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Abstract. In this paper, the structural random response due to the turbulent boundary layer excita
investigated. Using the mode shapes and natural frequencies of an undamped structural operator
analytical model has been assembled. The auto and cross-spectral densities of kinematic quantitie
determined through exact analytical expansions. In order to reduce the computational costs associa
the needed number of modes, it has been tested an innovative methodology based on a scaling p
In fact, by using a reduced spatial domain and defining accordingly an augmented artificial dampin
possible to get the same energy response with reduced computational costs. The item to be chec
the power spectral density of the displacement response for a flexural simply supported beam; th
simple structure was selected just to highlight the main characteristics of the technique. In principle
be applied successfully to any quantity derived from the modal operators. The criterion and the 
scaling the domain are also presented, investigated and discussed. The obtained results are enc
and they allow thinking successfully to the definition of procedure that could represent a bridge be
modal and energy methods.

Keywords: stuctural random response; turbulent boundary layer; modal methods; energy methods.

1. Introduction

In the recent years, internal cabin noise has been one the major concerns of the public tr
industry. The problem became more evident when the cruise speed has been increased not 
the aircraft, but also for ships and trains. Furthermore, the environmental problems enforc
scientific community in better analysing the overall problem. All the structural and aerodyn
parameters which strongly affect the emitted and the in cabin transmitted noise would be in
in the design phase: this is not completely possible at this stage of the research applicatio
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aerodynamic noise sources have been specifically and carefully treated in the aerospace fi
the cited increase of speed has evidenced the problem also in other transports. Among
sources, the most important is the turbulent boundary layer (TBL).

The TBL is one of the common features of the vehicles, moving in air, water, on rail and gr
It is a source of external pollution and further, it influences sensibly the internal noise levels
main characteristic of the TBL is such that it produces on the wetted surface a random p
distribution. Some models are available in terms of stochastic distribution, but the pred
problem is complicated since the needed degree of accuracy can be computer time consum
further experimental measurements can be really complicated. 

The present work deals with the problem of the predictive response of a simplified stru
operator when loaded with a one dimensional TBL pressure distribution. Standard and inno
modal expansions are presented and discussed. Particular attention will be devoted to a 
procedure that will greatly reduce the computational costs associated with the modal techniqu
procedure herein developed contains all the relevant parameter for ensuring the largest p
generalisation. The present predictive problem is clearly multidisciplinary: it involves the 
dynamics, the structural dynamics and the acoustic propagation. Fig. 1 presents two views
problems. In the first, all the possible couplings are considered: it is a full aeroacoustoelastic
problem; in the second, the standard simplifications based on both experimental and theo
evidences are used: the TBL is frozen, the structural response is evaluated “in vacuum”, a
acoustic propagation does not influence both the structural response and the random p

Fig. 1 The aero-acousto-elastic problem (a) complete approach, (b) simplified approach
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distributions. Some remarks will be given about the suitability of this simplified approach and 
minor modifications to the procedure for taking into account some topics of the more ge
problems. The results herein presented are encouraging, and even if energy methods will 
give the same quality of the predictive responses at lowest computation costs, the innovative
expansion could be well considered as a hybrid method between standard modal and 
approaches.

2. Preliminary remarks

The excitation field generated by the TBL is random and convective.
The randomness is associated with the pressure fluctuations, which can be only represe

using stochastic representation. The convective character is associated with the undisturbe
speed: its increase leads to an increase of the absolute levels of excitation and to a d
frequency spectrum. Models for the random pressure fields as simple as possible are neces
the quantitative response of the vibration field due to the TBL. Leaving the details of the theo
and experimental problems to the specific references (Bull 1996), it has to be here recall
commonly used model for the random load distribution, (Corcos 1963, 1967).

For a surface belonging to an xz-plane, x is the stream wise axis and z is the cross-stream wise
one, Corcos assumes this function for the (auto and cross) pressure spectral density betw
points P(x1,z1) and Q(x2,z2): 

(1)

where ξx=x2−x1; ξz=z2−z1; i is the imaginary unit; ω is the radian excitation frequency; αx and αz

Sq x1 x2 z1 z2 ω, , , ,( ) Φq ω( ) αx

ω ξx

Uc

------------– 
 exp αz

ω ξz

Uc

------------– 
 exp

iωξx

Uc

----------- 
 exp=

Fig. 2 The nondimensional Corcos spectrum {Φq(ω) / q2δ * } vs. nondimensional freq. {ωδ */ } (q=1/
2ρ is the dynamic pressure and δ* is the displacement thickness)
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are two constants based on experimental measurements fits: they represent a metric 
correlation lengths. Φp(ω) denotes the power spectral density of the wall pressure fluctuations a
is normally expressed by using nondimensional groups, Fig. 2, as result of the Fourier transf
the Eq. (1), (Cousin 1999).

Φp(ω) is the member of the function that gives the units to the whole group: it is a pre
spectral density. Uc denotes the convective speed: the whole TBL can be thought as a rigid 
moving at such speed, the flow characteristics are invariant for an observer moving at Uc; it is often
assumed simply that Uc= (K= ), where  is the undisturbed flow speed.

3. Beam response

The random response of a 1D flexural beam operator represented by a modal expansion
given in terms of the cross spectral density function of the displacement for a 1D operator, Sw(x1, x2, ω),
as follows, (Elishakoff 1983):

(2)

where the modal expansion of the distributed random load, (ω), is evident:

(3)

with

(4)

(5)

(6)

The symbols denote respectively: x (or x1, or x2) is the beam abscissa; L is the beam length; A is
the beam section area; E is the Young module; ρ is the material density; ωj is the j-th natural radian
frequency; ω is the excitation radian frequency; η is the structural damping; j is the mode shape
index; ψ is the j-th mode. In the Eq. (4), for sake of simplicity, a constant value of the struc
damping has been used. It has to be further noted, that Eq. (2) can be applied to any st
operator, when the proper modal base is provided. Commonly, the random response is 
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(7)

where Φq(ω)=Sq(0,0,ω) is the autopower spectral density of the load, ξx=0.
The acceptance function is named as joint acceptance, if j=k, or cross acceptance otherwise

Further, it has to be noted that by using Corcos-like model, .
In short form, the 1D response (cross spectral density or cross spectrum) is given by:

(ω) (8)

The autopower spectral density, x=x1=x2, is given by:

(ω) (9)

Often, it is preferred to express the last equation response in terms of two separate summ
the first containing the joint and the second the cross-acceptances:

(10)

It is simple to demonstrate that the Eq. (10) always returns a real value, as expected. 
By using the Corcos model, the acceptance becomes:

(11)

In order to use the beam model, the cross-wise variation of the load has been neglected.
The numerical response in term of the auto power spectral density could be comput

expensive. It could be accepted to get a simplified response by looking for an average 
displacement, for example, for examining the behaviour of the structural operator. This is
computationally efficient since for increasing values of the modal overall factor (m>1), this mean
value is able to evidence the overall behaviour. 

It is needed here to recall the definition of the modal overlap factor, m:

m( f )=n( f )η( f )f (12)

where f is the excitation frequency; n( f ) is the modal density and η( f ) is the damping loss factor.
The predictive modal methods work well for , while the predictive energy methods are u
for , where the mean value of the response is a good representation of the system. H
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mean response is defined as an average taken over the spatial co-ordinates.
For the well-known property of orthogonality of the mode shapes, the predictive modal expa

for the mean response has a simple expression. In fact, having defined the displacemen
response as follows,

(13)

one has:

(14)

The double summation of Eq. (10) including the evaluation of the cross acceptance disapp
has to be noted that the mean response Eq. (14) can be obtained by using only the 5%
computational time used for the local response Eq. (10).

A FORTRAN code was written for analysing the random beam response. It has to be note
for the beam (and plate) random response with a TBL model with separable variable, ana
solutions for the acceptance are available (Elishakoff 1983, Skudrzyk 1968); in order to genelise
the possibility of the predictive code, the acceptance was solved numerically, through sta
quadrature routine. The number of modes to be included in the summations was se
automatically by doubling the frequency range to be analysed that is considering all those co
in a frequency range twice the selected one. 

All the results are presented in a nondimensional form through a specific response metric, S:

Sw ω( ) 1
L
--- Sw

0

L

∫ x ω,( )dx=

Sw ω( ) 1
L
--- Φq ω( )L2

Lj ω( ) 2vj
2

-------------------------
j 1=

∞

∑ Aqj qj
  ω( ) 2

Φq ω( )

Lj ω( ) 2
--------------------

j 1=

∞

∑ Aqj qj
ω( )==

Fig. 3 Metric S - local response [dB] vs. freq. [Hz] (U=115 m./s.; x/L=0.373, η =0.04, ∆f =10 Hz)



The random structural response due to a turbulent boundary layer excitation 443

. They

re the

icient,
l

he
a
 original

ling
sis, the
erlap
(15)

with B=Iρ2ω4.
This is the list of parameters defining the numerical test: E=7.10 1010 Nm−2; I=3.33 10−8 m4; A=

10−3 m2 ; K=0.8; L=1.75 m. ; αx=0.116.
Fig. 3 and Fig. 4 present the influence of some parameters for the local response. 
In particular, Fig. 3 presents a convergence analysis with a quadrature index named µ : it is a

measure of the integration steps; Fig. 4 shows the convergence with the number of modes
both refer to local response.

4. Scaling procedure and results

Leaving the specific details to the references, (De Rosa 1997, 2003, Franco 1997), he
fundamental topic of the scaling procedure are briefly recalled. 

All the parameters not involved in the energy transmission are multiplied by a scaling coeff
α. In the present problem, the scaled length will be: LS=αL . All the mode shapes and natura
frequency will move to higher frequency, for α<1; for obtaining the same energy content, t
original damping has to be accordingly modified: ηS=η/α. This simple transformation generates 
scaled system in which the energy representation (mean response) will be the same as the
system. 

It is difficult to find a rigorous mathematical demonstration of the applicability of the sca
procedure. It can be explained in elegant and simple way by using the statistical energy analy
more diffused technique for vibration and noise prediction at high values of the modal ov
factors, that is at increasing excitation frequency (Lyon 1995).

S 10log10 B
SW x ω,( )

Φ 0 0 ω, ,( )
-------------------------  dB[ ]=

Fig. 4 Metric S - local response [dB] vs. freq. [Hz] (U=115 m./s.; x/L=0.373, η =0.04, ∆f =10 Hz)
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For sake of precision and completeness, some details are herein given. For a generic
excited by a mechanical force, the mean square velocity can be obtained as follows:

(16)

The flexural wave speed has been indicated by the symbol cB, and F denotes the mechanica
force. It has been supposed a constant value of structural damping, η. The mean square velocity

, is an average value taken over the spatial positions of the response and the excita
second beam is now considered: it has different length and damping; all the remaining para
are left unaltered:

(17)

It is simple to check that if LII=αLI then

for (18)

The beam of reduced length (α<1) will reproduce the same energy content by using an artifi
damping obtained by accordingly increasing the original one.

Further considerations are possible. In fact, it is useful to analyse the modal overlap factors 
two flexural beams:

(19)

(20)

For the second beam: the modal density is reduced, the damping is augmented so that th
overlap factor remains unchanged. It is straigthful to consider that the (modal) determ
simulation of the second beam will cost less than the first one. In fact, the flexural wavel
remains the same, but the domain is reduced: for example, the number of needed finite e
points will be reduced.

Any modal formulation could be applied on a reduced spatial domain, keeping the param
involved in the energy transmission. It has to be well highlighted that the scaled models will b
only to represent the energy content (mean square values, as Eq. (14)) while the local inform
completely lost. 

The number of needed modes could be also kept or scaled too. It is simple to check that iN are
the modes needed for the original response in an assigned frequency band, the needed m
number for the scaled response is NS=Nα. 

The scaling coefficient, α, belongs to the range [0,1]: for α =1 the scaled system equals th
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original. Clearly, inferior limits exist and the will depend on several factors. 
From a physical point view, the lowest value to be assigned to α should preserve the energ

content of the original system. Several criterions have been tested, and it is herein presen
only one that gave stable and reliable results. It has been based on the ratio between the firs
frequencies of the system, damped and undamped. For the original and scaled system, i
following:

(21)

At this point an error function can be simply defined by accordingly comparing the last
expressions: E=1−γS/γ . This error function depends on the original damping, as expected.
decreasing values of α, the error function increase monotonically up to values that lead
unacceptable scaled representations. Fig. 5 presents the error function in percentage sca
useful to fix the error (left scale) around 1%. The figure allows using for a damping valu
η=0.02, . By using values lower than this means that the scaled solution will sp
the same energy content over a too wide frequency range. A further analysis of Fig. 5, show
keeping the 1% as error limit, for increasing values of the original damping, the possibili
scaling are increasingly reduced: for example, the figure allows using for a damping val
η=0.12, . This was expected since the scaling procedure is based on the o
damping and modal overlap factor values: if the original model is highly damped, the possibi
scaling are reduced.

It has to be clearly stated that Eq. (21) refers to a 1D propagation. For a 2D propagation, s
in plates, the situation will be slightly, different (Franco 1997): the error function has to
accordingly defined. 

γ
ω1 DAMPED,

ω1 UNDAMPED,
------------------------------- 1 2

η
2
--- 

 
2

–  , γS 1 2
η

2α
------- 

 
2

–== =

αMIN 0.12∼

αMIN 0.55∼

Fig. 5 Analysis of the scaling criterion, error function (%) vs. scaling coefficient
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Fig. 6 and Fig. 7 present the application of the scaling procedure. It is evident that the 
mean responses will not reproduce exactly the original ones, but in average they are an acc
representation, well within the engineering confidence. Fig. 8 contains a variation of the 
response with the scaling coefficient; the way of working of the scaling procedure is evident,
it uses the same modal base toward higher frequencies at increased damping. 

For sake of precision, it has to be highlighted also that the scaled response could reprod

Fig. 6 Metric S [dB] vs. freq. [Hz] (U=115 m./s.; η=0.06; ∆f=20 Hz, N=32, NS=16, α =0.5)

Fig. 7 Metric S [dB] vs. freq. [Hz] (U=115 m./s.; η =0.12; ∆f =20 Hz, N=32, NS=16, α =0.5)
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n used
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original response by multiplying only the final result for some power of scaling coefficient α. In the
present work a simplified approach has been used. In fact, the predictive code has bee
unaltered for the scaled response: only the input was modified, since the modal base (
frequency and mode shapes) and the damping were those associated with the scaled mod
beam.

The numerical results from both the models allowed to establish in the present case that:

Fig. 8 Metric S [dB] vs. freq.[Hz] - scaled mean responses (U=115 m./s.; η=0.06; ∆f=20 Hz)

Fig. 9 Computational cost analysis, nondimensional times vs. scaling coefficient
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(22)

the scaled response has to be divided by α to recover the original response. 
For load functions simpler than the present turbulent boundary layer wall pressure distribut

is possible determining “a priori”  the relation between the original and scaled responses.
An analysis of the computational costs for the mean responses is finally presented in Fig. 

left axis contains the ratio between the scaled and original model CPU times, in percentag
evident the reduction of the computational time associated with the scaled model.

5. Extension of the method

This work has been partially developed under the early stages of the project “Environm
Noise Associated with turbulent Boundary Layer Excitation”, ENABLE, EU Research Progra
FP5, and Contract No. G4RD-CT-2000-00223, Apr 2000-Mar 2003, Prime Contractor: Da
Aviation, France. 

In the cited project, one of the main targets was to validate the structural and acoustic pre
methodologies by using available theoretical solutions and experimental measurements for 
test articles: plane and stiffened plates.

The scaling procedure is there applied to the finite element model of one of the test pla
aluminium plane plate: 0.768 m.×0.328 m., thickness=16 mm.; U=115 m/s.; η=0.02. The original
model was assembled by using a mesh of 101×43 nodes; the MSC/NASTRAN has been used f
generate the modal base in the 0 to 8000 Hz frequency range. Further, a scaled model of th
plate by using α=0.5, and a mesh of 51×41 nodes has been used. 

Sw ORIGINAL, ω( ) Sw SCALED, ω( )
α

--------------------------------=

Fig. 10 Simply supported plate, mean responses, metric S [dB] vs. freq. [Hz]
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The modal bases represented the input for TUBULAR, a suite of FORTRAN codes fo
evaluation of the structural and acoustic response of any planar structural operator. In fact, si
beginning of the analysis in this challenging research argument was clear that having the r
structural response, the associated radiated acoustic power could be easily evaluated by u
Rayleigh integral, (Davies 1971).

Fig. 10 reports one of the first and relevant results: it is just related to the scaled finite el
model. It is evident the high predictive quality even at very high values of the excitation freque

For sake of precision, the original modal base in the  presents about 190 mode
obtaining the scaled response, only 90 scaled modes have been used.

Finally, it is has to be highlighted that the CPU time needed by the scaled F.E.M. for gene
the plate response for each excitation frequency is 1 second: the standard FEM would run
seconds. 

Other results obtained in the same project and not reported here have also demonstra
applicability of the same scaling procedure in predicting the radiated power. The use of the o
modal base over a frequency band wider than the original one at increased damping levels d
influence the quality of the acoustic predictive response: the scaled models are able to preser
of the acoustic and vibrational energies, (De Rosa 2003). 

6. Conclusions

The predictive response for a simply supported beam under a turbulent boundary layer ex
has been herein presented and discussed. The modal expansion has been used to obtai
response, since this method well generalises the approach for more complicated structu
reproduce the standard finite element approach. The choice of the Corcos model for the
distribution has been done only for keeping the simplicity of representation, even if this includ
the most important parameter of the TBL. It has been evidenced that the modal approach
represent a solution to the predictive response even if the associated computational cost will 
unacceptable values. 

A scaling procedure has been so applied in order to overcome this problem. A comput
domain has been defined by simply reducing the dimensions not involved in the e
transmission. The associated damping has been accordingly increased, in order to keep th
energy representation. The results are quite satisfactory, and moreover a useful criterion 
scaling phase has been also defined and tested. 

All the themes herein contained can be successfully applied also to discrete coordinate 
such finite element based codes as demonstrated by a sample result.
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