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Abstract. Rain-wind induced vibrations of cables are a challenging problem in the design of c
stayed bridges. The precise excitation mechanism of the complex interaction between structure, w
rain is still unknown. A theoretical model that is able to accurately simulate the observed phenom
not available. This paper presents a mathematical model describing rain-wind induced vibratio
movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable a
movement of the water rivulet on the cable surface can be described by the model including all geom
and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the m
capable of simulating the basic phenomena of the vibrations, such as dependence of wind veloc
cable damping. The results agree well with field data and wind tunnel tests. An extensive experi
study is currently performed to calibrate the parameters of the model.

Key words: rain-wind induced vibration; cable-stayed bridges; guyed mast; cable vibrations; non
dynamics; stability and bifurcation theory

1. Introduction

In the last decade strong cable vibrations have been observed at cable-stayed bridges (Hi
Shiraishi 1988, Main & Jones 1999, et al.). In Germany hangers of an arch bridge showed cra
caused by rain-wind induced vibrations only a few months after erection (Lüesse 1996). The 
low-frequency vibrations only occur in conjunction with the simultaneous action of wind and 
The fundamental mechanisms have been studied in several field measurements and wind tun
(Verwiebe 1997, Matsumoto 1998 et al.). Several researchers have examined the influence of con
parameters such as the wind and cable properties or the intensity of rain, but the existing models fail
to describe the physics of the problem accurately. In this paper a model is presented that is
explain the growth mechanism of the vibrations, including the behaviour of the upper rivulet.

In field observations and wind tunnel tests several typical phenomena of rain-wind ind
vibrations of low damped, inclined cables have been studied. The vibrations occur only if it 
whereas the rain intensity is of less importance to excitation. Oscillations have been monitor
drizzle as well as faint to heavy rain. The vibrations occur only in a limited but wide rang
relatively low wind velocities. The cables oscillate in one of their first three eigenmodes 
amplitudes that can reach a multiple of the cable diameter. The largest vibrations has been o
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to occur in cross-wind direction. The vibrations are reduced, if cable damping is increased, e
external dampers. 

Possible excitation mechanisms of the rain-wind induced vibrations have been investigated
situ measurements and by wind tunnels tests. The restriction of the vibrations to a limited v
range suggests resonance phenomena like vortex shedding. But the large amplitude a
independence of the eigenfrequencies are more characteristic of movement-induced vibratio
galloping or flutter. Vibrations induced by gusts or parametric excitation are insignificant for
problem.

The growth mechanism of the vibrations is closely linked to the development of water rivule
the cable surface. The rain moistens the cable surface and the rain water flows down the c
rivulets. One rivulet forms by gravity on the bottom side of the cable. This lower rivulet is slig
moved leeward by the wind force. Besides the lower rivulet, a second rivulet at the top of the cab
has been observed in connection with large cross-wind vibrations. This upper rivulet is mainl
in position by wind forces. It is pitched in a small angle to the wind (Bosdogianni & Olivari 19
Both rivulets oscillate at the frequency of the cable vibration with an amplitude up to �20o. The
movements of the rivulets lead to an alteration of the flow cross section. This change in cro
section of the body in cross-flow alters the fluid forces in such a way that energy is transferred
the fluid into the structure and the cable starts to oscillate. 

Several models to simulate this type of vibration were proposed (Yamaguchi 1990, Geurts & va
Staalduinen 1999, Ruscheweyh 1999 et al.). Matsumoto describes the vibration as a mixture 
vortex- and movement-induced vibration. He discovered a low-frequency shedding of enh
vortices at inclined and yawed cables and an axial flow behind the cable (Matsumoto 2000
high-speed vortex shedding might influence the excitation mechanism of rain-wind induced vibra

Most models are derived from the galloping theory. The vibrations are assumed to be mov
induced. The position of the rivulet is given in advance and the aerodynamic forces are expressed a
a function of the rivulet position and the cable velocity. The modified galloping theory as we
the empirical approach using energy considerations fail to describe the limited velocity rang
the rivulet behaviour. Yamaguchi showed that only a model that accounts for both, the 
vibration and the movements of the rivulets, is capable of predicting the system behaviour ade
(Yamaguchi 1990). He modelled the vibrations similar to two-degree-of-freedom galloping 
quasi-steady strip theory. In his model the movement of the rivulet is aerodynamically coup
the cable vibration. The aerodynamic force acting on the cable are functions of the rivulet’s poition
and the velocity of the cable and the rivulet.

Fig. 1 Rivulets
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The presented model now includes three degrees of freedom, all geometrical and p
nonlinearities of the coupled system, and also accounts for the frictional resistance between
and cable surface. All forces caused by inertia, damping, stiffness, wind, friction, adhesio
inertial coupling are considered. The vibrations are assumed to be merely movement in
Effects of additional excitation mechanisms like vortex shedding, gust or parametric excitation are
omitted, but they might be relevant for the necessary initial disturbance of the system. Only on
rivulet is considered.

2. Model

The system is modelled as a coupled two-mass oscillator with three degrees of freedom (F
The cable can move translationally in cross-wind direction (y-direction) and in wind direction (z-
direction) around its static equilibrium position. The cable has the diameter d and the mass ms. It is
supported by nonlinear springs and is viscously damped. Since large amplitudes are expec
nonlinear behaviour of the cable is considered by the nonlinear spring stiffness (Tonis 1989
rivulet moves tangentially on the cable surface, its position is given by the rotation angle ϕ . Its
behaviour can be compared to a forced pendulum swinging around the moving center of the cable’s
cross section. The frictional resistance between rivulet and surface is simulated by a viscous d
The angle β depends on the inclination angle δ of the cable and the wind direction given by th
yaw angle γ . 

(1)

The aerodynamic forces Fy, Fz and Mϕ are assumed to be quasi-steady and independent of
Reynolds number. The following wind forces result from Fig. 3:

(2)

β arc
γsin δsin

γcos
----------------------- 

 tan arc γ δsintan( )tan= =

Fy
ρ
2
---– d Urel

2 CL α( )cos αv( ) CD α( ) αv( )sin+[ ]⋅ ⋅ ⋅=

Fz
ρ
2
--- d Urel

2 CL α( ) αv( )sin– CD α( ) αv( )cos+[ ]⋅ ⋅ ⋅=

M
ρ
2
--- d2 Urel

2 CM α( )⋅ ⋅ ⋅=

Fig. 2 Model
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r is the distance between the centers of the two masses and ρ the air density. The aerodynami
coefficients CL, CD and CM depend on the angle of attack and are approximated by polyno
functions.

The effective angle of attack α is a function of the momentary position of the rivulet and t
velocities of the two masses (Fig. 3). The relative wind speed Urel is assumed to be equal to th
natural wind speed U, since the wind velocity is much higher than velocities of the two masses.

(3)

For the three degrees of freedom - the translations of the cable and the rotation of the rivule
equations of motion are calculated by Lagrangian functions. This results in three coupled diffe
equations of second order, where additional coupling terms and nonlinearities are included in the
aerodynamic forces on the right-hand side. The first two equations describing the force equil
for the two translational degrees of freedom of the cable include the structural nonlinearitie
coupling terms with the rivulet. The equivalence of the rivulet’s behaviour to a pendulum is se
the third equation. The first three terms are equal to the differential equation of a pendulum, t
following terms express the coupling with the cable movement. Calculations showed tha
nonlinear response of the model is mainly caused by the nonlinearities and coupling terms
aerodynamic forces on the right hand sides and the coupling between rivulet and cable see
third equation of Eq. (4). Nevertheless the structural nonlinearities are taken into account, b
of the large amplitudes expected.

(4)

The system is analysed in phase space. Therefore, the differential equations are transformed into a
system of equations of first order leading to a coupled system of six differential equations.

α ϕ– αv+ ϕ–
y· rϕ· ϕsin+

U z· rϕ· ϕcos+–
--------------------------------------

 
 
 

tan ϕ–
y·

Urel
---------

r ϕ· ϕsin
Urel

------------------+ +≅+= =

mS mR+( )y·· dyy
· kyy ky 2, y2 ky 3, y3 mRr ϕsin ϕ·· mRr ϕcos ϕ· 2⋅+⋅+ + + + + Fy=

mS mR+( )z·· dzz
· kzz kz 2, z2 kz 3, z3−mRr ϕcos ϕ·· mRr ϕsin ϕ· 2⋅+⋅+ + + + Fz=

mRr 2ϕ·· dϕϕ· mRrg δ ϕ β+( )sincos mRr ϕsin y·· mRr ϕcos z··⋅–⋅+–+ Mϕ=

Fig. 3 Definitions
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This coupled system of nonlinear equations is analysed by stability and bifurcation theory (Kuztsov
1998).

3. Parameters

An example shall illustrate the features of the system. For the cable typical values for cab
cable-stayed bridges are chosen. The coefficients of the nonlinear terms are evaluated acco
(Tonis 1989). The rivulet’s parameters and the aerodynamic coefficients shown in Fig. 4 are
from literature (Yamaguchi 1990, Verwiebe 1997, Gu & Lu 2001) or have been estimated bas
first experimental results. Their values are currently determined more adequately by seve
experiments at the Institute for Steel Structures. The aerodynamic coefficients after Yamaguchi are
taken as default values. As will be shown, even large variations in the parameters do not cha
qualitative behaviour of the system.

x· f= x λλλλ,( ) x y ϕ z y· ϕ· z·, , , , ,( )
T

=

λ U dy mR …, , ,( )=

Cable : Rivulet :

diameter d = 0.1 m height h = 0.01 m
mass mS = 50 kg/m mass mR = 0.2 kg/m
frequency fy = fz = 1 Hz damping dϕ = 0.05 Nms
damping ξy = ξz = 2� of crit.
inclination δ = 45o Wind :
ky,3 = kz,3 = 0,00115 N/m3 yaw angle γ = 0o

ky,2 = 0,0077 N/m2 angle β = 0o

kz,2 = 0 N/m2

Fig. 4 Parameters and aerodynamic coefficients
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The wind velocity is chosen as independent parameter while keeping the other para
constant. The program CONTENT of Yu. A. Kuznetsov and V.V. Levitin was used for the nume
analysis of the given dynamical system.

4. Stability analysis

4.1. Stationary solutions / Static equilibrium positions

First the stationary points are calculated by

0=f ( xS, λ) (6)

The system exhibits multiple solutions, as it is typical for nonlinear problems. Two and/or
static equilibrium positions are possible depending on the wind velocity. The stationary solutio
the rotational degree of freedom versus the wind velocity are shown in Fig. 5. For velocitie
than 8 m/s two equilibria of the rivulet are possible: a lower position of equilibrium A (stable)
an upper position B (unstable). At a velocity of approximately 8 m/s a saddle-point bifurc
occurs. There are two more stationary solutions for velocities higher than 8 m/s (branches C a

4.2. Linear stability of the stationary solutions

Subsequently, the stability of these stationary points is determined by the linear stability 
according to Lyapunov. The eigenvalues of the Jacobian matrix J are evaluated. 

(7)

For a wind velocity less than 8 m/s, two stationary solutions exist. A stability analysis shows that
solution A (lower position of rivulet) is always a stable focus. Solution B is an unstable saddle point

x· J= xS λ,( )x O+ x2( ) …+ J
∂ f
∂x
-----

x xs=

=

Fig. 5 Stationary points
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Like a pendulum, the rivulet always falls into the stable lower position A. For wind speeds of up to
8 m/s no excitation of the system occurs.

For velocities higher than 8 m/s two more stationary points exist. Stationary point C is an unstable
saddle point like point B. Solution D is a focal point like solution A. Solutions B and C are
unstable, the rivulet is driven away from these positions to a stable point of equilibrium. The
possible solution for a stable upper rivulet is then solution D. For velocities higher than 14.8 m/s
equilibrium D is stable (negative real part) as shown in Fig. 6. If the rivulet is initially formed
between the unstable solutions B and C, the rivulet will move to the stable equilibrium position D.
The branch D in Fig. 5 shows that an upper rivulet can form at an angle ϕ of 30o-60o depending on
the wind velocity. The angle decreases with increasing wind speed as wind tunnel tests hav
demonstrated. 

Below only the stability of solution D is examined. The maximum real part of the eigenvalues
solution D is shown as a function of wind speed in Fig. 6. Changes of stability, so-called Hopf
bifurcations (Re(λ)=0), occur at UH1 and UH2. In the region between these two velocities positi
real parts exist, the solution is unstable. Thus, vibrations occur in this velocity range from 8−14.8 m/s. 

4.3. Periodic solutions and nonlinear stability

The stationary solution between UH1 and UH2 is unstable. Now it is examined, if there are an
periodic solutions with stable limit cycles in this velocity range. Therefore, also nonlinear term
the differential equations have to be considered. Periodic solutions xp are calculated by a shooting
method evaluating the monodromy matrix M as a by-product (Seydel 1994). Periodic solutions w
stable limit cycles exist, if the absolute value of the eigenvalues of the monodromy matrix, so-
characteristic multipliers, are smaller than and/or equal to 1. 

(8)

where T is the period, E the identity matrix and Φ the fundamental solution matrix.
The nonlinear stability analysis yields one and/or three limit cycles depending on wind speed. On

stable limit cycle exists in the ranges of U = 8-10.7 m/s and 12.7-14.8 m/s. Between 10.7-12.7 m
three limit cycles exist, two are stable and one is unstable. In Fig. 7 the amplitude of the limit c
vibrations are shown for the translational degrees of freedom. The amplitudes increase nonli

M xp λ,( ) Φ T( )= Φ
·

t( ) J xp λ,( ) Φ t( )⋅=

Φ 0( ) E=
xp t( ) xp t T+( )=

Fig. 6 Maximum realpart of eigenvalues
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with wind speed. In the ranges with one limit cycle the vibrations increase from a small i
disturbance until they reach the limit cycle amplitude. In the range from 8-10.7 m/s the s
oscillates mainly in z-direction, whereas the vibration occurs in cross-wind direction for w
speeds of 12.7-14.8 m/s. These areas of soft excitation are separated by a region of possi
excitation. Depending on the initial conditions (wind speed is increased or decreased), one of th
two stable limit cycle oscillations occurs. Jump phenomena take place at the borders of this 
range. Thus, if the wind speed is constantly increased, the system starts to vibrate in mostly 
direction at 8 m/s. The direction of the oscillations changes abruptly at a wind speed of 
12.7 m/s. The system then vibrates mostly in cross-wind direction until 14.8 m/s is reached. Th
same phenomenon was observed in wind tunnel tests (Verwiebe 1997).

Fig. 7 Amplitude of the translational vibrations

Fig. 8 Transient response at U = 9 m/s
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The transient response of the cable translation and the rivulet rotation is shown in Fig. 8
wind speed of 9 m/s. Depending on the initial disturbance the time needed to reach the limi
oscillations exceeds more than 5 minutes. The rivulet rotates in its final state with an amplitude of
approximately 25o about its stationary angle of about 45o.

5. Parametric study

The exact values of some parameters - especially the rivulet parameters like mass, sha
friction - are difficult to obtain and must be approximated. Some parameters are now var
examine their effects on the system’s behaviour. One parameter of particular interest is the d
of the cable. As observed in the field, increasing the cable damping, e.g. by external damper
the rain-wind induced vibrations. Thus, the parameter effects are illustrated in stability diagrams
plotting wind speed versus cable damping. For the stationary solution D, the stability diagram with
all bifurcations is shown in Fig. 9. The saddle-point bifurcation of the stationary solution, H
bifurcations according to the linear stability theory, as well as the bifurcations according t
nonlinear theory are shown. The stability diagram is divided into three parts:

− region, where no stationary solution D exists
− stable region without excitation
− unstable region with periodic vibrations

For a degree of damping of 0.2%, the results of the sample calculation are obtained. If the wind
speed is lower than 8 m/s, no stationary solution D exists, an upper rivulet cannot develop. Th
critical velocity is independent of cable damping (shaded region). At high wind speeds, an 
rivulet exists, but the system is stable. No excitation of vibrations occurs. 

The unstable region, where periodic vibrations occur, is cross-hatched. As observed in situ 
experiments, the oscillations only occur in a limited range of wind speeds. The unstable ve
span decreases with increasing cable damping. For cable damping higher than a critica
(~0.7%) no excitation occurs any more. The model shows that rain-wind induced vibrations c

Fig. 9 Stability diagram
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stopped by increasing cable damping beyond that value, which is again in agreemen
observations in situ. For low cable damping, bifurcations of higher order can take place. Qua
periodic vibrations can occur after secondary Hopf bifurcations (Naimark-Sacker) or subharmonic
vibrations after period doubling. Chaotic vibrations like the observed beat vibrations are possible
after a sequence of these bifurcations at low cable damping.

Variations in different parameters are shown in Figs. 10 and 11. In these stability diagrams only
the curves according to linear theory are plotted. The effect of the rivulet damping on the 
surface is illustrated in the first diagram of Fig. 10. For 3 different damping values the unsta
regions are drawn showing that the qualitative behaviour of the system remains unchanged 
large variations. The onset velocity is the same for all three values. The unstable velocity 
increases and the critical cable damping decreases with increasing rivulet damping. This inf
of the rivulet damping might explain the dependence of the vibrations on the roughness/pollu
the cable surface observed in (Flamand 1994). The onset velocity is independent of the 
eigenfrequency as shown in the second drawing.

The development of an upper rivulet formed by rain drops and the subsequent onset of vib
can be explained by Fig. 11, where the influence of the rivulet mass is shown in the first dia
Lighter rivulets have lower onset wind speed and smaller critical damping values meanin
lighter rivulets are stable at wind speeds, whereas heavy rivulets are unstable. Assuming th

Fig. 10 Variation of rivulet damping and cable eigenfrequency

Fig. 11 Variation of rivulet mass, aerodynamic coefficients and DOF
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rivulet are rain drops on the cable surface, light rain drops that are initially between the un
stationary points B and C are pushed into the stable position D (Fig. 5), forming a heavier upper
rivulet. This rivulet leads then to the onset of cable vibrations.

Particularly crucial input parameters are the aerodynamic coefficients. Now the system stabity is
examined using aerodynamic coefficients from (Gu & Lu 2001) and compared with the fo
results obtained on the basis of the coefficients from Yamaguchi. The general profile o
aerodynamic coefficients is the same for both tests, even if the results from the two tests de
the aerodynamic coefficients of the momentum force on the rivulet (Fig. 4). Gu & Lu used smalle
artificial rivulets (h=6 mm) than Yamaguchi, therefore the rivulet mass is now assumed to be 0.08 
To cause vibrations with the new coefficients required a yaw angle γ larger than 0o. A yaw angle of
45o was used here. Fig. 11 shows that even large deviations in the aerodynamic coefficients
change the qualitative behaviour of the system. This fact can be explained by the same qu
results from the two tests. In the specific range of angle of attack, where excitations occurs, 
aerodynamic coefficients exhibit steep slopes, especially in the lift force. This characteristic 
aerodynamic coefficients play the major part in the excitation mechanism.

In the second graph of Fig. 11 also the influence of the number of the degrees of freed
shown. The authors showed in (Peil & Nahrath 2001) that already a model with two degre
freedom, namely the cable translation in cross-wind direction and the rotation of the rivulet, i
to describe the phenomena of rain-wind induced vibrations. The more advanced model w
additional translational degree of freedom in wind direction exhibits a larger unstable region, b
same onset velocity.

6. Conclusions

The presented model - a coupled two-mass oscillator with three degrees of freedom - is 
simulate the phenomena of rain-wind induced vibrations. Both, the vibrations of the cable an
movement of the water rivulet on the cable surface can be described by the nonlinear model 
as the vibration’s dependence on wind speed, cable damping and eigenfrequency. The resul
well with field data and wind tunnel tests. The model is robust, even large parameter variatio
not change the qualitative behaviour of the system. The excitation mechanism of rain-wind in
vibration is closely linked to the coupled movements of the cable and the rivulet. The vibrations c
be described as flutter of two coupled masses: the oscillator cable and the attached pe
rivulet.

Several experiments are currently conducted to calibrate the input parameters of the mod
parameters of the rivulet, like its shape, mass, and friction on the cable surface, are determined as
well as the aerodynamic coefficients for a cylinder with two rivulets. The model will be extend
simulate two rivulets.
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