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Equivalent damping of a structure with vibration
control devices subjected to wind loads
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Abstract. The purpose of this study is to propose a procedure for evaluating quantitatively the increase
of the equivalent damping ratio of a structure with passive/active vibration control systems subjected to a
stationary wind load. A Lyapunov function governing the response of a structure and its differential
equation are formulated first. Then the state-space equation of the structure coupled with the secondary
damping system is solved. The results are substituted into the differential equation of the Lyapunov
function and its derivative. The equivalent damping ratios are obtained from the Lyapunov function of the
combined system and its derivative, and are used to assess the control effect of various damping device:
guantitatively. The accuracy of the proposed procedure is confirmed by applying it to a structure with
nonlinear as well as linear passive/active control systems.
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1. Introduction

The quantification of damping is complicated when a passive/active mechanical damping device is
installed in the structure. For the purpose of investigating the control effects of added damping
devices, many researchers adopted the concept of equivalent damping ratio (EDR). Hartog (1956)

T Assistant Professor
T Professor

1t Research Fellow

1t Associate Professor



250 Jae-Seung Hwang, Jinkoo Kim, Sang-Hyun Lee and Kyung-Won Min

calculated the increase of modal damping ratios of a primary structure with a tuned mass damper
(TMD) as a function of mass ratios. Johnson and Kienholz (1982), Soong and Lai (1991), and

Changet al (1992) applied the modal-strain-energy method to assess the effect of a viscoelastic

damper (VED). Li and Reinhorn (1995) derived the damping ratios of a structure with supplemental

friction dampers through an identification procedure using acceleration response transfer functions.

The damping ratio contributed from a linear supplemental damper can be estimated precisely by
eigenvalue analysis. However in a structure with nonlinear damping devices, which impose nonlinear
control force on the structure, the eigenvalue analysis cannot be applied. The nonlinear damping
devices include passive devices, such as friction dampers and hysteretic devices, and active contrc
devices subjected to control force saturation or stroke saturation. Even in devices categorized as
linear systems, nonlinear control forces can be generated as a result of temperature change, he:
generated by cyclic behavior, or friction between the device and the structure. Therefore a
convenient but accurate method to estimate the damping ratio supplied by nonlinear supplemental
dampers needs to be developed.

The purpose of this study is to propose an approach to evaluate the EDR of a structure with any
supplemental vibration control devices subjected to a stationary wind load. The proposed method
has an advantage in that the equivalent damping of a structure with nonlinear added dampers can b
estimated, for which an eigenvalue analysis cannot be applied. To show the effectiveness of the
proposed approach, the EDRs of a structure with viscous dampers (VD), a tuned mass damper
(TMD), an active mass driver (AMD), and friction dampers (FD) subjected to a wind load are
computed. For validation of the proposed method, the results from the proposed method for linear
system are compared with those obtained from eigenvalue analysis. In this study, it is assumed tha
the response of a structure is a stationary random process and the control device does not affect th
mode shape of the structure.

2. Derivation of equivalent damping ratios

2.1. Lyapunov function for general energy

In this section and the following section, the Lyapunov function whose derivative is expressed in
autoregressive form is obtained in modal space as a general energy form. The EDR is evaluatec
through the time history analysis using the Lyapunov function and its derivative.

The equation of motion of a structure without a damping device can be written as follows:

MX + Cx+ Kx = f(t) (1)

whereM, C, andK are the mass, damping, and stiffness matrix, respectived/a displacement
vector; and(t) is a disturbance. Eq. (1) can be transformed to the following state-space equation:

z = Az+ B(t) )

where z=[x x]", and the system matri, and the location matrix of disturband®,, can be
represented as:
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In this study the energy of a structure is defined as follows:
e=2'Q,z (4)
whereQ,, the energy matrix, has the following form:

Q, = {K 0} (5)
oM

Strictly speaking, the energy matrix generally used is a half of Eq. (5), but it is defined as Eqg. (5)
for simplicity in mathematical formulation. As the energy in a structure corresponds to a special
form of a Lyapunov function, Eq. (4) can be written as the generalized form of a Lyapunov
function:

e=7'Qz (6)

whereQ is a positive definite matrix satisfying conditions for the Lyapunov function. In thisecase
has the dimension of energy, and can be called a ‘generalized energy’. By differentiating both sides
of Eq. (6) and substituting Eq. (2), we get

€=7"(ATQ+QA)z+fB/Qz+7z' QB f (7)
If the first term in the right-hand-side of Eq. (7) satisfies the following equation:
ATQ+QA=-aQ 8)
then Eg. (7) can be reduced to
e=-ae+F(t) 9)

where a is a positive scalar, anB(t) is the energy dissipated by the disturbahcevhich is
expressed as follows:

F(t)=f"B{ Qz+2' QB,f (10)

If a matrix Q and a scalao which satisfy the Lyapunov equation do exist, Eq. (9) becomes the 1st
order differential equation with regard to the generalized enerdhe scalar determines the rate

of convergence of the generalized energy. The factdhatalways positive guarantees the system
stability, since the energy is always decreased. Therefore it can be conjectuedsthgbarameter
related with structural damping.
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Generally in a MDOF system, there is no ma@ixhat satisfies Eq. (8); the matrg becomes
the right eigen matrix and the left eigen matrix at the same time, and there can exist no two
identical eigen matrices related to an asymmetric system matrix, A. However if it is assumed that
there exists a dominant mode and the other modes have little effect on the response of the structure
we can obtain the matri® and scalao in modal space satisfying Eq. (8) as follows:

2 Ew
Qi = WE S a; = 2&w, (11)
w1
wherew; and ¢; are the natural frequency and damping ratio ofitthenode, respectively. In the
above equation it can be observed thatis the product of the damping ratio and the natural
frequency of theth mode. The modal energy and the 1st order differential equation ith threodal
energy can be written as:
€=z Qz (12)
& =—a;e + Fi(t) (13)
whereF;(t) is the rate of change in energy due to the external load:
Fi(t)=f'Bf Qz+2z QByf (14)
wheref; is the generalized external load acting onithanode, and; andz are represented as
_ T _ Lo T
Bi=[0 1]',  z=[m ni (15)
wheren; and }; are the generalized displacement and velocity dffthreode, respectively.
2.2. Equivalent damping ratio in modal space
The equation of motion of a structure with an added damping device can be written as
MX + Cx+ Kx = f(t) + Lu(t) (16)
where the matrixL represents the location of the control force, which depends on the type of
damping device, andi(t) is the generalized control force. The differential equation for energy
generated from the control force in modal space is expressed as
e =-aie+Ui(t)+Fi(t) 17)

where U;(t) is defined as the equivalent control energy, which is the energy dissipated by the
control force:

Ui(t) =ui B Qz +2/ QByu (18)
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where u; is the generalized control force applied to itemode andB, =[0 1]" determines the
location of the control force.

Considering the fact that the parameatein Eq. (17) represents the decrease of energy due to the
inherent damping, the equivalent control energdyt), can be written as follows using another
parameterf3 :

Ui(t) =-Bie(t) (19)

where §; is the function of time because Lyapunov function and equivalent control energy are also
functions of time. IfUi(t) and g are stationary random processes such as wind-induced vibration,
the parameteB; can be obtained by taking expectation of both sides of Eq. (19):
CE[U(1)]

E[e(9]
where E[.] is the function of expectation. The increase in the equivalent damping ratio by the
addition of the damping device can be defined as follows using the par#neter

B

aa 2w,

Bi = (20)

¢ (21)
Finally the modal equation of motion can be converted to the following equation using the
equivalent damping ratiéieq

i+ 2(& + & Jwiri + W2n, = f,() (22)

3. Modal equivalent damping ratios for various damping devices

In this section, analytical approach to evaluate the modal EDR has been developed for various
types of damping devices, such as linear viscous dampers (LVD), a tuned mass damper (TMD), an
active mass damper (AMD), and Coulomb friction dampers (FD-friction damper). The first three
dampers are linear damping devices, and the last one is the nonlinear damping device. In case o
FD, a closed form formula for equivalent damping is derived. The model structure for analysis is a
10-story shear building with damping devices subjected to a wind load. The dynamic properties of
the model structure are presented in Table 1. It is assumed that the damping matrix of the sheal
building is proportional to the mass and the stiffness matrices (i.e., proportional damping), and the
wind disturbance is a stationary random process.

3.1. Modeling of wind load

As the proposed procedure estimates equivalent damping ratios using structural responses, ¢
mathematical formulation of a external wind load is required. The wind load at each story is
generally correlated each other; however for ease of computation it is assumed that the wind load in
each story is independent at each story. This simplification may be justified considering that the
primary goal of the paper is to present a procedure for estimating equivalent damping ratio
contributed from added dampers excited by any type of dynamic load. In this study it is assumed
that the vertical distribution of wind load acting on the model structure follows the power law as
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Table 1 Modal characteristics of the model structure

Properties Values

Story mass m=78.75ton

Story damping c=177 kN sec/m

Story stiffness k = 34,800 kN/m

1st 2nd 3rd

0.1495 -0.4450 0.6821
0.2956 -0.8019 1.0000
0.4351 -1.0000 0.7840
0.5649 -1.0000 0.1495

Mode shape vectors 0.6821 -0.8019 -0.5649
0.7840 -0.4450 -0.9777
0.8685 0.0000 -0.8685
0.9335 0.4450 -0.2956
0.9777 0.8019 0.4351
1.0000 1.0000 0.9335

1st modal mass 415.76 ton

1st mode : 0.5000 Hz
Natural frequency 2nd mode : 1.4890 Hz

3rd mode : 2.446 Hz

1st mode : 0.80%
Modal damping ratio 2nd mode : 2.38%
3rd mode : 3.91%

Ikl

kS|

Fig. 1 Wind velocity profile
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shown in the following equation and in Fig. 1:

V(2) = VOE]]ZEO g (23)

wherez is the height of a story from the grourml,is the reference height above the growidis

the velocity at heighk, at a return period of 10 years, ahds the exponent determining vertical
profile of wind velocity. In this study the following values are used for numerical analysid¢0 m,
A=0.15, V, =30 m/sec. For numerical analysis, time history of wind velocity at each story is
generated from von Karman’s spectrum (Simiu and Scanlan 1996).

3.2. Viscous dampers
Three linear VDs, in which the damper force is proportional to the relative velocity, are installed

between the first three inter stories as shown in Fig. 2(a). The equivalent control force provided by
the VD can be written as:

Ox, O
1 0’ [0
0 0 X, O
SUY = —;|0[[100 015 %, &
: 0o 0O
) a- o
0] 0%y O
[ 4] 0 x, O
1 D-lm
1 0x, O
~c2| 0 |[-110 - 0lg %, g (24)
: o . o0
0 0
| 0] 0%, 0
o | Ox, O
0 D-lm
-1 0x, O
—| 1[[0-11 0] %, &
o. o
-0
L 0 0%, 0

=-CSISIX — 6T X —6SS X
=-S diag(c) S"x

wherec; is the damping coefficient of théh VD, diag(c) is the diagonal matrix consisting af and
X; is the velocity of theth story. Comparing Eq. (24) with Eq. (16), the location matrjpand the
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Table 2 Modal damping ratios increased by viscous dampers

Damping coefficient &)

Analysis methods 500 700 1000 1300 1500
Proposed (%) 2.00 2.48 3.18 3.92 4.38
Eigenvalue analysis (%) 2.01 2.49 3.22 3.94 4.42

control force,u(t), are represented as
L=S,  u(t)=-diag(c)S" x (25)

The control force generated from thM® corresponds to the special case of the direct output
velocity feedback control in view of the control algorithm, and in this case the feedback gain is
diag(c). Considering the mode shape shown in Table 2 and Eq. (24), the generalized control force
applied to thath mode can be written as

T . T
u(t) = LSCRLIZ (26)
I
where @, M; are the mode shape vector and the modal mass oftlthenode, respectively.
Substituting Eg. (26) into Eq. (18), the equivalent control energy is calculated through the time
history analysis, and the modal EDR of ille mode can be obtained using the Eq. (20) and Eg.
(21). Table 2 compares the EDR computed from the proposed method and the modal damping ratio
computed from the eigenvalue analysis, which indicates that the EDR of the 1st mode obtained by
the proposed approach are very close to those obtained by eigenvalue analysis. For simplicity, the

damping coefficient o¥D in each story is given to bg.
3.3. Tuned mass damper (TMD)

The EDR of a primary structure increased by a TMD was proposed as follows by Den Hotdog

(1956)
-1 u

where it can be noticed that the increase of damping depends on , which is the mass ratio of the
TMD and the main structure. The frequency ratio of the main structure and the yMbDd the
optimal damping ratio §,,) of TMD are given as

1 1 3u/2
VETep SomT o T4 3p2 (28)

The damping ratio of a structure with TMD can be calculated by the eigenvalue analysis. A
dynamic system with a TMD coupled with the 1st mode is represented as

v ol|0p O
M o |Hii B,
0m|Oy O

C+oagh —gc|5m H,
—thiC ¢ |UyO
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(a) Viscous dampers (b) TMD (c) AMD

Fig. 2 Model structures with supplemental dampers

whereM ,C , andK are the generalized mass, damping, and stiffness of the 1st mode, respectively
as shown in Fig. 2(b), and tltn mode shape is normalized by the coefficient corresponding to the
top story. Alsom, ¢;, andk; are the mass, damping, and the stiffness of the TMD, respectively.

is the generalized external force including the effect of the other modegans the modal
coefficient at thenth story where the TMD is installed. From an eigenvalue analysis we can get two
independent damping ratios of the structure.

Numerical analysis is performed to compare the proposed method with eigenvalue analysis. The
TMD is located at the top story as shown in Fig. 2(b), and the frequency ratio and optimal damping
ratio obtained from Eq. (28) is used in the analysis.

The equivalent control force induced by a TMD is an inertial force provided by the movement of
the mass of the TMD. From Eq. (29) the modal equation of motion for the 1st mode subjected to
the equivalent control force can be obtained as follows:

1+ 2E Wi +w2n = —py+f (30)

where i is the mass ratio of the TMD, and the right-hand-side of the above equation represents the
equivalent damping force. The increase of EDR for the 1st mode coupled with the TMD can be
predicted from the numerical analysis of the Eq. (30), as mentioned previously.
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Table 3 Modal damping ratios increased by TMD

Mass ratio [t)

Analysis methods 0.5% 0.8% 1% 1.2% 1.5%
Proposed (%) 2.47 2.75 3.05 3.20 3.71
Eigenvalue analysis (%) 2.04 2.44 2.65 2.84 3.09

230 2.84 3.16 3.45 3.85
Den Hartog (Eq. 27) 3.29 3.95 4.32 4.66 5.11

Table 3 shows the EDR of the structure obtained from various procedures. The inherent damping
ratio of the structure, which is assumed to be 0.8% of the critical damping, is also included in the
EDR

It can be observed in the table that the damping ratios predicted from the Den Hartog's equation
form the upperbound in all mass ratios, mainly because it does not consider the characteristics of
the external load. It also can be noticed that the damping ratios obtained from the proposed methoc
are quite close to those from the eigenvalue analysis.

3.4. Active mass driver
The control force supplied by an AMD is dependent on the control algorithm used. In this study
the linear quadratic regulator (LQR), which is one of the most popular control algorithms used in

building structures, is applied as a control algorithm, and thus the AMD works as a linear damping
device. The control gain is found by minimizing the following performance iddex

J = [ (ZQz+ JRu)dt (31)
0

where Q and R are the weighting matrices associated with the state ve@joand control force
vectoru(t), respectively.

To estimate the damping ratio increased by the AMD, the structure shown in Fig. 2 with the
AMD placed on the 9th story is analyzed. Titte modal control force inflicted on the 9th story by
the operation of the AMD is as follows:

Ui = ¢ u(t) (32)

where g is the 9th component of th#h mode shape vector, angt) is the control force generated
from the AMD, which is expressed as follows:

u(t) = -Gz (33)

where G is the control gain computed from the weighting matizeand R. The matrixQ is
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Table 4 Modal damping ratios increased by AMD

R factor
Analysis method 0.1 0.05 0.03 0.02 0.01
Proposed (%) 3.49 4.85 6.32 7.68 10.82
Eigenvalue analysis (%) 3.51 4.89 6.28 7.66 10.78

obtained from Eq. (5) anRB is taken as a variable to regulate the control force. Table 4 compares
the equivalent damping ratio obtained from eigenvalue analysis and from the proposed method for
various R, where it can be found that the equivalent damping ratios obtained from both methods
match quite well.

3.6. Friction dampers

The friction force generated from an ideal Coulomb friction damper can be denoted as follows (Li
and Reinhorn 1995):

F.=-C. sign(x)
X

TS X

(37)
where C. is the magnitude of the friction forceign (.) is the sign function, and is the relative
velocity of the damper. The equation of motion of a SDOF structure with Coulomb-type friction
damper, which is shown in Fig. 3, can be denoted as

g°sign(s<) +f (38)

X+ 2E WX + W2X = — v

The first term in the right-hand-side of Eq. (38) corresponds to the control force contributed from
the friction damper, and the equivalent energy dissipated by the control force becomes

U(t) = u'BJQz+ ZQB,u

Cc)-(X Cc)-(zlj
2oy Tx| ¥ Mix| O

(39)

Fig. 3 SDOF system with a friction damper
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From the definition of equivalent damping, the damping ratio supplied by the friction damper can
be obtained as follows:

2B ] QEL:JD

2W0 W2E[X] + &, W,E[xK] + E[X]

Seq = (40)

As the displacement and the velocity of a structure are independent of each other and the response
are narrow-band processes, the following relationship holds:

E[x{ = 0, o02=E[X] =WZE[X] (41)
Substituting Eg. (41) into Eq. (40) leads to

1 C.E[|x]]

0= T e (42)

For a Gaussian probability distribution with the mean velocity of 0 and the standard deviation of
gy, E[|X]] can be expressed as

expD 50 Z%H [ (43)

Generally the response of the structure with friction dampers is not Gaussian process because th
system is nonlinear. However when the equivalent damping supplied by the added friction damper
is small, it can be assumed that the structure behaves similarly to a Gaussian process. By
substituting Eq. (43) into Eq. (42), the equivalent damping ratio can be expressed as

E[X]] = 21

1 C
Eeqo-x = ——= (44)

N 27TW0M

Eqg. (44) shows that the equivalent damping due to the friction damper is inversely proportional to
the response. Table 6 presents the numerical analysis results of the SDOF system shown in Fig. !
with the dynamic properties shown in Table 5. For the same friction f@geof the damper, the
mean and the standard deviation of the velocity are obtained for various magnitudes of the white
noise external load. The equivalent damping ratio for each external load is also presented. It can be
observed that the responses obtained using the equivalent damping ratio are quite close to thos
computed directly from the structure with the damper.

Table 5 Modal characteristics of the SDOF system

Mass Natural frequency Damping ratio Excitation
Values 27.62 kg 0.5075 Hz 0.8% White noise
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Table 6 Response and equivalent damping ratis=(1.0)

Excitation No control With friction dampers Equivalent damping
O ElIXI] Oy E[IXI] Oy Seq E[IX]] Ox
0.5232 0.0456 0.0572 0.0075 0.0101 44.85 0.0081 0.0102
0.8356 0.0839 0.1015 0.0181 0.0239 18.95 0.0192 0.0239
1.0429 0.1148 0.1557 0.0310 0.0412 10.99 0.0322 0.0398
1.2542 0.1619 0.1957 0.0411 0.0542 8.36 0.0426 0.0538
1.4655 0.1420 0.1756 0.0541 0.0709 6.39 0.0561 0.0700
1.6766 0.1931 0.2553 0.0804 0.1115 4.06 0.0834 0.1057
1.8837 0.1357 0.1739 0.0765 0.1012 4.48 0.0768 0.0970
2.0902 0.1998 0.2493 0.0967 0.1265 3.58 0.1001 0.1243
2.3026 0.2561 0.3135 0.1114 0.1465 3.09 0.1135 0.1421
2.5051 0.2839 0.3503 0.1712 0.2201 2.06 0.1668 0.2097
2.7189 0.2961 0.3656 0.1810 0.2310 1.96 0.1743 0.2161
2.9282 0.3352 0.4047 0.1949 0.2479 1.83 0.1908 0.2339
3.1355 0.4678 0.5597 0.2778 0.3484 1.30 0.2566 0.3125
4.1745 0.6455 0.7654 0.4429 0.5477 0.83 0.4066 0.4915

4. Conclusions

A procedure for evaluating the equivalent damping ratios of a structure equipped with
supplemental damping devices and subjected to a stationary wind load was proposed. Modal-energy
of the structure with damping devices was defined as the Lyapunov function, and its derivative was
expressed in autoregressive form to obtain the amount of the dissipated energy from the dampers
The equivalent damping ratios were obtained from the Lyapunov function and its derivative, and
were used to assess the control effect of various damping devices quantitatively.

Numerical analysis of a structure with linear damping devices such as VDs and AMD using LQR
proved that the proposed method can evaluate equivalent damping ratios precisely. The method wa:
also shown to be applicable for estimating equivalent damping ratios of a structure with nonlinear
damping devices, for which the eigenvalue analysis cannot be applied.
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