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Modeling of rain-wind induced vibrations
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Abstract. Rain-wind induced vibrations of cables are a challenging problem in the design of cable-
stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and
rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is
not available. This paper presents a mathematical model describing rain-wind induced vibrations as
movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the
movement of the water rivulet on the cable surface can be described by the model including all geometrical
and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is
capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and
cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental
study is currently performed to calibrate the parameters of the model.
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1. Introduction

In the last decade strong cable vibrations have been observed at cable-stayed bridges (Hikami &
Shiraishi 1988, Main & Jones 1998t al). In Germany hangers of an arch bridge showed cracks
caused by rain-wind induced vibrations only a few months after erection (Liesse 1996). The severe
low-frequency vibrations only occur in conjunction with the simultaneous action of wind and rain.
The fundamental mechanisms have been studied in several field measurements and wind tunnel tes
(Verwiebe 1997, Matsumoto 1998 al). Several researchers have examined the influence of control
parameters such as the wind and cable properties or the intensity of rain, bustthg models fail
to describe the physics of the problem accurately. In this paper a model is presented that is able tc
explain the growth mechanism of the vibrations, including the behaviour of the upper rivulet.

In field observations and wind tunnel tests several typical phenomena of rain-wind induced
vibrations of low damped, inclined cables have been studied. The vibrations occur only if it rains,
whereas the rain intensity is of less importance to excitation. Oscillations have been monitored for
drizzle as well as faint to heavy rain. The vibrations occur only in a limited but wide range of
relatively low wind velocities. The cables oscillate in one of their first three eigenmodes with
amplitudes that can reach a multiple of the cable diameter. The largest vibrations has been observe
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Fig. 1 Rivulets

to occur in cross-wind direction. The vibrations are reduced, if cable damping is increased, e.g. by
external dampers.

Possible excitation mechanisms of the rain-wind induced vibrations have been investigated by in-
situ measurements and by wind tunnels tests. The restriction of the vibrations to a limited velocity
range suggests resonance phenomena like vortex shedding. But the large amplitude and the
independence of the eigenfrequencies are more characteristic of movement-induced vibrations like
galloping or flutter. Vibrations induced by gusts or parametric excitation are insignificant for this
problem.

The growth mechanism of the vibrations is closely linked to the development of water rivulets on
the cable surface. The rain moistens the cable surface and the rain water flows down the cable ir
rivulets. One rivulet forms by gravity on the bottom side of the cable. This lower rivulet is slightly
moved leeward by the wind force. Besides Itheer rivulet, a second rivulet at the top of the cable
has been observed in connection with large cross-wind vibrations. This upper rivulet is mainly held
in position by wind forces. It is pitched in a small angle to the wind (Bosdogianni & Olivari 1996).
Both rivulets oscillate at the frequency of the cable vibration with an amplitude w®2€. The
movements of the rivulets lead to an altiera of the flow cross section. This change in cross
section of the body in cross-flow alters the fluid forces in such a way that energy is transferred from
the fluid into the structure and the cable starts to oscillate.

Several models to simulathis type of vibration wre proposed (Yamaguchi 1990, Geurts & van
Staalduinen 1999, Ruscheweyh 1999al). Matsumoto describes the vibration as a mixture of
vortex- and movement-induced vibration. He discovered a low-frequency shedding of enhanced
vortices at inclined and yawed cables and an axial flow behind the cable (Matsumoto 2000). This
high-speed vortex shedding might influence the excitation mechanism of rain-wind induced vibrations.

Most models are derived from the galloping theory. The vibrations are assumed to be movement
induced. The position of the rivulet is given in advance and the aerodynaunes fre expressed as
a function of the rivulet position and the cable velocity. The modified galloping theory as well as
the empirical approach using energy considerations fail to describe the limited velocity range and
the rivulet behaviour. Yamaguchi showed that only a model that accounts for both, the cable
vibration and the movements of the rivulets, is capable of predicting the system behaviour adequately
(Yamaguchi 1990). He modelled the vibrations similar to two-degree-of-freedom galloping using
quasi-steady strip theory. In his model the movement of the rivulet is aerodynamically coupled to
the cable vibration. The aerodynamic force acting on the cable are functions of the rivulétia pos
and the velocity of the cable and the rivulet.
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The presented model now includes three degrees of freedom, all geometrical and physical
nonlinearities of the coupled system, and also accounts for the frictional resistance between rivulet
and cable surface. All forces caused by inertia, damping, stiffness, wind, friction, adhesion and
inertial coupling are considered. The vibrations are assumed to be merely movement induced.
Effects of additional excitation mechanisms like vortex shedding, gushramgtric excitation are
omitted, but they might be relevant for the necessaltalirdisturbance of the system. Only one
rivulet is considered.

2. Model

The system is modelled as a coupled two-mass oscillator with three degrees of freedom (Fig. 2).
The cable can move translationally in cross-wind directipidi¢ection) and in wind directionz{
direction) around its static equilibrium position. The cable has #maaterd and the mase.. It is
supported by nonlinear springs and is viscously damped. Since large amplitudes are expected, the
nonlinear behaviour of the cable is considered by the nonlinear spring stiffness (Tonis 1989). The
rivulet moves tangentially on the cable surface, its position is given by the rotationdanje
behaviour can be compared to a forced pendulum swinging aroundbtiregneenter of the cable’s
cross section. The frictional resistance between rivulet and surface is simulated by a viscous damper
The angleB depends on the inclination angeof the cable and the wind direction given by the
yaw angley.

_ rsinysind o _
B = arctang— —— cosy O ardan( tanysind) 1)

The aerodynamic forceBy, F, and My are assumed to be quasi-steady and independent of the
Reynolds number. The following wind forces result from Fig. 3:

Fy = -5 [ 0UZ, CIC (a)cos(ay) + Co(a)sin(ay)]
F, = p £ [ 0U2, (- Cu(a)sin(a,) + Co(a) cos(a,)] 2)
M = ptd (U2, [Cy(a)

@1
gcosd

Fig. 2 Model
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Fig. 3 Definitions

r is the distance between the centers of the two massep #rel air density. The aerodynamic
coefficients C,, Cp and Cu depend on the angle of attack and are approximated by polynomial
functions.

The effective angle of attack is a function of the momentary position of the rivulet and the
velocities of the two masses (Fig. 3). The relative wind spégds assumed to be equal to the
natural wind speetl, since the wind velocity is much higher than velocities of the two masses.

a=—¢+a, = —¢+tanns y+r¢sing DD_¢+L+r¢sm¢ 3)
U — 2+ r¢cospl] Uel U

For the three degrees of freedom - the translations of the cable and the rotation of the rivulet - the
equations of motion are calculated by Lagrangian functions. This results in three coupled differential
equations of second order, where additional coupling terms amthe®ritiesare included in the
aerodynamic forces on the right-hand side. The first two equations describing the force equilibrium
for the two translational degrees of freedom of the cable include the structural nonlinearities and
coupling terms with the rivulet. The equivalence of the rivulet’s behaviour to a pendulum is seen in
the third equation. The first three terms are equal to the differential equation of a pendulum, the two
following terms express the coupling with the cable movement. Calculations showed that the
nonlinear response of the model is mainly caused by the nonlinearities and coupling terms of the
aerodynamic forces on the right hand sides and the coupling between rivulet and cable seen in the
third equation of Eq. (4). Nevertheless the structural nonlinearities are taken into account, because
of the large amplitudes expected.

(ms+ mg)y +dyy+ky +Kk, » y2 +Ky 3 y3 +mgrsing Op + mgr cosp Dpz = F
(Ms+ mg)Z+d,z+kz+k, , Z + Ky 3 Z’~mgr cosp 0 + marsing 0p° = F, (4)
Mer°$ + d,@ — Merg cosdsin(¢ + B) + mersing [ —mer cosp [F = M,

The system is analysed in phase space. Therefore, the differential equations amntdmsto a
system of equations of first order leading to a coupled system of six differential equations.
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% = f(x, A) X=(y, 6,2 % $,2) (5)
A=(U.d,mg ..)

This coupled system of nonlinear equations is analysed by stability and bifurcation theoryt{#tuzne
1998).

3. Parameters

An example shall illustrate the features of the system. For the cable typical values for cables at
cable-stayed bridges are chosen. The coefficients of the nonlinear terms are evaluated according fti
(Tonis 1989). The rivulet's parameters and the aerodynamic coefficients shown in Fig. 4 are taken
from literature (Yamaguchi 1990, Verwiebe 1997, Gu & Lu 2001) or have been estimated based on
first experimental results. Their valuewe currently determined more adequately by several
experiments at the Institute for Steel Structures. The aerodynamic coefficientsaaftegu¢chi are
taken as default values. As will be shown, even large variations in the parameters do not change the
qualitative behaviour of the system.

Cable : Rivulet :

diameter d = 0.1m height h = 0.0l m
mass g = 50 kg/m mass = 0.2 kg/m
frequency §=f, = 1Hz damping g= 0.05 Nms
dampingéy = &,= 2% of crit.

inclination d = 45 Wind :

ky,3= Ky 3= 0,00115 N/m | yaw angley= 0°

ky2= 0,0077 N/m anglep = o

kZ’2= 0 N/rn2

-90 75 e - 1
angle of attack o [°] g "

—0—CL-Yamaguchi —®—CL-Gu&Lu -« -- CD-Yamaguchi
--&--CD-Gu&LU —o— CM-Yamaguchi —e—CM-Gu&LU

4

Fig. 4 Parameters and aerodynamic coefficients
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The wind velocity is chosen as independent parameter while keeping the other parameters
constant. The program CONTENT of Yu. A. Kuznetsov and V.V. Levitin was used for the numerical
analysis of the given dynamical system.

4. Stability analysis
4.1. Stationary solutions / Static equilibrium positions
First the stationary points are calculated by
0=f(xs, A) (6)

The system exhibits multiple solutions, as it is typical for nonlinear problems. Two and/or four
static equilibrium positions are possible depending on the wind velocity. The stationary solutions for
the rotational degree of freedom versus the wind velocity are shown in Fig. 5. For velocities less
than 8 m/s two equilibria of the rivulet are possible: a lower position of equilibrium A (stable) and
an upper position B (unstable). At a velocity of approximately 8 m/s a saddle-point bifurcation
occurs. There are two more stationary solutions for velocities higher than 8 m/s (branches C and D).

4.2. Linear stability of the stationary solutions

Subsequently, the stability of these stationary points is determined by the linear stability theory
according to Lyapunov. The eigenvalues of the Jacobian ndadnig evaluated.

X=J(xg X+ 00 +...  J= g—; 7)
x=x,

For a wind velocity less than 8 m/s, two stationary solutions eXistability analysis shows that
solutionA (lower position of rivulet) is always a stable focus. SolubBois an unstable saddle point.
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Fig. 5 Stationary points
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Fig. 6 Maximum realpart of eigenvalues

Like a pendulum, the rivulet always falls into the stable lower posftioRor wind speeds of up to
8 m/s no excitation of the system occurs.

For velocities higher than 8 m/s two more stationary points exist. Stationary(pisirgn unstable
saddle point like poinB. SolutionD is a focal point like solutiorA. SolutionsB and C are
unstable, the rivulet is driven away from these positions to a stable point of equilibrium. The only
possible solution for a stable upper rivulet is then solufdoror velocities higher than 14.8 m/s,
equilibrium D is stable (negative real part) akown in Fig. 6. If the rivulet is initially foned
between the unstable solutioBsand C, the rivulet will move to the stable equilibrium positibn
The branchD in Fig. 5 shows that an upper rivulet can form at an apgié 30°- 60° depending on
the wind velocity. The angle decreases with indrepsind speed as wind tunnel tests have
demonstrated.

Below only the stability of solutio® is examined. The maximum real part of the eigenvalues of
solution D is shown as a function of wind speed in Fig. 6. Changes of stabiliballed Hopf
bifurcations (Re4)=0), occur atUy; andUy,. In the region between these two velocities positive
real parts exist, the solution is unstable. Thus, vibrations occur in this velocity range-ftdrB B1/s.

4.3. Periodic solutions and nonlinear stability

The stationary solution betwed#y; and Uy, is unstable. Now it is examined, if there are any
periodic solutions with stable limit cycles in this velocity range. Therefore, also nonlinear terms in
the differential equations have to be considered. Periodic solutjome calculated by a shooting
method evaluating the monodromy matkixas a by-product (Seydel 1994). Periodic solutions with
stable limit cycles exist, if the absolute value of the eigenvalues of the monodromy matrix, so-called
charactestic multipliers,are smaller than and/or equal to 1.

M(xp, A) = &(T) (1) = I(x, A) 0O(1) Xp(t) = %p(t+T) 8)
®(0) = E

whereT is the periodE the identity matrix andp the fundamental solution matrix.

The nonlinear stability analysis yields one and/oed¢Himit cycles depending on wind speed. One
stable limit cycle exists in the ranges Wf 8-10.7 m/s and 12.7-14.8 m/s. Between 10.7-12.7 m/s
three limit cycles existtwo are stable and one is unstable. In Fig. 7 the amplitude of the limit cycle
vibrationsare shown for the translational degrees of freedom. The amplitudes increase nonlinearly
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Fig. 7 Amplitude of the translational vibrations

with wind speed. In the ranges with one limit cycle the vibrations increase from a small initial
disturbance until they reach the limit cycle amplitude. In the range from 8-10.7 m/s the system
oscillates mainly inz-direction, whereas the vibration occurs in cross-wind direction for wind
speeds of 12.7-14.8 m/s. These areas of soft excitation are separated by a region of possible har
excitation. Depending on the initial conditions (wind speed c¢sessed or decreased), one of the

two stable limit cycle oscillations occurs. Jump phenomena take place at the borders of this middle
range. Thus, if the wind speed is constantly increased, the system starts to vibrate in mostly in-wind
direction at 8 m/s. The direction of the oscillations changes abruptly at a wind speed of about
12.7 m/s. The system then vibrates mostly in cross-winectibn until 14.8 m/s is reached. The
same phenomenon was observed in wind tunnel tests (Verwiebe 1997).

i I ¢ I I 1 L I L I
0 50 100 150 200 250 300 350 400 450 500 550 600
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L 1 L : L L L L L
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Fig. 8 Transient response dt=9 m/s
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The transient response of the cable translation and the rivulet rotation is shown in Fig. 8 for a
wind speed of 9 m/s. Depending on the initial disturbance the time needed to reach the limit cycle
oscillations exceeds more than 5 minutes. The rivulet rotatés fimal state with an amplitude of
approximately 2%about its stationary angle of about’ 45

5. Parametric study

The exact values of some parameters - especially the rivulet parameters like mass, shape an
friction - are difficult to obtain and must be approximated. Some parameters are now varied to
examine their effects on the system’s behaviour. One parameter of particular interest is the damping
of the cable. As observed in the field, increasing the cable damping, e.g. by external dampers, stop:
the rain-wind induced vibrations. Thus, the parameter effects are illustrated ilitystibgrams
plotting wind speed versus cable damping. For the stationary soldtidime stability diagram with
all bifurcations is shown in Fig. 9. The saddle-point bifurcation of the stationary solution, Hopf
bifurcations according to the linear stability theory, as well as the bifurcations according to the
nonlinear theory are shown. The stipidiagram is divided into three parts:

— region, where no stationary soluti@nexists
— stable region without excitation
— unstable region with periodic vibrations

For a degree of damping of 0.2%, the results of the sample calcudatiorbtained. If the wind
speed is lower than 8 m/s, no stationary solufibrexists, an upper rivulet cannot develop. This
critical velocity is independent of cable damping (shaded region). At high wind speeds, an upper
rivulet exists, but the system is stable. No excitation of vibrations occurs.

The unstable region, where periodic vibrations occur, is cross-hatched. As observed in situ and in
experiments, the oscillations only occur in a limited range of wind speeds. The unstable velocity
span decreases with increasing cable damping. For cable damping higher than a critical value
(~0.7%) no excitation occurs any more. The model shows that rain-wind induced vibrations can be

0,8%

Stability theory
— linear
nonlinear

oF 0,6%

g

g_ no stable

i 0,4% stationary

© solution D

- unstable — Hopf

© ]

o o : Naimark-
0% : Sacker
0,0%

0 5 10 15 20

wind velocity [m/s]
Fig. 9 Stability diagram
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Fig. 11 Variation of rivulet mass, aerodynamic coefficients and DOF

stopped by increasing cable damping beyond that value, which is again in agreement with
observations in situ. For low cable damping, tméiions of higher order can take place. Quasi-
periodic vibrations can occur after secondary Hopf bifurcationsn{él&Sacker) or subharmonic
vibrations after period doubling. Chaotic vibrations like the observed beat vibratiengossible

after a sequence of these bifurcations at low cable damping.

Variations in different parameters are shown in Figs. 10 and 11. In thed#ysthhgrams only
the curves according to linear theory are plotted. The effect of the rivulet damping on the cable
surface is illustrated in the first dign of Fig. 10. For 3 different damping values the unstable
regions are drawn showing that the qualitative behaviour of the system remains unchanged even a
large variations. The onset velocity is the same for all three values. The unstable velocity region
increases and the critical cable damping decreases with increasing rivulet damping. This influence
of the rivulet damping might explain the dependence of the vibrations on the roughness/pollution of
the cable surface observed in (Flamand 1994). The onset velocity is independent of the cable’s
eigenfrequency as shown in the second drawing.

The development of an upper rivulet formed by rain drops and the subsequent onset of vibrations
can be explained by Fig. 11, where the influence of the rivulet mass is shown in the first diagram.
Lighter rivulets have lower onset wind speed and smaller critical damping values meaning that
lighter rivulets are stable at wind speeds, whereas heavy rivulets are unstable. Assuming the light
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rivulet are rain drops on the cable surface, light rain drops that are initially between the unstable
stationary pointB and C are pushed into the stable positbn(Fig. 5), forming a heavier upper
rivulet. This rivulet leads then to the onset of cable vibrations.

Particularly crucial input parameters are the aerodynamic coefficients. Now the systeity sabil
examined using aerodynamic coefficients from (Gu & Lu 2001) and compared with the former
results obtained on the basis of the coefficients from Yamaguchi. The general profile of the
aerodynamic coefficients is the same for both tests, even if the results from the two tests deviate in
the aerodynamic coefficients of the momentumcdoon the rivulet (Fig. 4). Gu & Lu used smaller
artificial rivulets (h=6 mm) than Yamaguchi, therefore the rivulet mass is now assumed to be 0.08 kg/m.
To cause vibrations with the new coefficients required a yaw gnigiger than & A yaw angle of
45’ was used here. Fig. 11 shows that even large deviations in the aerodynamic coefficients do no
change the qualitative behaviour of the system. This fact can be explained by the same qualitative
results from the two tests. In the specific range of angle of attack, where excitations occurs, all the
aerodynamic coefficients exhibit steep slopes, especially in the lift force. This characteristic of the
aerodynamic coefficients play the major part in the excitation mechanism.

In the second graph of Fig. 11 also the influence of the number of the degrees of freedom is
shown. The authors showed in (Peil & Nahrath 2001) that already a model with two degrees of
freedom, namely the cable translation in cross-wind direction and the rotation of the rivulet, is able
to describe the phenomena of rain-wind induced vibrations. The more advanced model with an
additional translational degree of freedom in wind direction exhibits a larger unstable region, but the
same onset velocity.

6. Conclusions

The presented model - a coupled two-mass oscillator with three degrees of freedom - is able to
simulate the phenomena of rain-wind induced vibrations. Both, the vibrations of the cable and the
movement of the water rivulet on the cable surface can be described by the nonlinear model as wel
as the vibration’s dependence on wind speed, cable damping and eigenfrequency. The results agre
well with field data and wind tunnel tests. The model is robust, even large parameter variations do
not change the qualitative behaviour of the system. The excitation mechanism of rain-wind induced
vibration is closely linked to the coupled neowents of the cable and the rivulet. The vibrations can
be described as flutter of two coupled masses: the oscillator cable and the attached pendulur
rivulet.

Several experiments are currently conducted to calibrate the input parameters of the model. The
parameters of the rivulelike its shape, mass, and friction on the cableaserfare determined as
well as the aerodynamic coefficients for a cylinder with two rivulets. The model will be extended to
simulate two rivulets.
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