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Abstract. This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural 
with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficie
traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind
force representation on each and every different orientation roof, facilitating the galloping analy
multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are cons
An energy-based equivalent technique, together with the modal analysis, is used to solve the no
MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, whi
then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of
various experimental results obtained in pertinent research, this study also shows that considera
nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed
enhancing aerodynamic stability of structures.

Key words: aerodynamic instability; galloping analysis; multiple-orientation roof structures; energy-b
equivalent technique.

1. Introduction

Galloping or aerodynamic instability of civil structures is among the major concerns in wind-
resistant structural design. In China, validation of structural capacity to resist aerodynamic inst
is required for almost all the major design projects of large-scale structures (e.g., Shanghai O
Pearl TV Tower in 1995, New Shanghai Stadium in 1997, and Shanghai Nanpu Great Brid
1998).

Historically, the pioneering work on galloping analysis dates back to Glauert and Hartog (G
1919, and Hartog 1932 & 1956). Since then, significant developments have been made for in
understanding of galloping phenomena. Among them may be mentioned of experimenta
theoretical work by Novak (1969, 1972), Kolousek et al. (1984), and Simiu and Cook (1992). The
studies focus, however, primarily on linear single-degree-of-freedom (SDOF) vibration analysi
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cross-section of slender prismatic structures using combined drag and lift coefficien
aerodynamic force representation. This restricts practical applications of the approach from a
spectrum of structures such as roofs of stadium and building, of which no representative 
section can be taken for galloping analysis. 

This study extends the previous galloping analyses to the multiple-degree-of-freedom (M
roof structures. Structural roofs are typically more vulnerable to the vertical wind responses than the
horizontal wind responses. This study is, therefore, focused on the galloping analysis of roofs
vertical direction. Instead of using the drag and lift coefficients and/or their combined coefficie
traditional galloping analysis, this study uses wind pressure shape coefficients for wind 
representation on each and every different orientation roof, enabling the galloping analy
multiple-orientation roof structures. The influences of nonlinear aerodynamic forces are exami
the study. An energy-based equivalent technique, together with the modal analysis, is ado
solve the nonlinear MDOF vibration equations. In addition, various experimental results obtain
recent pertinent studies (Linder 1992, Okajima 1993, Kushioka et al. 1996, and Sohankar et al.
1997) are also used in the study for comprehensive understanding of galloping of MDOF stru
in general and roofs in particular.

2. Governing equations for galloping of an MDOF system

Fig. 1 shows a multiple-degree-of-freedom (MDOF) structural system with multiple-orienta
roofs subject to an incident wind flow with velocity vr, while Fig. 2 illustrates the i- th sub-area of a

Fig. 1 Schematic diagram of a roof structure under wind loads

Fig. 2 Lift and drag forces on the i -th section of prismatic structure
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roof under the wind flow. The wind flow has an attack angle α with the x-direction. Wind flow
generates wind forces, which are normal to each and every structural plane such as Fj ( j =A, B and
1,2,3,4) in Fig. 1. Therefore, the wind forces on structural vertical walls or columns (e.g., FA and
FB in the x-direction in Fig. 1) do not attribute force components in the z-direction. The governing
equations of the roofs in the z-direction are

(1)

where [M], [C] and [K] are respectively the mass, damping and stiffness matrices of the stru
{ d} is the displacement vector in the z-direction, {F} is the wind force vector and its i -th element
can be found as

(2)

in which ρ is the mass density of air (t /m3), vi is the wind velocity at the i -th mass, m is the
number of windward area, Ak is the k-th windward area, µsk is the wind pressure shape coefficien
(the notation is generally used in China including Chinese Loading Code), γk is the angle between
normal direction for the k-th area and the z-direction.

For prismatic structures with a regular cross-section (e.g., see Fig. 2), Fi in Eq. (2) can be
alternatively expressed as

(3)

where Bi and Li are respectively the windward cross-section width and length of the struc
µDLi (α) is the combined coefficient for aerodynamic force representation that can be found in 
of drag coefficient µD(α) and lift coefficient µL(α) as follows

(4)

It can be shown that Eq. (4) can also be represented in terms of the wind pressure
coefficients.

However, since the attack angle changes as the orientation of each roof or i -th element varies, it
is inconvenient using drag coefficient µD(α) and lift coefficient µL(α) (or their combined coefficient
µDL(α)) to analyze the galloping of MDOF structures with irregular cross-sections such as roo
comparison with the use of the wind pressure shape coefficient µs. Accordingly, the traditional
approach, i.e., galloping analysis of a regular cross-section of slender structures with the use
coefficient for wind lift force representation (see Simiu and Scanlan 1995), cannot simply an
conveniently be extended to the problem under investigation.

Wind attack angle α is very small in comparison with unit. Therefore µs(α) (or µDL(α)) can be
expanded as a Taylor series as follows

(5a)

M[ ] d
··{ } C[ ] d

·{ } K[ ] d{ }+ + F{ }=

Fi
1
2
---ρvi

2 Ak

k 1=

m

∑ µsk α( )cosγk=

Fi
1
2
---ρvi

2AiµDLi α( ) Ai BiLi=,=

µDLi α( ) µDi α( )tan α( ) µLi α( )+[ ]sec α( )–=

µs α( ) µs 0( ) µ ′s 0( )α 1
2!
-----µ ″s 0( )α2 …+ + +=
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2

 as
where the prime denotes the derivative of the function µs(α) with respect to α. In addition, the
following approximation is also valid for small α for the i -th element (Glauert 1919, Hartog 193
& 1956, and Simiu and Cook 1992, etc.).

(5b)

where  and vi are the velocity components respectively in the z- and x-directions, as shown in
Fig. 2.

With the use of modal analysis, the displacement vector has the following representation 

(6)

where qj ( t) is the j -th generalized coordinate (or modal participation coefficient), and φij is the i -th
element of the j -th vibration mode φ j(z). With the aid of Eqs. (4)-(6), Eq. (1) can be decoupled
the following equations

(7)

where

(8)

(9)

(10)

(11a)

or

(11b)

where use has been made of  and , in which v0 is the basic wind

speed at 10 m high, µz is the coefficient relating the wind pressures at heights 10 m and zi.

When linear terms of α or  are considered only in Eqs. (5)-(11), i.e., l=0 and 1 in Eqs. (9)-(11),
Eq. (7) becomes

α αi( )tan =
d
·
i

vi

----≈

d
·
i

di t( ) φi j qj t( )
j

∑=

Mj
* q··j t( ) Cj

* q· j t( ) Kj
* qj t( )+ + Fj

* α( )=

χ j
* φ j{ }T

= χ[ ] φ j{ } ; χ M C K, ,=

Fj
* α( ) CjFl

*

l
∑ 1

v0
l 1–

--------- q· j( ) l⋅ 1
2
---

l
∑ ρv0CjFl

* 1
v0

l 1–
--------- q· j( ) l⋅= =

CjFl
* φ j{ } U l( ) 0( )[ ]

φ j

µz

----------- 
 

l

 
 
 

l !⁄=

Ui
l( ) 0( ) µz zi( ) AK

k 1=

m

∑ cos γk

d
lµsk α 0=( )

dαl
-------------------------------=

Ui
l( ) 0( ) µz zi( )Ai

*
dlµDL α 0=( )

dαl
--------------------------------= Ai

* Bi= Li,

d
·
i φ i j q· j t( )

j
∑= vi v0 µz z( )=

q·
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When the damping coefficient in Eq. (12) becomes zero or negative, aerodynamic inst
occurs, which results in the critical wind speed at 10 m high for aerodynamic instability as

(13)

It can be shown that Eq. (13) will be degenerated to Kolousek’s result (1984) if a SDOF sys
used with consideration of structural damping, to the Clauert-Hartog criterion (Simiu and Sc
1995) if damping is not taken into account, and to Zhang’s outcome (1998) if a tower struct
under concern.

3. Derivation of critical wind speed

Since  (or α) is very small, the third- and higher-order nonlinear terms of  in Eq. (9) ca
neglected without loss of significant influences on galloping analysis. Consequently, Eq
becomes the following explicit nonlinear equation

(14)

To find the critical wind speed voj,cri with considering the second-order nonlinear term  in
Eq. (14), a convenient and efficient way is to solve the following equivalent equation

(15)

in which equivalent damping coefficient  can be found with the use of an energy-b
equivalent criterion, i.e., energy equally dissipated by the damping terms between equivale
original systems (i.e., Eqs. (14) and (15)) in each full period. The accuracy of the pro
equivalent approach was verified by Zhang et al. (1994) with the use of a Duffing’s Oscillator
Applying this equivalent criterion into Eqs. (14) and (15), one can have the following equation

(16)

which yields

(17)

Mj
* q··j t( ) Cj

* CjF1
*–( )q· j t( ) Kj

* qj t( )+ + Fj
* 0( )=

Cj
* φ j{ }T

C[ ] φ j{ } 2ζ jω jMj
*= =

CjF1
* 1

2
---ρv0 CjF1

*⋅ 1
2
---ρv0 φ j{ }T U 0( )[ ]

φ j

µz

-----------
 
 
 

⋅= =

v0j c ri, 4ζ jω jMj
* ρCjF1

*⁄=

q· j q· j

Mj
* q··j t( ) Cj

* q· j t( ) CjF1
* q· j t( ) CjF2

* 1
v0

---- 
  q· j

2 t( ) Kj
* qj t( ) Fj

* 0( )=+––+

CjF2
* q· i

2

Mj
* q··j t( ) Cj

* q· j t( ) CjF 1
* Ce jF2,

* 1
v0

---- 
 + 

  q· j t( ) Kj
* qj t( ) Fj

* 0( )=+–+

Ce jF2,
*

CjF2
*

0

2π ωj⁄
∫ q· j q·j q·jdt⋅ Ce jF2,

* q· j0

2π ω j⁄
∫ q· jdt⋅=

Ce jF2,
* 8CjF2

* qjmω j 3π⁄=

Ce jF2,
* 8CjF2

* qjmω j 3π⁄=
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where qjm is the maximum value of qj . The critical wind speed for galloping can then be fou
from Eq. (15) as

(18a)

i.e.,

(18b)

which results in

(18c)

or

(18d)

Eq. (18d) gives an explicit expression for the critical basic wind speed in the j-th mode at height
10 m.

4. Estimation of nonlinear aerodynamic force influences

To quantify the influences of nonlinear terms of aerodynamic forces in galloping analys
MDOF structures, some experimental results for µDL are selected from Linder (1992), Kajima
(1993), Kushioka et al. (1996), and Sohankar et al. (1997), which are reproduced in Fig. 3. No
there is not enough experimental data for µs available for the study.

In the traditional galloping analysis, only the curves with positive slopes at α =0 (i.e., curves 1, 2,
3, 4, 6, 7, and 8) will increase the critical wind speed of a structure with cross-sections at alm
same orientation such as towers and bridges.

For a structure such as multiple-orientation roof structure, Eq. (18), together with Eqs. (9
and (17), indicates that the critical wind speed depends on the contributions from each and
sub-area of the structure in which both positive and negative slopes of µs or µDL will have
influences in the galloping analysis.

To clearly show the quantitative influences of nonlinear aerodynamic forces in the critical win
speed for galloping phenomena, the following parabolic curves for µ(α) (µs(α) or µDL(α)) are
assumed on the basis of both the above experimental data and pertinent coefficient character

(19)

Cj
* CjF 1

*– Ce jF2,
* 1

v0

---- 
 – 0=

2ζjω jMj
* 1

2
---ρv0CjF 1

*–
1
2
---ρv0Ce jF2,

* 1
v0

---- 
 – 0=

v0j c ri, 4ζjω jMj
* ρ CjF 1

* Ce jF2,
* 1

v0j cr i,
--------------- 

 + 
 ⁄=

v0j c ri,
4ζjω jMj

*

ρCjF1
*

--------------------- Ce jF2,
*

CjF 1
*

--------------–=

µ α( ) aα2 bα c+ +=

µ′ α( ) 2aα b µ, ″ α( )+ 2a= =

a µm c–( )– αm
2 b,⁄ 2aαm–==
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Substituting Eq. (19) into Eqs. (10) and (17) yields

(20a)

(20b)

where αm and yim are respectively the maximum values of α and d. By neglecting the influence of
different vibration modes, the nonlinear influence of the aerodynamic forces on v0j ,cri can be
quantified by the following ratio η from (18a),

(21a)

CjF1
* φj{ }T

2aαmA–[ ] φ j{ }=

Ce jF2,
* φ j{ }T µzA 8ayjmω j⋅

3π
-----------------------------------

φ j

µz

--------- 
  2

 
 
 

=

η Ce jF2,
* CjF 1

*⁄ 4yjmω j– 3παmv0j cr i,⁄= =

Fig. 3 Experimental results of curves for µDL-α from Linder (1992), Okajima (1993), Kushioka et al. (1996),
and Sohankar et al. (1997)
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(21b)

Eq. (21a) or (21b) clearly shows that  is opposite to  in sign, resulting in a la
critical wind speed via Eq. (18) by considering the nonlinear terms of aerodynamic forces th
linear terms only. Accordingly, the structure is safer in light of nonlinear influences, whic
consistent with those by Novak (1969 and 1972). For illustration, a structure of H=100 m is used as
an example, in which ωj =6 rad/sec. Assume that the maximum value of α is αm=0.145. Eq. (18b)
then generates the critical basic wind speed v0.cri = 45 m/s which leads to yim = 0.3 m. With these data,
Eq. (21a) gives the nonlinear influence index η as -12%.

In addition, Eqs. (18) and (21) also reveal that the larger the maximum deformation yjm and
natural frequency ωj of the structure are, the larger the critical wind speed is. Similarly, the la
the value of αm is, the smaller the critical wind speed is.

5. Applications

The proposed galloping analysis was applied to evaluate the critical wind speed of gallopi
the roofs of new Shanghai stadium, which was built in October of 1997 with 80,000 seat
consisting of 32 radial main structures and many secondary structures. As shown in Fig. 
shape of the whole roof is approximately an elliptical ring with the longer axes being 288.4 m
213 m and the shorter axes being 274.4 m and 50 m for the outer and inner ellipse respective
Each sub-roof has different orientation, making difficult, if not impossible, traditional gallop
analysis in comparison with the proposed galloping analysis. 

The proposed galloping analysis is used in the roof and results are briefly reported here. A
element (FE) model was established for the stadium. Without considering wind direction e
peak displacements are found to be quite consistent between the data obtained from the FE
and those from pertinent wind-tunnel tests. For instance, the maximum displacement from

η ρCe jF2,
*

4ζjω jMj
*

-----------------------–=

Ce jF2,
* CjF1

*

Fig. 4 Side view of new Shanghai stadium, China
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model approach is 0.176 m, while the corresponding testing data is 0.172 m. The peak stres
relatively large difference between the model and test. Specifically, the peak stress from the 
is 0.873 N/m2, while the corresponding test data is 1.193 N/m2. The difference of 26.8% is,
however, still acceptable from engineering viewpoint. Under the design wind speed 27.44/s,
neither the FE model with the use of the proposed galloping approach (i.e., use of Eqs. (1
(13)) nor the wind-tunnel test finds that the galloping will occur. As a matter of fact, immediately
after the construction of Shanghai Stadium in August of 1997, a strong typhoon numbered
(wind speed 40 m/s in typhoon center, exceeding the design wind speed) hit Shanghai n
regions on August 18, 1997. Immediately after that incident, the new Shanghai stadium
examined and no any galloping-related damage was found, implying that the analysis and design
based on the proposed method is acceptable.

The proposed galloping analysis was also applied to assess the critical wind speed for the 
a tall building in Suzhou, China shown in Fig. 5, which is under construction now. For
application, the mean value (i.e., 0.7) of derivatives of ten curves at α(0) in Fig. 3 is used. An FE
model was established. The first ten modes were considered in the galloping analysis, in wh
fifth to ninth modes are dominant in dynamic responses. Our analysis shows that the lowest itical
wind speed is v05.cri = 40.47 m/s, larger than the design wind speed 28.28 m/s. This conclude
analysis that galloping of this roof will not occur.

6. Conclusions

This study extends the traditional SDOF galloping analysis of slender prismatic structures 
MDOF analysis of galloping for roof structures with multiple orientations. In doing so, nonlin
aerodynamic wind forces are considered and an energy-based equivalence technique is use

Fig. 5 Roof of a tall building in Suzhou City, Jiangsu Province, China
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derivation of explicit expression for the critical wind speed of roof galloping. This study conf
that the consideration of the nonlinear aerodynamic forces increases the critical wind speed and th
enhances the aerodynamic stability of structures.

The presented galloping analysis enables an unprecedented understanding of the aero
instability of a broad spectrum of civil structures including the roofs of stadium and building. I
also be conveniently used to aid in efficient design of various structures to resist gall
phenomena.

Further applications of the proposed approach to different structures, together with num
validation of this study, have been performed and will be reported in the near future.
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