alsn. be the generalised mass of each cablengnd the generalised
mass and torsional inertia of the deck, respectively, while it is assumed that the mass of the hanger:
can be neglected with respectntg, m,.

Indicating by the suffixes 1 and 2 each cable, the relevant equations of motion are (Sepe and
Augusti 2001):

MeZ1 +20cMeZs +KoZy— 5iKno(Y+0O—Z1) + (1~ 8) KroAYo=F ey 1)

MeZo +2{c0aMeZo +KZo= 5Kno(Y~bO-2Z5) + (1~ &) KrpAYo=F (1)

myY +2Z,cm, Y +K,Y+Kpo[ 8 (Y+bO-Z;) - (1- &) AYo+ 8(Y-bO-Z,)-(1-8,) AYl=F (1)

| ©+2¢p0pl O+K g@+Kpob[ 8, (Y+bO-2,)~(1-3) AYp— (Y-bO-Z,)+(1-5) AYo|=M(t) (1)

Ni=3 Kro(4Yi+AYo)
3 =1, if AY;=-AY,; § =0, if AY;<-AY,; i=1,2

Fig. 2 Generalised forchl, transmitted by hangers between the main cables and the deck vs. the generalised
relative displacememy;, according to Eq. (1) and Eq. (8)
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where also damping term&, {,, {, have been introduced, while=B/2 denotes the half-width of
the deck (Fig. 1), w, wy are the natural pulsations (angular frequencies) of cables andkdgeck,
Ky, Ko, Ko are respectively the vertical (geometrical) generalised stiffness of each cable, the vertical
and torsional generalised stiffness of the deck and the generalised stiffness of a row of hangers, ant
g (=1,2; 09 <1) is a stiffness-reduction coefficient (in principle, time-dependent) that takes
into account the possible “slacking” of the hangers (and depends on the amplitude of oscillations,
being related to how many hangers go slack). Egs. (1) include the forcing terms (vertical forces and
moments)F, Fe, Fy, Mg acting on the main cables and on the deck (as shown in Fig. 1), while no
loads on the hangers have been considered.

Introducing non-dimensional variables and parameters

(2)

whereg is the gravitational acceleration, the equations of motion become
0 2o 0 + 62 01~3; 0 (G Q) +(1-8) &R do= (1)
Gl +2{c0x Gz + WE A= 3y 6, (Gs—Ca—C) +(1— ) o do= ’g fa(t)
Ui +24y @, 03 + @ A+ Br & [ 1(Cs+0la— ) — (1 - 31) Ao+ Bo(As—Qu—02) (1~ ) do) = ’g fa(t)
Gl +2{pwa04 + w3 Qu+ B wf [ 010+ 0= ) — (1 81) do= B A= =) + (1~ 3) ] = ’g fa(t) (3)

In all examples presented in this paper, the forcing terms have been assumed to vary harmonically
with time (in fact, they are intended to represent wind-induced loads due to Karman vortex
shedding). With regard to the actions on the main cables, the amglitadd the pulsatiom. are
assumed to be the same for both cables, with a phagklace.,

fi(1)=fo SiNQet, fo(t)=f.sin (Qst+A¢) (4)

It has been shown in the Part | of this paper (Sepe and Augusti 2001) that the plgsedaty
significantly affect the dynamic response; it has also been shown that one of theA¢ah@eéin-
phase forcing) oA¢ =1t (forcing in phase-opposition) maximises the length variation of the hangers,
and therefore could amplify the slacking effect. As an example, the valde off4 has been
considered in the numerical investigations, to show how rich the dynamical response can be; on the
other hand, the determination of the “true” valueAgf for a given specific problem is outside the
aim of the present paper.
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As for the actions on the deck, the force amplitude is denotefy, lynd the momenMy is
introduced by means of an eccentricy

fa(t)=fasin Qqt, fa(t)=eqf5(t) (5)
3. Linear elastic oscillations
3.1. Free oscillations

Linear elastic oscillations are obtained puttidg-d,=1 into Egs. (3). Assuming the damping
coefficients{., {,, {s to be zero, a classical eigenvalue analysis yields the four natural pulsations
w», ws, wy Of the sectional model. As shown in Part I, the first two natural modes correspond to
motions with small deformations of the hangers (denoted in the followirgjoasl vertical and
torsional modes, Fig. 3(a),(b)) and their pulsatiansw, are much lower than the pulsaticws wy
corresponding taelative modes (i.e., oscillations with cables and deck moving vertically out of
phase, Fig. 3(c),(d)).

3.2. Forced oscillations: limit of linear behaviour
As anticipated at the beginning of Section 2,4Y¥; and AY, are the generalised relative
displacements of the two rows of hangers, respectivelydapthe corresponding elastic elongation
of the hangers due to the weight of the deck, the response of the model is certainly elastic linear as
long as
AY, (1) 2 =AY, ; AY,(t) =2-AY, (6)
Therefore, the conditions
maxAY,(t)] = AY, ; maxAY,(t)| = AY, (7)
provide a sure boundary for the elastic behaviour of the model.

Lines corresponding to Egs. (7) have been obtained in Part | assuming harmonid, fdscefs
the same amplitudg, and pulsation2, acting only on the cables (cf. Eqg. (4)) with a given phase-
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Fig. 3 Diagram of the linear modes of the 4-d-o-f sectional model and corresponding angular frequencies
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0

Fig. 4 Diagrammatic non-dimensional loading amplitdige=/m.g of the vortex-shedding force on the main
cables corresponding to upper limit of elastic behaviour (Eq. (39 fd) vs. angular frequencg,,
for zero dampingr(,g=cable weight). A numerical example is reported in Part | (Fig. 4, Tab. 1)

lag A¢ (f;=f,=0); this load condition enhances high frequency relative motions, complementary to
slow global motions well described through the rigid section model and mainly due to actions on
the deck.

Note thatA¢=0 represents in-phase actions on the cables, that excite only vertical motions (global
and relative), without torsional motions of the deck. In this case, in the high frequency range, the
contribution of the global modes to the length variation of the hangers is negligible. Similarly,
A¢=rrepresents actions in opposition of phase, and only the (global and relative) torsional modes
develop.

For A¢ different from O andm, both vertical and torsional modes are excited. However, it has
been demonstrated (Part I) that the limit condition for arbitrgpyis given by the lowef, value
corresponding to eitheig=0 or A¢=rr1, that can therefore be taken as a safe boundary for elastic
response.

In the case of zero damping, all limit curves go obviously to zé&w0) in conditions of
resonance, i.e., fof2.=w (with i=1, 2, 3 or 4); an example of such a boundary is qualitatively
shown in Fig. 4 (analogous to Fig. 4 of Part I). For small damping, the boundary presents hollows
(i.e., smallf; values) in the vicinity of resonanc@{=w ).

In the next section, cases that violate the elastic boundary (that in Part | have been shown to be
not unrealistic) will be investigated.

4. Nonlinear analysis

When inequalities (6) are violated, the stiffness-reduction coefficégmtsEq. (3) assume values
between 0 and 1, that vary in time as a consequence of the amplitude of oscillations. In the
numerical analyses, the simplifying and limit assumption has been introduced that the values of
can only be either 0 or 1, depending on sign and value of the generalised relative displaYement
(i=1,2) between main cables and deck with respect to the elastic elongatjaf the hangers in
the reference configuration, namely (Fig. 2),

5=1, if AY,=-AY,; 6=0, if AY, <-AY,;i=1,2 (8)

This assumption of discontinuity in the stiffness of the cable-to-deck connections, that would
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seem trivial if the section model shown in Fig. 1 were considered in isolation, represents only a
limit approximation when the section model is used to describe the dynamics of the whole bridge;
in fact, while it is very close to the real behaviour if the assug@gl is a no-node shape (e.g.,
half-length of a sine wave, as in Part 1), for different pseudo-modal shapes Eqgs. (8) is only an
approximation of the actual softening behaviour of the structure due to the unilateral characteristics
of the secondary suspension system.

The discontinuities that are thus introduced in the equations of motion (3) call for a great attention
in the search of the numerical solutions, that are very sensitive to initial conditions; moreover,
multiple stable and/or unstable solutions may coexist.

Inspection of Egs. (2)-(3) shows that the ten parametgrsy, ws, wh, {c, {y, {o, B1, Lo b fully
define the mechanical properties of the system, on which the four natural pulsations of the bridge in
the elastic rangen, wy, ws, wy depend.

Six parameters, namelyy, w, ws, Bi, B, b, have been varied in the performed investigation,
while the other parameters, in accord with Part | and previous examples (Awjusti,1997,
Augusti and Sepe 1999), have been given the constant values

w,=0.10rad/s {.=0.002,{,=0.003,{s=0.005

except Figs. 9, 10, 11 where the damping coefficients have been assumed smaller to highlight some
characteristics of internal resonance. Note thais the pulsation of the first bending mode of the
deck alone, as it were isolated from the other parts of the structure. The values attributed to the
parameters are shown in Table 1, where, insteao,,ad, ws, the ratios

alzgl azza_)2 agzﬂs )

w, W, w,

are indicated. The ratia; between the pulsatios of the firstglobal bending mode of the system
and the pulsationy, of the analogous mode of the deck alone, underlines the contribution of the
suspension (main cables plus hangers) toglbbal system stiffnessy, is the ratio between the
pulsationw, of the global linear torsional oscillation and the corresponding bending pulsatipn
finally, a5 is the ratio between the pulsation of the relative vertical deck-cables motion and the
systemglobal bending pulsatiorw,, and therefore is an indication of the stiffness of the hangers,
assumed to remain in the linear range of behaviour.

Table 1 shows also the values of the rafiewy/w; which, although depending on the other
parameters, gives a direct indication on the possible internal resonance between vertical and
torsional relative mode (that occurs fas=2 and implies a substantial difference in the dynamic
response of the system).

Like in the examples considered in Part I, also in this paper the pseudo-modal/gkapas
been always assumed as a sinusoidal half-wave, that presents displacements of the same sign alor
the whole span (no-node shape).

With regard to the loading conditions, harmonic actions (intended to mimic vortex shedding from
the suspension cables or from the deck) have been considered, with pulkatio®, close to a
natural pulsation of the system, i.e., such that they can synchronise with the structure in a relatively
large range of wind speedogk-in): more specifically, forcing pulsations close to the natural
pulsationsw; or «y, of the relative motions between cables and deck (Fig. 3) have been considered.
In these conditions, in fact, significant relative displacements between the main cables and the deck



458 Vincenzo Sepe, Mariella Diaferio and Giuliano Augusti

Table 1 Cases considered in the numerical investigation, in combination with several harmonic actions on the
main cables or on the deck. For all casgs;,0.10 rad/s

Case a=w/w, 0 =wlw az=wiw ay B B> b (m) Ref. Fig.
1 6 3 5 2.32 0.40 2.25 15 7,8,12
2 6 251 5 2 0.40 2.25 15 9,10,11
3 2 3 5 2.32 0.40 2.25 15 12
4 20 3 5 2.32 0.40 2.25 15 5,6,12
5 4 2 4 2.15 0.25 3.15 17.75 13
6 4 2 5 2.19 0.25 3.15 17.75 13
7 4 2 10 2.22 0.25 3.15 17.75 13
8 4 2 50 2.25 0.25 3.15 17.75 13
9 4 2 160 2.42 2.25 3.15 17.75

10 4 3.23 10 2.32 0.25 3.15 17.75

11 6 3.43 5 3 0.40 2.25 15

12 4 2.88 50 3 0.40 2.25 15

13 6 1.4 5 171 0.40 2.25 15

14 2 2.96 5 2.33 0.40 2.25 15

15 6 3 10 1.83 0.40 2.25 15

take place, with a consequent slacking of the suspending hangers, that the proposed deformabile
section model allows to reproduce, differently from the classical 2-d-o-f model.

The relation between the forcing pulsati®h or Q4 and the pulsationsy or w, of the excited
relative mode, is expressed through detuning parameiess defined by

Q- Q,—
o, = w:"*(m 0,0, o0,= ~ (10)
A

The main results of the numerical investigation are reported in Fig. 5 to Fig. 13 and discussed in
Sect. 5. The ranges of variation of the mechanical parameters and of the forcing characteristics
adopted are representative of situations of long span suspended bridges, even if, in order to
highlight the potentiality of the proposed sectional model, sometimes the forcing intensity has been
assumed larger than generated by vortex shedding, as underlined in the Sect. 5. For example, witf
the assumed numerical values (cf. Table 1): the frequensyr,w, of the vertical mode ranges
between 0.20 rad/s and 2 rad/s, comparable to the corresponding values of typical bridges (e.g. 0.4
rad/s for the Akashi-Kaykio bridge and 1.4 rad/s for the Vincent Thomas bridge); theasatio
between the torsional and the vertical global frequencies ranges between 1.4 and 3.4, correspondin
to typical values (around 1.33 for the Messina Bridge, and 2.2 for the Akashi-Kaykio); the values of
the ratio a; between the relative and global vertical modes, ranging between 4 and 160, include
both the situations of relatively short bridges with a stiff deck (lower values) and the limit situations
of decks with negligible stiffness in comparison with the stiffness of the suspensions system (cf.
also Part | of the paper). On the other hand, the main aim of this paper was to stimulate a
discussion on the actual possibility of this kind of phenomena.
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Fig. 5 Deck displacement; and hangers elongatiodY; for case 4 of Table 1a¢=2.32, no internal
resonance). Transient (a) and stationary (b) time-history and stationary phase planes (c),(d) for load on
the main cables of given pulsation, close to resonance with the relative vertical(Ppo5w; (03=
-0.05),f;=0.0025 (0.25% of the cable weightg), A¢p=rm/4, {:=0.002,{,=0.003,{4,=0.005

5. Numerical investigation and discussion
5.1. Typical results

The time histories of the responses have been obtained by step-by-step numerical integration of
the equations of motions, Eg. (3), with the discontinuity conditions of Eq. (8). In all cases, unless
explicitly indicated, steady state response are reported (i.e., the values obtained when the amplitude:
of velocities and displacements have stabilised). As examples, however, time-histories of the
transient part of the response have also been included in Figs. 5(a) and 7(a).

Numerical investigations were performed on all cases in Table 1 for several different forcing on
the main cables or on the deck. Because of space limitations, only a limited portion of the results
obtained can be presented here; full details are reported in Diaferio (2002).

Fig. 5 shows the steady-state time-histories and phase-planes of vertical displacements of the decl
centroid obtained for case 4 in Table 1, with no internal resonance between vertical and torsional
relative modes, for a given frequency and intensity of the forcing action on the main cables. For the
same case and the same forcing intensity, Fig. 6 reports the amplitude of the response as a functio
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Fig. 6 Deck displacement and hangers elongation for case 4 of Taklg=2.32, no internal resonance).
Frequency-response curves for load on the main cables, nearly resonant with the relative vertical mode:
03=(—ws)lws, £=0.0025,Ap=174, {=0.002, {,=0.003, {,=0.005. (a) Vertical displacement of the deck,

(b) Elongation of the hangers
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Fig. 7 Deck displacement and hangers elongatiaty; for case 1 of Table 10=2.32, no internal resonance).
Transient (a) and stationary (b) time-histories and stationary phase planes (c),(d) for &efriméd
on the deck of given pulsation, close to resonance with the relative vertical Rgde85w; (03=

-0.15),f3=0.005,{;=0.002,{,=0.003,s=0.005

of the forcing frequency, at several values near to the frequency of the relative vertical motion.
Fig. 7 shows, in terms of time-histories and phase-planes, the response of the case 1 of Table 1 t
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Fig. 8 Deck and cables displacements and hangers elongation for case 1 of Tabt.32( no internal
resonance). Frequency-response curves for cerji®) load on the deck, close to resonance with the
relative vertical modeoz=(Qq—ws)/ws, Ty varying between 0.005 and 0.05 (0.5 to 5% of the deck
weight myg), {~0.002, {,=0.003, {,=0.005; (a) vertical displacement of the deck, (b) vertical
displacement of the main cables, (c) elongation of the hangers

an action of given frequency and intensity, assumed acting on the deck along the bridge axis
(eccentricityeg=0, cf. Eq. (5)); Fig. 8 reports, for different intensities of the force acting on the
deck, the frequency-response curves around the natural frequency of the relative vertical mode.
However, while the forcing intensitids=0.5% and 1% are compatible with vortex shedding under
realistic wind speeds, the higher vafie5% must be considered only as a limit assumption.

In case of internal resonance between the vertical and torsional relative modes (case 2 of Table 1
the response to a centric force acting on the deck is illustrated in Fig. 9 through the phase-planes fol
a given forcing frequency, and in Fig. 10 through the frequency-response curves; the damping
introduced in this case(y={s,=0.001) is smaller than in the other ones, to highlight the effects of
the internal resonance.

For the same geometrical and mechanical parameters of the internally resonant case 2 of Table 1
Fig. 11 shows the response to an eccentric force acting on the deck and near-resonant with the
relative torsional mode.

For a given intensity of the load on the main cables, close to resonance with the vertical relative
mode, Fig. 12 compares the responses for different values of theamatfof. Eq. (9)), that
correspond to the cases 1, 3 and 4 (no internal resonance) in Table 1. nateishstinaller when



462 Vincenzo Sepe, Mariella Diaferio and Giuliano Augusti
"""" unimodal soiution
0,8 0,4+ bimodal solution
0,4 0,2 f\
4, 00 q, op
0,4 R 0,2 k / g
"""" unimodal solution
- bimodal solution
-0,8 T ; ‘ ] 0,4 , .
02 01 0,0 0.1 0,2 0,3 0,12 -0,06 0,00 0,08 0,12
q] q3
(a) (b)
10— ——| " unimodal sofution 0.24
bimodal solution ! ~——— bimodal soiution
0,51 N BN 0,121
AY o0 { ( — 4,000
0.5+ P - *’/ -0,121
1,01— T | T 0,24 r .
0.0 0,5 1.0 15 20 0,12 -0,06 0,00 0,06 0,12
AY 1 AY
i a q4
{c) {d)

Fig. 9 Deck and cables displacements and hangers elongation for case 2 of Tabfe2lirternal
resonance). Phase-planes for cengie() load on the deck with a given pulsation, close to resonance
with the relative vertical modeQ,;=0.995w; (0;=-0.005),f,=0.02, {:=0.002, {,=0.001, {,=0.001 (a)
vertical displacement of the main cables, (b) vertical displacement of the deck, (c) elongation of the
hangers, (d) torsional rotation of the deck

the deck stiffness is larger with respect to the stiffness of the cables, i.e., when the span is shorter.

Similarly, Fig. 13 compares the frequency-response curves to the same type of excitation (force on
the deck, near-resonant with the tieka vertical mode) for different values of the parametgrthat
indicates the stiffness of the secondary suspension system (hangers) with respect to the stiffness
main cables and deck; they correspond to the cases 5 to 8 (no internal resonance) in Table 1.

In Figs. 12 and 13, to highlight the effects of the stiffness reduction due to the slacking of the
hangers, values of the forcing intensity have been considered that, depending on the case, can b
significantly larger than realistic.
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Fig. 10 Deck and cables displacements and hangers elongation for case 2 of Tahk21irfternal
resonance). Frequency-response curves for centr®) load on the deck, nearly resonant with the
relative vertical mode: 0;=(Qy-w3)/w;, f3=0.02, {=0.002, {,=0.001, {»=0.001 (a) vertical

displacement of the main cables, (b) vertical displacement of the deck, (c) elongation of the hangers,
(d) torsional rotation of the deck

5.2. Discussion: effects of the properties of the action (frequency and intensity)

Consider, as a typical example, the structural systemowitl20, a,=3, a;=5 (case 4 in Table 1),
subjected on the suspension cables to an action with pulsation close to the pubsadiothe
relative vertical motion between deck and cables.

When the action amplitudes are comparatively small (in the example considered smaller than
approximately 0.20% of the weight of a calfiec 0.0020 ), the hangers turn out to be always taut,
and the oscillations, always with small amplitude, are practically coincident with those given by the
linear model and result asymptotically stable and symmetric with respect to the (static) equilibrium
configuration.

For a forcing amplitude higher than this threshold value, instead, the model can show small or
large amplitude oscillations, depending on initial conditions. In particular, Fig. 5 reports the
responses of the model (both transient and stationary) caused by a forcing amplitude equal to 0.25%
of the weight of the cables.€£0.0025) and pulsatiof2.=0.95w;(0;=-0.05), with phase-lag\¢=774.
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When the pulsation is varied betwe&l=0.94w; and Q.=1.02w; (Fig. 6) it can be noted that the
steady-state amplitudes showsafteningbehaviour of the system; for a forcing frequency smaller
than the frequencw; of the relative vertical motion, two stable and periodic solutions coexist with
the same frequency of the forcing action, but characterised by very different amplitudes of
oscillation; as typical of this kind of systems, unstable solutions can also exist, but cannot be
obtained by a step-by-step numerical integration; indeed they are not crucial for the objectives of
this paper.

While small amplitude oscillations practically coincide with those that can be forecast through the
2-d-o-f linear model commonly used, large amplitude oscillations, corresponding to the slacking of
hangers, can be even one or two orders of magnitude larger. These oscillations are non-symmetric
with respect to the static equilibrium configuration (cf. Fig. 5), correspondingly to the non-
symmetric constitutive behaviour of the secondary suspension (Fig. 2).

The behaviour so far described is analogous to the behaviour of 1-d-o-f systems with piece-wise
linear restoring forces (Shaw and Holmes 1983, Natsiavas 1990), for which the plot in the phase-
plane consists of two branches of ellipse with a common tangent in the intersection point.
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From the frequency-response curves reported in Fig. 6, a sharp “knee” in the slope of the
backbone curve can be observed, due to a sharp modification of the stiffness characteristics of the
system, differently from what can be found for systems with smooth nonlinearities, in which the
slope of the backbone curve varies smoothly. As shown in the next Section, the change of slope in
the knee of the backbone curve depends on the ratio between the stiffness of the secondary
suspension system (hangers) and the stiffness of the deck, and therefore on the pagameter

In the same examples presented in Figs. 5-6, it has been noted that also for large amplitude
motions the torsional oscillations due to the phase-lag between the actions on the main cables are o
the same order of magnitude of those given by the linear model, and this independently of the value
of the phase-lag (as confirmed by results presented in Diaferio 2002); this is due to the absence of
internal resonances between the relative vertical component of the motion, directly excited, and the
relative torsional component, with a higher frequency.

The behaviour of the system is similar with actions applied on the deck (Fig. 7, Fig. 8); for
forcing frequencies smaller than the natural amealso in this case two stable solutions with the
same frequency and different amplitude may coexist with unstable solutions, that cannot be found
through numerical integration.

Also for a forcing action on the deck, the plot in the phase-plane (Fig. 7(c),(d)) is analogous to
that described by Shaw and Holmes (1983) for a 1-d-o-f model with piece-wise restoring force. And
also this time, without internal resonance, the absence of torsional components of theego@ipn (
implies, even for large amplitude oscillations and for |dggéhe absence of torsional rotations.

The behaviour is completely different in case of internal resonance between the relative vertical
and torsional modesx{=2). In this case, in fact, even if the action on the deck isoontric, a
relative torsional motion can start for appropriate initial conditions, with amplitude comparable to
that of the vertical motion, and this kind of behaviour cannot be forecast by means of the classical
2-d-o-f sectional model.

This condition is shown by the examples whose main results are presented in Figs. 9 and 10, for &
centric action on the deck with angular frequency closeutolt is possible to individuate two
classes of large amplitude oscillations, both stable for the values of parameters under consideratior
(apart from unstable solutions, not found numerically). The first solution (definewtbda) see Fig.

9 and 10) has the same period than the action, and is analogous to the solutions of the cases alrea
discussed, i.e., is characterised by oscillations of the system in the vertical plane only, with in-phase
motion of the main cables and no torsional rotations. In the second solution (@alledal and

found only in a small range of frequencies) the vertical component of the deck motion has the same
period of the forcing action, but torsional oscillations are also present, with period multiple of the
forcing period (subharmonic response): these torsional rotations are due to the energy transfer from
the directly excited vertical mode to the internally resonant torsional one.

Finally, Fig.11 shows the effect of an eccentri@jyof the action on the deck, again in case of
internal resonance between the relative vertical and torsional made), but this time
synchronised with the frequenay, of the relative torsional mode between main cables and deck.
The frequency-response curves of the torsional rotation and of the length variation of the hangers
(Fig. 11(b),(c)) underline the coexistence of small and large amplitude solutions, while, notwithstanding
the internal resonance, the vertical oscillations of the deck turn out small, of the same order of
magnitude of those that could be obtained with the classical 2-d-o-f sectional model, because this
time the excited mode is the higher frequency one.

In all cases considered, it can be observed that the deck oscillate around an average configuratiol
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different from the initial one, as a consequence of the non-symmetric behaviour of the hangers: this
is the more evident as the larger are the oscillations.

5.3. Discussion: effects of mechanical parameters

In this Section the role of the mechanical parameters of the system is examined, again in the case
of actions on the main cables nearly resonant with the angular frequgrafythe relative motion
between main cables and deck. Fig. 12 shows the frequency-response curves of the length variatiol
of the hangers for three different values of the paranmtéo,=2, a,=6 anda,=20), while other
parameters are kept constant.

It can be observed that the different value attained¥pyn the knee of the response curve (value
that corresponds tdlY; JAY, ) can be explained considering that the vamgsothe larger the
stiffer is the main suspension system; on the other hand, for increasthg parametea; can be
kept constant, as assumed, only if the hangers stiffidgssncreases in the same ratio, with a
consequent reduction of the initial elongatitvy, under dead loads.

And in fact, if the relative displacement between the two ends of the hangers is normalised with
respect to this valuely,, the frequency-response curves for different valuesxy,ofare almost
coincident (Fig. 12(d)).

The role of the hanger stiffness, represented by the parameisrshown in Fig. 13.

It can be observed that for an increasing stiffness of the secondary suspension system (hangers
and therefore of the parameteg, the numerical evaluation of the steady-state solution becomes
more and more difficult. According to the objectives of this paper, mainly devoted to describe in a
general way the conditions under which large amplitude oscillations are possible and to characterise
them, it has not been investigated if the numerical difficulties found for large values(odmely
=160, case 9 of Table 1) are due to the algorithm used or are, instead, related to some intrinsic
characteristics of the response (e.g., because it is non-periodic, or even chaotic).

On the other hand, the difficulties that have been found are justified considering that a system
with a;>50 is analogous, in all respects, to the limit case in which the suspending hangers are
modelled through unilateral constraints not deformable in traction, with consequent impulsive
phenomena for each crossing of the discontinuity described by Eq. (8).

In similar cases, the great dependence of the response on the accuracy of numerical calculation:
(and on the initial conditions, of course) has already been noted by other Authors (e.g., Natsiavas
1990).

In the case of an action on the deck with frequency cloge,tand without internal resonance,
the role has been investigated of the paranmtdhat characterises the global torsional stiffness of
the system, whose values have been varied between 1.4 and 3.23; the numerical results, reported |
detail in Diaferio (2002), show that, does not influence the structural response when the forcing is
not eccentric.

6. Conclusions

A 4-d-o-f sectional model, able to describe the wind-induced response of long-span bridges taking
into account the longitudinal deformability of the unilateral hangers, has been proposed and
analyzed. In Part | (Sepe and Augusti 2001) the elastic response and its limits have been
investigated, while this Part Il investigates numerically the non-linear behaviour under harmonic
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actions on the cables and on the deck, like those that could be e.g., generated by vortex shedding.

The oscillations started by such actions on the main cables or on the deck have been sought b
numerical integration of the ordinary differential equations that describe the motion (Eq. (3));
outside the range of small oscillations, in fact, these equations become nonlinear due to the
unilateral behaviour of hangers.

The results reported here underline that as a consequence of this characteristic behaviour of the
suspending hangers, it is possible to observe oscillations with amplitude one or two orders of
magnitude larger than those evaluated through the classical 2-d-o-f sectional model (hangers without
elongation), with a dynamic behaviour particularly interesting and complicated when internal or
external resonance conditions occur.

To simplify the approach, the numerical investigations performed so far have assumed a harmonic
action, in order to catch at least the main aspects of the response under loads induced by vorte»
shedding (Simiu and Scanlan 1996). Possible developments of the research should include a mor
accurate modelling of this kind of actions (e.g., D'Asdibal. 1998).

The deformable section model could also allow to evaluate the wind induced oscillations
(buffeting) in the sub-critical range of wind speed, i.e., far from self-excited or resonant oscillations.
Also of interest are the relative oscillations due to the different nature and intensity of the wind
actions on the main cables and the deck, which for very long span bridges are significantly distant
from each other.

A possible further improvement of the model might be to attribute (by numerical techniques) to
the stiffness reduction coefficiedt values in the whole range between 0 and 1, depending on how
many hangers are slack. Along a similar line, the model could also be extended to describe the local
motion of a part of the bridge, taking into account, for example, higher vibration modes of the
cables, with frequencies in between those of the pseudo-modal shapes here considered, dependin
on the wave length.

To describe local oscillations and/or travelling waves a convenient alternative to the sectional
model may be the technique of “equivalent” nonlinearisation proposed in the PhD thesis of one of
the writers (Diaferio 2000, Diaferio and Sepe 2001); it consists in the substitution of each row of
unilateral hangers with a suspension system characterised by a regular constitutive law, made
equivalent through an energy criterion to the real one. This allows to obtain continuous models with
smooth nonlinearities (polynomial, in Diaferio 2000, Diaferio and Sepe 2001), for which, under
periodic action, it is possible to obtain closed form solutions through perturbative techniques.

All such studies tend to show that suspension bridges much longer than existing ones might
experience unusual (and unexpected) phenomena, that have sometimes been described by sever
Authors (McKenna, Walter 1987): these results should warn designers not ta@ lipnibri their
considerations to phenomena already observed and studied for existing bridges.

To this respect, the paper aims at stimulating discussion on the possibility of the phenomena
descibed, whose actual significance can be assessed only tladugbc calculations and specific
experimental research.
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Notation
AY, amplitude of the relative displacement betweg¢h main cable and deck
AYy elastic elongation of the hangers in the reference configuration
t time
WY(x) longitudinal shape
Y(t) generalised displacement of the deck
o(1) generalised rotation of the deck
Z,(1), Z(t) generalised displacement of the two main cables
m. generalised mass of each cable
generalised mass of the deck
I generalised torsional inertia of the deck
{. damping coefficient of the main cables
4y damping coefficient of the vertical motion of the deck
q) damping coefficient of the torsional motion of the deck
b half-width of the deck
[NY natural pulsation of cables
W, vertical natural pulsation of the deck, considered as isolated
Wy torsional natural pulsation of the deck, considered as isolated
K vertical generalised stiffness of each cable
Ky vertical generalised stiffness of the deck
Ko torsional generalised stiffness of the deck
Ko generalised stiffness of a row of hangers

g (i=1,2) stiffness-reduction coefficient that takes into account the possible “slacking” of the hangers
Feo, Fo vertical forces acting on the main cables

F, vertical force acting on the deck

Mg moment acting on the deck

01, O non-dimensional generalised displacement of the main cables

O3 non-dimensional generalised vertical displacement of the deck

(o non-dimensional generalised torsional rotation of the deck

dy non-dimensional elastic elongation of the hangers in the reference configuration
g gravitational acceleration

fi, fo non-dimensional vertical forces acting on the main cables

fa non-dimensional vertical force acting on the deck

f4 non-dimensional moment acting on the deck

Bi=m/m, cable to deck mass-ratio
B=mp?/l cables to deck rotational-inertia-ratio

Wi =Ko/ My

fe amplitude of the actions on the main cables

Q. pulsation of the force on the cables

Q4 pulsation of the force on the deck

Ap phase lag between the forces acting on the cables

fy force amplitude on the deck

€y eccentricity between the direction of the force and the centre of the deck
wy pulsation of the global vertical mode

w pulsation of the global torsional mode

s pulsation of the relative vertical mode

Wy pulsation of the relative torsional mode

ay ratio between the pulsatiai, of the firstglobal bending mode of the system and the pulsation

w;, of the analogous mode of the deck alone
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a, ratio between the pulsatiom, of the global linear torsional oscillation and the corresponding
bending pulsatiory

Qs ratio between the pulsatia; of the relative vertical deck-cables motion and the systgiobal
bending pulsatiory

Qa ratio between the pulsatiay of the relative torsional deck-cables motion and the systela-

tive vertical deck-cables motiom,
03=(Q-wsy) w; (Q=Q., Qq) detuning parameter
04=(Qq— )/ w, detuning parameter
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