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Abstract. The purpose of this study is to propose a procedure for evaluating quantitatively the in
of the equivalent damping ratio of a structure with passive/active vibration control systems subjecte
stationary wind load. A Lyapunov function governing the response of a structure and its differ
equation are formulated first. Then the state-space equation of the structure coupled with the se
damping system is solved. The results are substituted into the differential equation of the Lya
function and its derivative. The equivalent damping ratios are obtained from the Lyapunov function 
combined system and its derivative, and are used to assess the control effect of various damping
quantitatively. The accuracy of the proposed procedure is confirmed by applying it to a structure
nonlinear as well as linear passive/active control systems.

Keywords: equivalent damping; wind load; structural control; active/passive dampers.

1. Introduction

The quantification of damping is complicated when a passive/active mechanical damping de
installed in the structure. For the purpose of investigating the control effects of added da
devices, many researchers adopted the concept of equivalent damping ratio (EDR). Hartog 
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calculated the increase of modal damping ratios of a primary structure with a tuned mass d
(TMD) as a function of mass ratios. Johnson and Kienholz (1982), Soong and Lai (1991
Chang et al. (1992) applied the modal-strain-energy method to assess the effect of a visco
damper (VED). Li and Reinhorn (1995) derived the damping ratios of a structure with supplem
friction dampers through an identification procedure using acceleration response transfer funct

The damping ratio contributed from a linear supplemental damper can be estimated precis
eigenvalue analysis. However in a structure with nonlinear damping devices, which impose no
control force on the structure, the eigenvalue analysis cannot be applied. The nonlinear da
devices include passive devices, such as friction dampers and hysteretic devices, and active
devices subjected to control force saturation or stroke saturation. Even in devices categor
linear systems, nonlinear control forces can be generated as a result of temperature chan
generated by cyclic behavior, or friction between the device and the structure. Theref
convenient but accurate method to estimate the damping ratio supplied by nonlinear supple
dampers needs to be developed.

The purpose of this study is to propose an approach to evaluate the EDR of a structure w
supplemental vibration control devices subjected to a stationary wind load. The proposed m
has an advantage in that the equivalent damping of a structure with nonlinear added dampers
estimated, for which an eigenvalue analysis cannot be applied. To show the effectiveness
proposed approach, the EDRs of a structure with viscous dampers (VD), a tuned mass 
(TMD), an active mass driver (AMD), and friction dampers (FD) subjected to a wind load
computed. For validation of the proposed method, the results from the proposed method for
system are compared with those obtained from eigenvalue analysis. In this study, it is assum
the response of a structure is a stationary random process and the control device does not a
mode shape of the structure.

2. Derivation of equivalent damping ratios

2.1. Lyapunov function for general energy

In this section and the following section, the Lyapunov function whose derivative is express
autoregressive form is obtained in modal space as a general energy form. The EDR is ev
through the time history analysis using the Lyapunov function and its derivative.

The equation of motion of a structure without a damping device can be written as follows :

(1)

where M, C, and K are the mass, damping, and stiffness matrix, respectively; x is a displacement
vector; and f(t) is a disturbance. Eq. (1) can be transformed to the following state-space equat

(2)

where z=[ x ]T, and the system matrix, A, and the location matrix of disturbance, B1, can be
represented as:

Mx· Cx· Kx+ + f t( )=

z· Az B1 f t( )+=

x·
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In this study the energy of a structure is defined as follows:

e=zT Qo z (4)

where Qo, the energy matrix, has the following form:

(5)

Strictly speaking, the energy matrix generally used is a half of Eq. (5), but it is defined as E
for simplicity in mathematical formulation. As the energy in a structure corresponds to a s
form of a Lyapunov function, Eq. (4) can be written as the generalized form of a Lyap
function:

e=zTQ z (6)

where Q is a positive definite matrix satisfying conditions for the Lyapunov function. In this cae
has the dimension of energy, and can be called a ‘generalized energy’. By differentiating both
of Eq. (6) and substituting Eq. (2), we get

=zT (AT Q+QA)z + f T B1
T Qz+ zT QB1 f (7)

If the first term in the right-hand-side of Eq. (7) satisfies the following equation :

AT Q+QA = −αQ (8)

then Eq. (7) can be reduced to

=−αe+F (t) (9)

where α is a positive scalar, and F(t) is the energy dissipated by the disturbance f, which is
expressed as follows:

F(t) = f T B1
T Qz+ zT QB1 f (10)

If a matrix Q and a scalar α which satisfy the Lyapunov equation do exist, Eq. (9) becomes the
order differential equation with regard to the generalized energy, e. The scalar α determines the rate
of convergence of the generalized energy. The fact that α is always positive guarantees the syste
stability, since the energy is always decreased. Therefore it can be conjectured that α is a parameter
related with structural damping.

A
 0 I 

 M 1– K – M 1– C –
= B1

 0 

 M 1–  
=

Qo
K 0

0 M
=

e·

e·
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Generally in a MDOF system, there is no matrix Q that satisfies Eq. (8); the matrix Q becomes
the right eigen matrix and the left eigen matrix at the same time, and there can exist n
identical eigen matrices related to an asymmetric system matrix, A. However if it is assume
there exists a dominant mode and the other modes have little effect on the response of the s
we can obtain the matrix Q and scalar α in modal space satisfying Eq. (8) as follows:

(11)

where wi and ξ i are the natural frequency and damping ratio of the ith mode, respectively. In the
above equation it can be observed that λ i is the product of the damping ratio and the natu
frequency of the ith mode. The modal energy and the 1st order differential equation of the ith modal
energy can be written as:

ei = zi
TQi zi (12)

=−α i ei + Fi ( t) (13)

where Fi (t) is the rate of change in energy due to the external load:

Fi (t) = f i
TB1i

T Qi zi + zi
T Qi B1i f i (14)

where f i is the generalized external load acting on the ith mode, and B1i and zi are represented as

B1i = [0  1]T, zi = (15)

where ηi and  are the generalized displacement and velocity of the ith mode, respectively.

2.2. Equivalent damping ratio in modal space

The equation of motion of a structure with an added damping device can be written as

(16)

where the matrix L represents the location of the control force, which depends on the typ
damping device, and u(t) is the generalized control force. The differential equation for ene
generated from the control force in modal space is expressed as

= −αi ei + Ui ( t) + Fi ( t) (17)

where Ui (t) is defined as the equivalent control energy, which is the energy dissipated b
control force:

Ui (t) = ui
TB2i

T Qi zi + zi
T Qi B2i ui (18)

Qi
wi

2 ξiwi

ξiwi 1
=         α i 2ξiwi=

e·i

ηi η· i[ ]
T

η· i

Mx· Cx· Kx+ + f t( ) Lu t( )+=

e·i
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where ui is the generalized control force applied to the ith mode and B2i = [0  1]T determines the
location of the control force.

Considering the fact that the parameter αi in Eq. (17) represents the decrease of energy due to
inherent damping, the equivalent control energy, Ui(t), can be written as follows using anothe
parameter, βi :

Ui (t) = −β i ei (t) (19)

where β i is the function of time because Lyapunov function and equivalent control energy are
functions of time. If Ui (t) and ei are stationary random processes such as wind-induced vibra
the parameter β i can be obtained by taking expectation of both sides of Eq. (19):

(20)

where E[.] is the function of expectation. The increase in the equivalent damping ratio by
addition of the damping device can be defined as follows using the parameter βi :

(21)

Finally the modal equation of motion can be converted to the following equation using
equivalent damping ratio :

(22)

3. Modal equivalent damping ratios for various damping devices

In this section, analytical approach to evaluate the modal EDR has been developed for 
types of damping devices, such as linear viscous dampers (LVD), a tuned mass damper (TM
active mass damper (AMD), and Coulomb friction dampers (FD-friction damper). The first 
dampers are linear damping devices, and the last one is the nonlinear damping device. In 
FD, a closed form formula for equivalent damping is derived. The model structure for analys
10-story shear building with damping devices subjected to a wind load. The dynamic proper
the model structure are presented in Table 1. It is assumed that the damping matrix of the
building is proportional to the mass and the stiffness matrices (i.e., proportional damping), a
wind disturbance is a stationary random process.

3.1. Modeling of wind load

As the proposed procedure estimates equivalent damping ratios using structural respo
mathematical formulation of a external wind load is required. The wind load at each sto
generally correlated each other; however for ease of computation it is assumed that the wind 
each story is independent at each story. This simplification may be justified considering th
primary goal of the paper is to present a procedure for estimating equivalent damping
contributed from added dampers excited by any type of dynamic load. In this study it is as
that the vertical distribution of wind load acting on the model structure follows the power la

β i

E Ui t( )[ ]
E e t( )[ ]

-----------------------–=

ξ ieq

β i

2wi

--------=

ξieq

η··i 2 ξ i ξieq
+( )wiη· i wi

2ηi+ + fi t( )=
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Table 1 Modal characteristics of the model structure

Properties Values

Story mass m = 78.75 ton

Story damping c = 177 kN sec/m

Story stiffness k = 34,800 kN/m

Mode shape vectors

1st
 0.1495
 0.2956
 0.4351
 0.5649
 0.6821
 0.7840
 0.8685
 0.9335
 0.9777
 1.0000

2nd
-0.4450
-0.8019
-1.0000
-1.0000
-0.8019
-0.4450
 0.0000
 0.4450
 0.8019
 1.0000

3rd
 0.6821
 1.0000
 0.7840
 0.1495
-0.5649
-0.9777
-0.8685
-0.2956
 0.4351
 0.9335

1st modal mass 415.76 ton

Natural frequency
1st mode  : 0.5000 Hz
2nd mode : 1.4890 Hz 
3rd mode : 2.446 Hz

Modal damping ratio
1st mode  : 0.80%
2nd mode : 2.38%
3rd mode : 3.91%

Fig. 1 Wind velocity profile
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(23)

where z is the height of a story from the ground, zo is the reference height above the ground, Vo is
the velocity at height zo at a return period of 10 years, and λ is the exponent determining vertica
profile of wind velocity. In this study the following values are used for numerical analysis: zo = 10 m,
λ = 0.15, Vo = 30 m/sec. For numerical analysis, time history of wind velocity at each stor
generated from von Karman’s spectrum (Simiu and Scanlan 1996).

3.2. Viscous dampers

Three linear VDs, in which the damper force is proportional to the relative velocity, are ins
between the first three inter stories as shown in Fig. 2(a). The equivalent control force provid
the VD can be written as :

(24)

=−c1S1S1
T − c2S2S2

T − c3S3S3
T

=−S diag(c) ST

where ci is the damping coefficient of the ith VD, diag(c) is the diagonal matrix consisting of ci, and
 is the velocity of the ith story. Comparing Eq. (24) with Eq. (16), the location matrix, L, and the

V z( ) Vo
z
zo

---- 
  λ

=

Su t( ) c1–

1

0

0

0

1 0 0 … 0[ ]

x·1

x·2

x·3

x·10 
 
 
 
 
 
 
 

=

..
.

..
.

c2–

1–

1

0

0

1–  1 0 …  0[ ]

x·1

x·2

x·3

x·10 
 
 
 
 
 
 
 

..
.

..
.

c3–

0

1–

1

0

0 1–  1 …  0[ ]

x·1

x·2

x·3

x·10 
 
 
 
 
 
 
 

..
.

..
.

x· x· x·

x·

x·i
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control force, u(t), are represented as

L = S, u(t) = −diag(c)ST (25)

The control force generated from the VD corresponds to the special case of the direct out
velocity feedback control in view of the control algorithm, and in this case the feedback g
diag(c). Considering the mode shape shown in Table 2 and Eq. (24), the generalized contro
applied to the ith mode can be written as

(26)

where φi, Mi are the mode shape vector and the modal mass of the ith mode, respectively.
Substituting Eq. (26) into Eq. (18), the equivalent control energy is calculated through the
history analysis, and the modal EDR of the ith mode can be obtained using the Eq. (20) and 
(21). Table 2 compares the EDR computed from the proposed method and the modal dampin
computed from the eigenvalue analysis, which indicates that the EDR of the 1st mode obtai
the proposed approach are very close to those obtained by eigenvalue analysis. For simplic
damping coefficient of VD in each story is given to be co.

3.3. Tuned mass damper (TMD)

The EDR of a primary structure increased by a TMD was proposed as follows by Den H
(1956) :

(27)

where it can be noticed that the increase of damping depends on , which is the mass ratio
TMD and the main structure. The frequency ratio of the main structure and the TMD, γ, and the
optimal damping ratio (ξopt) of TMD are given as

(28)

The damping ratio of a structure with TMD can be calculated by the eigenvalue analys
dynamic system with a TMD coupled with the 1st mode is represented as

(29)

x·

ui t( )
φ i

T S diag c( )ST

Mi

--------------------------------------x· t( )=

∆ξeq
1
2
--- µ

2 µ+
------------=

γ 1
1 µ+
------------=     ξopt

1
2
---=

3µ 2⁄
1 3µ 2⁄+
------------------------,

M 0

0 mt

η··i

y·· 
 
  C ctφhi

2+ φhict–

φhict– ct

η· i

y· 
 
  K φhi

2 kt+ φhikt–

φhikt– kt

ηi

y 
 
 

+ + 1

0
f=

Table 2 Modal damping ratios increased by viscous dampers

Damping coefficient (co)
Analysis methods

500 700 1000 1300 1500

Proposed (%) 2.00 2.48 3.18 3.92 4.38
Eigenvalue analysis (%) 2.01 2.49 3.22 3.94 4.42
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where , , and  are the generalized mass, damping, and stiffness of the 1st mode, resp
as shown in Fig. 2(b), and the ith mode shape is normalized by the coefficient corresponding to
top story. Also mt, ct, and kt are the mass, damping, and the stiffness of the TMD, respectively
is the generalized external force including the effect of the other mode, and φhi is the modal
coefficient at the hth story where the TMD is installed. From an eigenvalue analysis we can ge
independent damping ratios of the structure.

Numerical analysis is performed to compare the proposed method with eigenvalue analys
TMD is located at the top story as shown in Fig. 2(b), and the frequency ratio and optimal da
ratio obtained from Eq. (28) is used in the analysis.

The equivalent control force induced by a TMD is an inertial force provided by the moveme
the mass of the TMD. From Eq. (29) the modal equation of motion for the 1st mode subjec
the equivalent control force can be obtained as follows :

(30)

where µ is the mass ratio of the TMD, and the right-hand-side of the above equation represe
equivalent damping force. The increase of EDR for the 1st mode coupled with the TMD c
predicted from the numerical analysis of the Eq. (30), as mentioned previously.

M C K

f

η··1 2ξ1w1η· 1 w1
2η+ + µy··– f+=

Fig. 2 Model structures with supplemental dampers



258 Jae-Seung Hwang, Jinkoo Kim, Sang-Hyun Lee and Kyung-Won Min

mping
in the

uation
stics of
method

study
ed in
mping

h the
y

Table 3 shows the EDR of the structure obtained from various procedures. The inherent da
ratio of the structure, which is assumed to be 0.8% of the critical damping, is also included 
EDR

It can be observed in the table that the damping ratios predicted from the Den Hartog’s eq
form the upperbound in all mass ratios, mainly because it does not consider the characteri
the external load. It also can be noticed that the damping ratios obtained from the proposed 
are quite close to those from the eigenvalue analysis.

3.4. Active mass driver

The control force supplied by an AMD is dependent on the control algorithm used. In this 
the linear quadratic regulator (LQR), which is one of the most popular control algorithms us
building structures, is applied as a control algorithm, and thus the AMD works as a linear da
device. The control gain is found by minimizing the following performance index J:

(31)

where Q and R are the weighting matrices associated with the state vector z(t) and control force
vector u(t), respectively. 

To estimate the damping ratio increased by the AMD, the structure shown in Fig. 2 wit
AMD placed on the 9th story is analyzed. The ith modal control force inflicted on the 9th story b
the operation of the AMD is as follows :

ui = φ9i u( t) (32)

where φ9i is the 9th component of the ith mode shape vector, and u(t) is the control force generated
from the AMD, which is expressed as follows:

u( t) = −Gz (33)

where G is the control gain computed from the weighting matrice Q and R. The matrix Q is

J zTQz uTRu+( )
0

∞

∫ dt=

Table 3 Modal damping ratios increased by TMD

Mass ratio (µ )
Analysis methods

0.5% 0.8% 1% 1.2% 1.5%

Proposed (%) 2.47 2.75 3.05 3.20 3.71

Eigenvalue analysis (%) 2.04
230

2.44
2.84

2.65
3.16

2.84
3.45

3.09
3.85

Den Hartog (Eq. 27) 3.29 3.95 4.32 4.66 5.11
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obtained from Eq. (5) and R is taken as a variable to regulate the control force. Table 4 comp
the equivalent damping ratio obtained from eigenvalue analysis and from the proposed meth
various R, where it can be found that the equivalent damping ratios obtained from both me
match quite well.

3.6. Friction dampers

The friction force generated from an ideal Coulomb friction damper can be denoted as follow
and Reinhorn 1995):

Fc = − Cc sign

= − Cc (37)

where Cc is the magnitude of the friction force, sign (.) is the sign function, and  is the relativ
velocity of the damper. The equation of motion of a SDOF structure with Coulomb-type fri
damper, which is shown in Fig. 3, can be denoted as 

(38)

The first term in the right-hand-side of Eq. (38) corresponds to the control force contributed
the friction damper, and the equivalent energy dissipated by the control force becomes

(39)

x·( )

x·

x·
-------

x·

x·· 2ξowox· wo
2x+ +

Cc

M
----- sign x·( )– f+=

U t( ) uTB2
TQz zTQB2u+=

2 ξowo

Cc

M
----- x·x

x·
-------

Cc

M
----- x·2

x·
-------+ 

 =

Table 4 Modal damping ratios increased by AMD

R factor
Analysis method

0.1 0.05 0.03 0.02 0.01

Proposed (%) 3.49 4.85 6.32 7.68 10.82
Eigenvalue analysis (%) 3.51 4.89 6.28 7.66 10.78

Fig. 3 SDOF system with a friction damper
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From the definition of equivalent damping, the damping ratio supplied by the friction dampe
be obtained as follows :

(40)

As the displacement and the velocity of a structure are independent of each other and the re
are narrow-band processes, the following relationship holds:

(41)

Substituting Eq. (41) into Eq. (40) leads to

(42)

For a Gaussian probability distribution with the mean velocity of 0 and the standard deviati
, E  can be expressed as 

(43)

Generally the response of the structure with friction dampers is not Gaussian process beca
system is nonlinear. However when the equivalent damping supplied by the added friction d
is small, it can be assumed that the structure behaves similarly to a Gaussian proce
substituting Eq. (43) into Eq. (42), the equivalent damping ratio can be expressed as 

(44)

Eq. (44) shows that the equivalent damping due to the friction damper is inversely proportio
the response. Table 6 presents the numerical analysis results of the SDOF system shown i
with the dynamic properties shown in Table 5. For the same friction force (Cc) of the damper, the
mean and the standard deviation of the velocity are obtained for various magnitudes of the
noise external load. The equivalent damping ratio for each external load is also presented. It
observed that the responses obtained using the equivalent damping ratio are quite close 
computed directly from the structure with the damper.

ξeq
1

2wo

---------
2 ξowo

Cc

M
-----E

x·x
x·

-------
Cc

M
-----E

x·2

x·
-------+ 

 

wo
2E x2[ ] ξowoE xx·[ ] E x·2[ ]+ +

---------------------------------------------------------------------------=

E xx·[ ] 0    σx·
2 E x·2[ ] wo

2E x2[ ]= =,=

ξeq
1

2woM
--------------

CcE x·[ ]

E x·2[ ]
----------------------=

σx· x·[ ]

E x·[ ] 2 x·

2π σx·

------------------
0

∞
∫ x·2

2σx·
2

---------– 
 exp dx·

2
π
--- σx·= =

ξeqσx·
1

2π
------------

Cc

woM
-----------=

Table 5 Modal characteristics of the SDOF system

Mass Natural frequency Damping ratio Excitation

Values 27.62 kg 0.5075 Hz 0.8% White noise
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4. Conclusions

A procedure for evaluating the equivalent damping ratios of a structure equipped 
supplemental damping devices and subjected to a stationary wind load was proposed. Modal
of the structure with damping devices was defined as the Lyapunov function, and its derivativ
expressed in autoregressive form to obtain the amount of the dissipated energy from the da
The equivalent damping ratios were obtained from the Lyapunov function and its derivative
were used to assess the control effect of various damping devices quantitatively.

Numerical analysis of a structure with linear damping devices such as VDs and AMD using
proved that the proposed method can evaluate equivalent damping ratios precisely. The meth
also shown to be applicable for estimating equivalent damping ratios of a structure with non
damping devices, for which the eigenvalue analysis cannot be applied. 
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0.4066

0.0102
0.0239
0.0398
0.0538
0.0700
0.1057
0.0970
0.1243
0.1421
0.2097
0.2161
0.2339
0.3125
0.4915

x· σx· x· σx· x· σx·
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