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Abstract. In this paper, the structural random response due to the turbulent boundary layer excitation is

investigated. Using the mode shapes and natural frequencies of an undamped structural operator, a fully
analytical model has been assembled. The auto and cross-spectral densities of kinematic quantities are s
determined through exact analytical expansions. In order to reduce the computational costs associated witt
the needed number of modes, it has been tested an innovative methodology based on a scaling procedur
In fact, by using a reduced spatial domain and defining accordingly an augmented artificial damping, it is

possible to get the same energy response with reduced computational costs. The item to be checked wa
the power spectral density of the displacement response for a flexural simply supported beam; the very
simple structure was selected just to highlight the main characteristics of the technique. In principle, it can

be applied successfully to any quantity derived from the modal operators. The criterion and the rule of

scaling the domain are also presented, investigated and discussed. The obtained results are encouragir
and they allow thinking successfully to the definition of procedure that could represent a bridge between

modal and energy methods.

Keywords: stuctural random response; turbulent boundary layer; modal methods; energy methods.

1. Introduction

In the recent years, internal cabin noise has been one the major concerns of the public transpor
industry. The problem became more evident when the cruise speed has been increased not only fo
the aircraft, but also for ships and trains. Furthermore, the environmental problems enforced the
scientific community in better analysing the overall problem. All the structural and aerodynamic
parameters which strongly affect the emitted and the in cabin transmitted noise would be included
in the design phase: this is not completely possible at this stage of the research application. The
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Fig. 1 The aero-acousto-elastic problem (a) complete approach, (b) simplified approach

aerodynamic noise sources have been specifically and carefully treated in the aerospace field, bu
the cited increase of speed has evidenced the problem also in other transports. Among these
sources, the most important is the turbulent boundary layer (TBL).

The TBL is one of the common features of the vehicles, moving in air, water, on rail and ground.
It is a source of external pollution and further, it influences sensibly the internal noise levels. The
main characteristic of the TBL is such that it produces on the wetted surface a random pressure
distribution. Some models are available in terms of stochastic distribution, but the predictive
problem is complicated since the needed degree of accuracy can be computer time consuming, an
further experimental measurements can be really complicated.

The present work deals with the problem of the predictive response of a simplified structural
operator when loaded with a one dimensional TBL pressure distribution. Standard and innovative
modal expansions are presented and discussed. Particular attention will be devoted to a scaling
procedure that will greatly reduce the computational costs associated with the modal technique. The
procedure herein developed contains all the relevant parameter for ensuring the largest possible
generalisation. The present predictive problem is clearly multidisciplinary: it involves the fluid
dynamics, the structural dynamics and the acoustic propagation. Fig. 1 presents two views of the
problems. In the first, all the possible couplings are considered: it is adwlcoustoelastic
problem; in the second, the standard simplifications based on both experimental and theoretical
evidences are used: the TBL is frozen, the structural response is evaluated “in vacuum”, and the
acoustic propagation does not influence both the structural response and the random pressure
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distributions. Some remarks will be given about the suitability of this simplified approach and some
minor modifications to the procedure for taking into account some topics of the more general
problems. The results herein presented are encouraging, and even if energy methods will always
give the same quality of the predictive responses at lowest computation costs, the innovative modal
expansion could be well considered as a hybrid method between standard modal and energy
approaches.

2. Preliminary remarks

The excitation field generated by the TBL is random and convective.

The randomness is associated with the pressure fluctuations, which can be only represented by
using stochastic representation. The convective character is associated with the undisturbed flow
speed: its increase leads to an increase of the absolute levels of excitation and to a different
frequency spectrum. Models for the random pressure fields as simple as possible are necessary fo
the quantitative response of the vibration field due to the TBL. Leaving the details of the theoretical
and experimental problems to the specific references (Bull 1996), it has to be here recalled the
commonly used model for the random load distribution, (Corcos 1963, 1967).

For a surface belonging to azplane,x is the stream wise axis amdis the cross-stream wise
one, Corcos assumes this function for the (auto and cross) pressure spectral density between twi
points P(xy,z;) andQ(xy, 2):

w|é w|¢ W&
Sq(xla X2, 21, Zy, 00) = Q@ (w) expD GXJU—X[DexpD a, L|J Z| %expﬂ XD (1)
where &=x—X;; &=2,-27; i is the imaginary unitp is the radian excitation frequenayy and a,
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Fig. 2 The nondimensional Corcos spectrumq({w)U /?5} vs. nondimensional freq. p5/U,} (g=1/
2ono is the dynamic pressure add is the displacement thickness)
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are two constants based on experimental measurements fits: they represent a metric for the
correlation lengths®,(w) denotes the power spectral density of the wall pressure fluctuations and it
is normally expressed by using nondimensional groups, Fig. 2, as result of the Fourier transform of
the Eg. (1), (Cousin 1999).

®,(w) is the member of the function that gives the units to the whole group: it is a pressure
spectral densitylJ; denotes the convective speed: the whole TBL can be thought as a rigid body
moving at such speed, the flow characteristics are invariant for an observer maovingt @ often
assumed simply thal.=KU,, (K=0.6+ 0.85), whereU,, is the undisturbed flow speed.

3. Beam response
The random response of a 1D flexural beam operator represented by a modal expansion can b

given in terms of the cross spectral density function of the displacement for a 1D ofigfatoxe, w),
as follows, (Elishakoff 1983):

O O
. E]]Hj*(w)Hk(w)Ll/j(Xl)Llfk(xz)Vj_zVEZ- E]]
SuXp X @) = Y 50U 0 )
iS00 [ Sy(Xe Xa0 @) g (X1) Y(X) dx, X, O
0 00 0
O O
where the modal expansion of the distributed random Iﬁ@(g, w), iI9 evident:
Sg0, (@) = Vi2Vi2 [ [ S4(Xas Xor @) P (X1) Yic(X,) dX, AX, (3)
[0,L]?
with
Hi(w) = Li(w)iLi(w) = {(«f - &) +inaf} pA (4)
. . 4
W) = sinLED op = S—A'HLEE] (5)
p L
V2 = _([w,z(x)dx =3 (6)

The symbols denote respectively(or x;, or X,) is the beam abscissl;is the beam lengthA is
the beam section aref;is the Young modulep is the material densityy is thej-th natural radian
frequency;w is the excitation radian frequency;is the structural damping;is the mode shape
index; ¢ is thej-th mode. In the Eq. (4), for sake of simplicity, a constant value of the structural
damping has been used. It has to be further noted, that Eq. (2) can be applied to any structura
operator, when the proper modal base is provided. Commonly, the random response is defined



The random structural response due to a turbulent boundary layer excitation 441

through the acceptance function:

Aqa (@) = ﬁMw,(xl) W)y @)
en

where @,(w)=5,(0,0,w) is the autopower spectral density of the lage0.

The acceptance function is named as joint acceptangek,for cross acceptance otherwise.
Further, it has to be noted that by using Corcos-like mdtig}(w) = A g (w)

In short form, the 1D response (cross spectral density or Cross spectrum) is given by:

X2 U)ol ©)
e @) = Z Z Eﬁj((w))tu:(af) %quvzw Paa (@) ®)

The autopower spectral densikygx;,=X,, is given by:

Y)W @)L
Su(% @) = z z EL ()L(e) T Vv TAgq, (@) ©)

j=1k=1

Often, it is preferred to express the last equation response in terms of two separate summations
the first containing the joint and the second the cross-acceptances:

YOLIC], QOO (R
S =3 L@ (w)+,zlkzﬁ (@L(@) T v Taa(@ (0

kK#j

It is simple to demonstrate that the Eq. (10) always returns a real value, as expected.
By using the Corcos model, the acceptance becomes:

((x —

1t 0 X1))
Aqa(©) = S [[expTa X0 [ e dadx, (1)
00

W(Xp —X4)| [
Ue

In order to use the beam model, the cross-wise variation of the load has been neglected.

The numerical response in term of the auto power spectral density could be computational
expensive. It could be accepted to get a simplified response by looking for an average of the
displacement, for example, for examining the behaviour of the structural operator. This is also
computationally efficient since for increasing values of the modal overall factel)( this mean
value is able to evidence the overall behaviour.

It is needed here to recall the definition of the modal overlap fautor,

m(f)=n(f)n(f)f (12)
wheref is the excitation frequencyi(f) is the modal density angl(f) is the damping loss factor.

The predictive modal methods work well for«1 , while the predictive energy methods are useful
for m» 1, where the mean value of the response is a good representation of the system. Here, the
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mean response is defined as an average taken over the spatial co-ordinates.

For the well-known property of orthogonality of the mode shapes, the predictive modal expansion
for the mean response has a simple expression. In fact, having defined the displacement mear
response as follows,

Su(0) = [ [Su(x 0)dx (13)
one has:
c _1g P (w)L? .2 ()
Su( @) L:Z |L( )|2 2 qlqj w) = ijlmA%% ) (14)

The double summation of Eq. (10) including the evaluation of the cross acceptance disappears. It
has to be noted that the mean response Eq. (14) can be obtained by using only the 5% of the
computational time used for the local response Eqg. (10).

A FORTRAN code was written for analysing the random beam response. It has to be noted that
for the beam (and plate) random response with a TBL model with separable variable, analytical
solutions for theacceptance are available (Elishakoff 1983, Skudrzyk 1968); in order to Iggnera
the possibility of the predictive code, the acceptance was solved numerically, through standard
quadrature routine. The number of modes to be included in the summations was selected
automatically by doubling the frequency range to be analysed that is considering all those contained
in a frequency range twice the selected one.

All the results are presented in a nondimensional form through a specific responseSnetric,
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Fig. 3 MetricS - local response [dB] vs. freq. [HAP€115 m./s.x/L=0.373,1 =0.04,Af=10 Hz)
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Fig. 4 MetricS - local response [dB] vs. freq. [HA€115 m./s.x/L=0.373,1 =0.04,Af=10 Hz)

_ Sulx, @)
S = 10|og10[B 200 w)} [dB] (15)

with B=1p?w?.

This is the list of parameters defining the numerical &s%.10 16° Nm2; 1=3.33 10® m*; A=
10° m? ; K=0.8;L=1.75 m. ;a,=0.116.

Fig. 3 and Fig. 4 present the influence of some parameters for the local response.

In particular, Fig. 3 presents a convergence analysis with a quadrature index marhes a
measure of the integration steps; Fig. 4 shows the convergence with the number of modes. They
both refer to local response.

4. Scaling procedure and results

Leaving the specific details to the references, (De Rosa 1997, 2003, Franco 1997), here the
fundamental topic of the scaling procedure are briefly recalled.

All the parameters not involved in the energy transmission are multiplied by a scaling coefficient,
a. In the present problem, the scaled length will bezalL. All the mode shapes and natural
frequency will move to higher frequency, for<l1; for obtaining the same energy content, the
original damping has to be accordingly modifieg=n/a. This simple transformation generates a
scaled system in which the energy representation (mean response) will be the same as the origine
system.

It is difficult to find a rigorous mathematical demonstration of the applicability of the scaling
procedure. It can be explained in elegant and simple way by using the statistical energy analysis, the
more diffused technique for vibration and noise prediction at high values of the modal overlap
factors, that is at increasing excitation frequency (Lyon 1995).
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For sake of precision and completeness, some details are herein given. For a generic beam
excited by a mechanical force, the mean square velocity can be obtained as follows:

Fi[°
4piAZcs(w)n wl,

Vi(w) = (16)

The flexural wave speed has been indicated by the symband F denotes the mechanical
force. It has been supposed a constant value of structural dampifipe mean square velocity,
v2(w), is an average value taken over the spatial positions of the response and the excitation. A
second beam is now considered: it has different length and damping; all the remaining parameters
are left unaltered:

S Fy*
vZ(w) = 17
i(e) 4pAicg(w) Ny wly, a7
It is simple to check that if,=al, then
for ny = 0 ¥ (e) = W(w) (18)

The beam of reduced lengtbr<1) will reproduce the same energy content by using an artificial
damping obtained by accordingly increasing the original one.

Further considerations are possible. In fact, it is useful to analyse the modal overlap factors for the
two flexural beams:

m(@) = men(e) = FE (19)
n
—OL)(JL|
m,(w) = non(w) = Mok, _ a = m(w) (20)

2meg(w)  2mcg(w)

For the second beam: the modal density is reduced, the damping is augmented so that the mode
overlap factor remains unchanged. It is straigthful to consider that the (modal) deterministic
simulation of the second beam will cost less than the first one. In fact, the flexural wavelength
remains the same, but the domain is reduced: for example, the number of needed finite element
points will be reduced.

Any modal formulation could be applied on a reduced spatial domain, keeping the parameters
involved in the energy transmission. It has to be well highlighted that the scaled models will be able
only to represent the energy content (mean square values, as Eq. (14)) while the local information is
completely lost.

The number of needed modes could be also kept or scaled too. It is simple to check tat if
the modes needed for the original response in an assigned frequency band, the needed minimul
number for the scaled responséNis=Na.

The scaling coefficienta, belongs to the range [0,1]: far=1 the scaled system equals the
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original. Clearly, inferior limits exist and the will depend on several factors.

From a physical point view, the lowest value to be assigned stould preserve the energy
content of the original system. Several criterions have been tested, and it is herein presented the
only one that gave stable and reliable results. It has been based on the ratio between the first nature
frequencies of the system, damped and undamped. For the original and scaled system, it is the

following:
_ 1 pavPED  _ m[f B E]_rL[f
== 1-2 yYs= [1-2 21
Y (1, UNDAMPED O ' % gl (21)

At this point an error function can be simply defined by accordingly comparing the last two
expressionsE=1-y/y. This error function depends on the original damping, as expected. For
decreasing values ofr, the error function increase monotonically up to values that lead to
unacceptable scaled representations. Fig. 5 presents the error function in percentage scale. It i
useful to fix the error (left scale) around 1%. The figure allows using for a damping value of
n=0.02, ay,y 00.12 . By using values lower than this means that the scaled solution will spread
the same energy content over a too wide frequency range. A further analysis of Fig. 5, shows that
keeping the 1% as error limit, for increasing values of the original damping, the possibility of
scaling are increasingly reduced: for example, the figure allows using for a damping value of
n=0.12, ay, 00.55. This was expected since the scaling procedure is based on the original
damping and modal overlap factor values: if the original model is highly damped, the possibility of
scaling are reduced.

It has to be clearly stated that Eq. (21) refers to a 1D propagation. For a 2D propagation, such as
in plates, the situation will be slightly, different (Franco 1997): the error function has to be
accordingly defined.

100.0 —

100 — ¢

& — — I |
0.0 0.2 04 06 08 1.0

Fig. 5 Analysis of the scaling criterion, error function (%) vs. scaling coefficient
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Fig. 6 MetricS [dB] vs. freq. [Hz] U=115 m./s.;n=0.06; Af=20 Hz,N=32, N<=16, a=0.5)
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Fig. 7 MetricS[dB] vs. freq. [Hz] U=115 m./s.;n=0.12;Af=20 Hz,N=32,Ns=16, a=0.5)

Fig. 6 and Fig. 7 present the application of the scaling procedure. It is evident that the scaled
mean responses will not reproduce exactly the original ones, but in average they are an acceptabl
representation, well within the engineering confidence. Fig. 8 contains a variation of the mean
response with the scaling coefficient; the way of working of the scaling procedure is evident, since
it uses the same modal base toward higher frequencies at increased damping.

For sake of precision, it has to be highlighted also that the scaled response could reproduce the
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Fig. 8 MetricS[dB] vs. freq.[Hz] - scaled mean responsds-115 m./s.;=0.06; Af=20 Hz)

original response by multiplying only the final result for some power of scaling coeffidntthe

present work a simplified approach has been used. In fact, the predictive code has been usec
unaltered for the scaled response: only the input was modified, since the modal base (natural
frequency and mode shapes) and the damping were those associated with the scaled model of th
beam.

The numerical results from both the models allowed to establish in the present case that:
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] measured CPU times
cubic extrapolation
1.0E+1 —
@

1.0E+0 —
1.0E-1 —
1.0E-2 I |

0.01 0.10 1.00

Fig. 9 Computational cost analysis, nondimensional times vs. scaling coefficient
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_SN,ORIGINAL(OL)) = S scaLed @) (22)

a

the scaled response has to be dividedrlty recover the original response.

For load functions simpler than the present turbulent boundary layer wall pressure distribution, it
is possible determininga“priori” the relation between the original and scaled responses.

An analysis of the computational costs for the mean responses is finally presented in Fig. 9. The
left axis contains the ratio between the scaled and original model CPU times, in percentage: it is
evident the reduction of the computational time associated with the scaled model.

5. Extension of the method

This work has been partially developed under the early stages of the project “Environmental
Noise Associated with turbulent Boundary Layer Excitation”, ENABLE, EU Research Programme
FP5, and Contract No. G4RD-CT-2000-00223, Apr 2000-Mar 2003, Prime Contractor: Dassault
Aviation, France.

In the cited project, one of the main targets was to validate the structural and acoustic predictive
methodologies by using available theoretical solutions and experimental measurements for several
test articles: plane and stiffened plates.

The scaling procedure is there applied to the finite element model of one of the test plate (an
aluminium plane plate: 0.768 ®r0.328 m., thickness=16 mml}=115 m/s.;n=0.02. The original
model was assembled by using a mesh ofx231nodes; the MSC/NASTRAN has been used for
generate the modal base in the 0 to 8000 Hz frequency range. Further, a scaled model of the sam
plate by usingg=0.5, and a mesh of 541 nodes has been used.

— EXACT
O SCALED FEM

100 1000 10000

Fig. 10 Simply supported plate, mean responses, nfefd8] vs. freq. [Hz]
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The modal bases represented the input for TUBULAR, a suite of FORTRAN codes for the
evaluation of the structural and acoustic response of any planar structural operator. In fact, since the
beginning of the analysis in this challenging research argument was clear that having the random
structural response, the associated radiated acoustic power could be easily evaluated by using th
Rayleigh integral, (Davies 1971).

Fig. 10 reports one of the first and relevant results: it is just related to the scaled finite element
model. It is evident the high predictive quality even at very high values of the excitation frequency.

For sake of precision, the original modal base in @ke8000 presents about 190 modes; for
obtaining the scaled response, only 90 scaled modes have been used.

Finally, it is has to be highlighted that the CPU time needed by the scaled F.E.M. for generating
the plate response for each excitation frequency is 1 second: the standard FEM would run in 76
seconds.

Other results obtained in the same project and not reported here have also demonstrated the
applicability of the same scaling procedure in predicting the radiated power. The use of the original
modal base over a frequency band wider than the original one at increased damping levels does no
influence the quality of the acoustic predictive response: the scaled models are able to preserve botf
of the acoustic and vibrational energies, (De Rosa 2003).

6. Conclusions

The predictive response for a simply supported beam under a turbulent boundary layer excitation
has been herein presented and discussed. The modal expansion has been used to obtain such
response, since this method well generalises the approach for more complicated structure anc
reproduce the standard finite element approach. The choice of the Corcos model for the TBL
distribution has been done only for keeping the simplicity of representation, even if this includes all
the most important parameter of the TBL. It has been evidenced that the modal approach could
represent a solution to the predictive response even if the associated computational cost will assume
unacceptable values.

A scaling procedure has been so applied in order to overcome this problem. A computational
domain has been defined by simply reducing the dimensions not involved in the energy
transmission. The associated damping has been accordingly increased, in order to keep the sam
energy representation. The results are quite satisfactory, and moreover a useful criterion for the
scaling phase has been also defined and tested.

All the themes herein contained can be successfully applied also to discrete coordinate solvers
such finite element based codes as demonstrated by a sample result.

Acknowledgements

The authors wish to thank all the ENABLE partners that allowed the publication of the results.
The first two authors in collaboration with ing. D. Melluso (ALENIA Aeronautics) obtained the
results presented in Fig. 10; they refer specifically to the application of the methodology to the plate
responses.



450 S. De Rosa, F. Franco, G. Romano and F. Scaramuzzino

References

Bull, M.K. (1996), “Wall pressure fluctuations beneath turbulent boundary layers: some reflections on forty years
of research”J. Sound Vih 19Q(3), 299-315.

Cousin, G. (1999), “Sound from T.B.L. induced vibrations”, Royal Institute of Technology, Dept. of Vehicle
Engineering, The Marcus Wallenberg Laboratory for Sound and Vibration Research, ISSN 1103-470X, ISRN
KTH/FKT/L-99/35-SE.

Corcos, G.M. (1963), “The structure of the turbulent pressure field in boundary layer flow#ijd Mech, 18,
353-378.

Corcos, G.M. (1967), “The resolution of turbulent pressure at the wall of a boundary Jayssynd Vih 6, 59-

70.

Davies, H.G. (1971), “Sound from turbulent boundary layer excited padel&toustical Society of Amerjca
493), Part 11, 878-889.

De Rosa, S.et alii (1997), “First assessment of the energy based similitude for the evaluation of the damped
structural responsed. Sound Vih 204(3), 540-548.

De Rosa, S.et alii (2003), “Analysis of radiated power from a plate in a turbulent boundary ldpeited
Paper at Euronoise Conferenddaples, Italy, 19-21 May, Paper #47.

Elishakoff, I. (1983)Probabilistic Methods in the Theory of Structyrgshn Wiley & Sons, ISBN 0471875724.

Franco, F..et alii (1997), “The energy based similitude for the energetic vibration response prediction of 2D
systems”C.E.A.S. Intern. Forum on Structural Dynamics and Aeroelastildity223-229, Rome.

Lyon, R.H. and Dejong, R.G. (1995)heory and Application of Statistical Energy AnalyBiBl Lyon Corp; 2nd
edition, ISBN 0750691115

Skudrzyk, E. (1968),Simple and Complex Vibratory SystenThe Pennsylvania State University Press,
University Park and London, Catalog Card 66-18222.



	The random structural response due to a turbulent boundary layer excitation
	S. De Rosa† and F. Franco‡
	G. Romano‡† and F. Scaramuzzino‡‡

	1. Introduction
	2. Preliminary remarks
	3. Beam response
	4. Scaling procedure and results
	5. Extension of the method
	6. Conclusions
	Acknowledgements
	References



