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Abstract. The steady state response of a torsionally coupled system with tuned mass dampers (
to external wind-induced harmonic excitation is presented. The torsionally coupled system is considered 
way eccentric system. The eccentricity considered in the system is accidental eccentricity only. The perfo
of single tuned mass damper (TMD) optimally designed without considering the torsion is investigated 
torsionally coupled system and found that the effectiveness of a single TMD is significantly reduced 
torsion in the system. However, the design of TMD system without considering the torsion is only justifi
torsionally stiff systems. Further, the optimum parameters of a single TMD considering the acci
eccentricity are obtained using numerical searching technique for different values of uncoupled torsi
lateral frequency ratio and aspect ratio of the system. The optimally designed single TMD system is fo
be less effective for torsionally coupled system in comparison to uncoupled system. This is due to the 
a torsionally coupled system has two natural frequencies of vibration, as a result, at least two TMDs are 
which can control both lateral and torsional response of the system. The optimum damper parameters of
alternate arrangements such as (i) two identical TMDs placed at opposite corners, (ii) two independen
and (iii) four TMDs are evaluated for minimum response of the system. The comparative performa
the above TMDs arrangements is also studied for both torsionally coupled and uncoupled systems. It ifound
that four TMDs arrangement is quite effective solution for vibration control of torsionally coupled sys

Key words: vibration control; wind excitation; harmonic; TMDs; torsional coupling; robustness; accide
eccentricity.

1. Introduction

Tuned mass damper (TMD) is a classical engineering device consisting of a mass, a spri
a viscous damper attached to a vibrating main system in order to attenuate any unde
vibration. The natural frequency of the damper system is tuned to a frequency near to the 
frequency of the main system. Thus, the vibration of the main system (especially due to 
induced) causes the damper to vibrate in resonance, as a result, the vibration energy is di
through the damping in the TMD. The solution for determining the optimum tuning freque
and the optimum damping of a tuned mass damper for undamped main system subjec
harmonic external force over a broad band of forcing frequencies is described by Brock (
and Den Hartog (1956). Using Den Hartog’s procedure Warburton and Ayorinde (1980) 
derived the optimum damper parameters for the undamped main system subjected 
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harmonic support motion where the acceleration amplitude is fixed for all input frequencies
explicit formulae for the optimum parameters of a TMD and its effectiveness are available unde
different combinations of system response and excitation (Warburton 1982, Tsai and Lin 1
Thompson 1981, Fujino and Abe 1993).

The phenomenon of building vibrations caused by vortex shedding, galloping and flut
random in nature and depends heavily on the building’s geometry and dynamic characte
and the local climatological factors. As a result, quantifying the design wind load is a com
process and is usually not readily amenable to closed form solutions. The TMD have 
been used by tall building designers as a reliable vibration control mechanism that i
sensitive to wind load variations (Weisher 1979, Kwok 1984, Fur et al. 1996). A number of
TMDs have been installed in tall buildings, bridges, towers and smoke stacks for res
control against primarily wind-induced external loads (Housner et al. 1997). The first structure
in which a TMD was installed appears to be Centerpoint Tower in Sydney. There are
buildings in the United States equipped with TMDs namely the Citicorp Center in New York 
and the John Hancock Tower in Boston. In Japan, the first TMD was installed in Chiba
Tower, followed by installations in Funade Bridge Tower, Osaka and in steel stacks, Kim
City. These examples show that the success of TMD is now well established for control of 
induced vibration in structure.

The main disadvantage of a single TMD is its sensitivity of the effectiveness to the error in the
natural frequency of the structure and/or that in the damping ratio of the TMD. The mistu
or off-optimum damping significantly reduces the effectiveness of a TMD. As a result, the use o
more than one tuned mass dampers with different dynamic characteristics has been proposed in
order to improve the effectiveness. Iwanami and Seto (1984) had shown that two tuned
dampers are more effective than a single TMD. However, the improvement on the effectiv
was not significant. Recently, multiple tuned mass dampers (MTMD) with distributed na
frequencies were proposed by Xu and Igusa (1992) and also studied by Yamaguchi and
Harnpornchai (1993), Abe and Fujino (1994), Jangid (1995, 1999). It is shown that the M
is more effective for vibration control as compared to the single TMD. In addition, 
effectiveness of the MTMD system is not much influenced by the change or estimation er
the natural frequency of the structure. The above review shows that a lot of work has bee
on the use of TMD and MTMD for a system with symmetric in plan under different type
excitation. Since an accidental eccentricity in the system always exists, therefore, it w
interesting to study the performance of tuned mass dampers for controlling the coupled l
torsional response of the system. 

In the present study, the steady-state response of a torsionally coupled system with tune
dampers to wind-induced external harmonic excitation is investigated. The specific objectives 
study are (i) to study the performance of a single TMD system designed without considering the
torsional effects for controlling the coupled lateral and torsional response of a torsionally co
system, (ii) to obtain the optimum parameters of a single TMD for effective vibration control 
torsionally coupled system, (iii) to explore alternative effective TMDs arrangements (i.e. two ide
TMDs placed at opposite corners, two independent TMDs, four TMDs etc.) for vibration contr
a torsionally coupled system and (iv) to obtain the optimum parameters of various TMDs arrangements
for torsionally coupled system using numerical searching technique and study their compa
performance. 
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2. Structural model

The system configuration consists of a main system on which n numbers of tuned mass dampe
with different dynamic characteristics are attached as shown in Fig. 1. The main system con
rectangular deck supported on columns. The width of the deck is b and breadth as d. The centre of
resistance (CR) of the main system does not coincide with the centre of mass (CM). As a res
main system undergoes to torsional vibration when excited in the lateral direction. The TMD
placed at a distance of y1, y2, …, yn from the CM of the main system to control the vibration of t
system. The system is excited by wind-induced harmonic external force applied at the CM 
system. The main system has two degrees-of-freedom and the combined system will have total n+2
degrees-of-freedom. 

Two uncoupled frequencies of the main system are defined as 

(1)

(2)

where ks (i.e., ks1+ks2) is the lateral stiffness of the main system; kθ (i.e., ) is the
torsional stiffness of the system about the CM of the system; ks1 and ks2 are the lateral stiffness of
the columns of the main system located at the distance ys1 and ys2 from the CM of the system,
respectively; ms is the mass of the main system; and rs is the radius gyration of the system. 

ωs
ks

ms

------=

ωθ
kθ

msrs
2

-----------=

ks1ys1
2 ks2ys2

2+

Fig. 1 Schematic sketch of torsionally coupled system with TMDs
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The eccentricity between the CM and the CR of the main system is given by 

(3)

The frequencies ωs and ωθ can be interpreted as the natural frequencies of the main system
were torsionally uncoupled system, i.e. the system with es= 0; but ms, the mass of the main system
ks and kθ are the same as those in the coupled system. The parameters ks1, ks2,  ys1 and ys2 can be
adjusted to provide the desired values of the parameters ωs, ωθ and es. Further, it is to be noted tha
the simplified model considered in Fig. 1 can also be used for evaluating the response of a
storey building or tower using the modal analysis. The frequencies ωs and ωθ shall be adjusted to
the natural lateral and torsional frequency of the building in which the vibrations of the structu
to be controlled, respectively.

The stiffness and damping of the i th TMD are given by

(4)

(5)

where mi, ci and ki are the mass, damping and stiffness of the i th TMD, respectively; and ωi and ξi

are the natural frequency and damping ratio of the i th TMD, respectively.
The tuning frequency ratio, fi for the i th TMD is defined as 

(6)

The mass ratio, µi for the i th TMD is defined as 

(7)

The total mass ratio of the TMDs is defined as

(8)

2.1. Equations of motions

The equations of motion of the combined system subjected to wind-induced external excita
the main system are expressed in the following matrix form

(9)

es

ks1ys1 ks2ys2–
ks

---------------------------------=

ki miω i
2=

ci 2ξimiω i=

fi

ω i

ωs

-----=

µ i

mi

ms

------=

µ µ i

i 1=

n

∑=

M[ ] X
··{ } C[ ] X

·{ } K[ ] X{ }+ + 1{ }f t( )=
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where {X}={ xs, θs, x1, � xn} T is the displacement vector of the structural system; xs and θs are the
lateral and torsional displacement of the main system, respectively; and xi is the lateral displacemen
of the i th TMD; [M], [C] and [K ] are the mass, damping and stiffness matrix of the struct
system, respectively; {1}={1, 0, 0, �, 0}T and f(t) is the external wind force applied at the CM o
the main system.

The matrices [M], [C] and [K ] are expressed by

(10)

(11)

(12)

where cs, csθ and cθ are the elements of the damping matrix of the main system without TM
which are obtained by assuming a modal damping ratio ξs, in both modes of vibration; ksθ (=kses) is
the coupling term between the lateral and torsional degrees-of-freedom of the main system; ayi is
the distance of i th TMD from the CM of main system.

For the present study, the external excitation force acting at the main system is mode
harmonic force expressed as f (t)=f0e

iωt (in which f0 is the amplitude of excitation; ω is the circular
frequency; t denote the time; and ). The harmonic excitation had been widely used i
past for the vibration control of system using the TMDs (Warburton and Ayorinde 1980, Warb
1982, Tsai and Lin 1994, Thompson 1981, Fujino and Abe 1993, Yamaguchi and Harnpo

M[ ]

ms 0 0 0

0 msrs
2 0 0

0 0 m1 0

0 0 0 mn

=
�

C[ ]

cs cj∑+ csθ ciyi∑+ c1– c2– … cn–

csθ ciyi∑+ cθ ciyi
2∑+ c1y1– c2y2– … cnyn–

c1– c1y1– c1 0 … 0

c2– c2y2– c2
… 0

cn– 0 0 0 … cn

=

�

� � � � �

K[ ]

ks kj∑+ ksθ kiyi∑+ k1– k2– … kn–

ksθ kiyi∑+ kθ kiyi
2∑+ k1y1– k2y2– … knyn–

k1– k1y1– k1 0 … 0

k2– k2y2– 0 k2
… 0

O

kn– knyn– 0 0 … kn

=

�

� � � �

�

i 1–=
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1993, Abe and Fujino 1994, Jangid 1995, 1999). This is due to fact that the response of any 
to harmonic frequencies gives considerable insight into the dynamic characteristics of the system
which may be helpful in interpreting the response to the other type of excitation (including the
force). In addition, it is also possible to express any time varying load as a summation of s
sinusoidal motions through Fourier transform. 

The corresponding steady-state harmonic response of the system to the harmonic excitat
be {X}= X(ω)eiωt. The X(ω) indicates the amplitude vector of the steady-state response of
combined system which is expressed by

(13)

The first two elements of the vector, X(ω) are the amplitudes of lateral and torsional displacem
of the main system. The corner displacements are calculated as

(14)

where xc1 and xc2 are the displacement of the corner of the main system; and b is the lateral
dimension of the main system in the direction of eccentricity.

The displacement of the main system at different locations is normalized by corresponding
displacement of the main system without eccentricity. The normalized lateral displacement 
main system at different locations (such as at the center and corners) is expressed by theR
defined as

(15)

where δst=f0/ks is the static displacement of the CM of the main system without torsional coup
Note that the R denotes the corresponding dynamic magnification factor of lateral displacemen
a torsionally uncoupled system.

3. Numerical study

The main system is characterized by the uncoupled natural frequency, ωs, the aspect ratio b/d, the
ratio of uncoupled torsional to lateral frequency, ωθ / ωs and the damping ratio of the main system
ξs. The damping of the main system is assumed to be 2 per cent. The eccentricity in the system is
considered to be 5 per cent of the dimension b, as specified by the UBC Code (1997). This implie
that the main structure as designed is symmetric and the torsion arises only due to the ac
eccentricity in the system. The each TMD system is characterized by damping ratio, ξi, tuning
frequency ratio, fi , mass ratio of the TMD, µi and placement of the TMD, yi. The steady-state
displacement of the torsionally coupled system at different locations expressed by the ratiR is
evaluated to study the effects of system eccentricity on the effectiveness tuned mass da
However, it was found that the maximum amplitude of displacement of a torsionally coupled

X ω( ) ω2 M[ ]– iω C[ ] K[ ]+ +( )
1–

1{ }f0=

xc1 c2, xs θsb 2⁄±=

R
δst

-------------------------------------------------------------------------------------------------=
Dynamic displacement of main system
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system occurs only at the corners. Thus, the normalized displacement R indicated without any
specific displacement implies the maximum displacement of the main system. 

3.1. Single tuned mass damper 

Firstly, the effectiveness of an optimum single TMD, designed without considering the torsio
studied. In Fig. 2, variation of the normalized displacement for xs, xc1, xc2 and xs0 of torsionally
coupled system with single TMD is plotted against harmonic excitation frequency for diffe
values of ωθ / ωs ratios. The xs0 denotes the corresponding lateral displacement, xs of the main system
without any eccentricity (i.e., es=0) and under such condition the lateral displacement at diffe
locations of the main system becomes identical. 

The parameters considered for the TMD system are µ=µ1=0.01, f1=0.9869, ξ1=0.0646 and y1=0
(i.e., TMD is placed at the CM) which are the optimum parameters of a single TMD system

Fig. 2 Effectiveness of optimum single TMD designed without considering torsion in a torsionally cou
system (b/d = 2)
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torsionally uncoupled system with 2 per cent damping (Tsai and Lin 1994). From the Fig. 2
observed that due to the torsional coupling the displacements xs, xc1 and xc2 are significantly
increased in comparison to the displacement, xs0 implying the loss of effectiveness of TMD
system for vibration control. Thus, an optimally designed single TMD system without consid
torsion is not at all effective in controlling the response of the system if it is either a torsiona
flexible (ωθ /ωs= 0.5) or strong torsionally coupled system (ωθ /ωs= 1). However, for torsionally
stiff system (ωθ /ωs> 1.5), the design of TMD system by ignoring the torsion is justifi
because the lateral displacement of the main system is not much influenced due to to
coupling. 

Since the effectiveness of a single TMD designed based on symmetric system for a tors
coupled system is significantly reduced due to eccentricity in the main system. As a result, th
a need to find out the optimum parameters of a single TMD (i.e., f1, ξ1 and y1) for a torsionally
coupled system which minimize the lateral displacement at corners. These parameters are o

Table 1 Optimum parameters for single and divided TMD attached to torsionally coupled system (ξs= 0.02)

Main system Single TMD

ωθ /ωs b/d
µ = 0.01 µ = 0.02

f1 ξ1 y1 R f1 ξ1 y1 R

0.5 1 0.480 1.010 0.750 0.3706 b/2 20.60 0.680 0.3897 b/2 17.39
0.5 2 0.468 1.015 0.507 0.3959 b/2 24.78 0.532 0.4125 b/2 20.27
0.5 3 0.464 1.017 0.489 0.3566 b/2 25.55 0.515 0.3916 b/2 20.88
1 1 0.937 1.059 0.958 0.0766 0 19.01 0.958 0.0891 0 15.0
1 2 0.919 1.075 0.977 0.0441 -b/2 20.93 0.934 0.0387 -b/2 17.47
1 3 0.914 1.079 0.986 0.0525 -b/2 20.80 0.968 0.0487 -b/2 17.02

1.5 1 0.994 1.504 0.980 0.0725 -b/2 9.90 0.963 0.1000 -b/2 7.755
1.5 2 0.990 1.506 0.975 0.0750 -b/2 10.12 0.962 0.1031 -b/2 7.934
1.5 3 0.989 1.507 0.974 0.0762 -b/2 10.21 0.973 0.1044 -b/2 7.992

ϖ1

ωs

------
ϖ2

ωs

------

Divided single TMD
(y1=-b/2, y2=b/2, f2=f1, ξ2=ξ1)

Un-
controlled

R

µ = 0.01 µ = 0.02

f1 ξ1 R f1 ξ1 R

0.801 0.309 21.43 0.726 0.368 18.70 28.466
0.551 0.441 25.87 0.575 0.493 21.95 36.294
0.525 0.407 26.70 0.545 0.498 22.77 41.757
0.953 0.096 13.76 0.941 0.118 10.19 31.435
0.937 0.104 14.49 0.922 0.130 10.34 37.448
0.932 0.111 14.66 0.916 0.136 10.37 39.239
0.981 0.064 10.57 0.970 0.089 8.32 27.951
0.976 0.064 11.18 0.966 0.089 8.78 29.795
0.975 0.066 11.37 0.965 0.091 8.93 30.352

(ϖ1 and ϖ2 are the natural frequencies of torsionally coupled system)
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Fig. 3 Comparison between single TMD and divided TMD for response reduction of torsionally coupled system
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using the numerical searching technique in which the values of the parameters f1, ξ1 and y1 is varied
in the admissible range and the maximum lateral displacement of the main system is evaluated (Ts
and Lin 1994). The optimum parameters are then selected which provide the minimum value of the
maximum lateral displacement at any location of the main system. These parameters are ta
in Table 1 for different values of ωθ /ωs, b/d and µ . From the Table 1, it is observed that the val
of optimum TMD damping ratio for a torsionally flexible system is much higher due to 
presence of torsional mode of vibration. The high optimum damping value is required to min
the peak displacement occurring in the vicinity of torsional frequency (refer the Fig. 2). In addition,
the optimum parameters of single TMD for torsionally stiff system (i.e., ωθ /ωs= 1.5) are quite close
to the optimum parameters for uncoupled system (i.e., f1=0.9869 and ξ1=0.0646 from reference
(Tsai and Lin 1994)). In Table 1, the corresponding value of R for an uncontrolled (i.e., without
TMD) main system is also shown to study the effectiveness of the TMD system. It is observe
there is reduction in the response of the main system due to TMD implying that such dev
effective for vibration control of the torsionally coupled system. Further, the effectiveness 
single TMD for vibration control of a torsionally flexible system or strong torsionally coup
system is less in comparison to torsionally stiff or uncoupled main system. 

Table 2 Optimum parameters for two TMDs system (ξs=0.02)

Main System TMD System

b/d
TMD 1 (y1=-b/2) TMD 2 (y2=b/2) R

f1 µ1 ξ1 f2 µ2 ξ2 es=0.05b es=0

µ=0.01

0.5 1 0.480 1.010 0.4714 0.0028 0.0453 0.9939 0.0072 0.0647 10.8 12
0.5 2 0.468 1.015 0.4526 0.0053 0.0744 1.0017 0.0047 0.0597 12.5 14
0.5 3 0.464 1.017 0.4468 0.0059 0.0819 1.0052 0.0041 0.0535 13.1 15
1.0 1 0.937 1.059 0.9220 0.0067 0.0825 1.0420 0.0033 0.0560 9.98 16
1.0 2 0.919 1.075 0.9006 0.0071 0.1018 1.0516 0.0029 0.0662 10.5 18
1.0 3 0.914 1.079 0.9857 0.0071 0.1013 1.0523 0.0029 0.0625 10.6 18
1.5 1 0.994 1.504 0.9691 0.0087 0.0625 1.0313 0.0013 0.0248 9.47 10
1.5 2 0.991 1.506 0.9632 0.0079 0.0625 1.0278 0.0021 0.0304 9.77 10
1.5 3 0.989 1.507 0.9623 0.0083 0.0650 1.0280 0.0017 0.0272 9.86 11

µ=0.02

0.5 1 0.480 1.010 0.4628 0.0056 0.0625 0.9811 0.0144 0.0912 8.50 10
0.5 2 0.468 1.015 0.4416 0.0102 0.0987 0.9892 0.0098 0.0844 9.76 12
0.5 3 0.464 1.017 0.4345 0.0114 0.1181 0.9943 0.0086 0.0750 10.2 13
1.0 1 0.937 1.059 0.9091 0.0130 0.1162 1.0280 0.0070 0.0837 7.84 12
1.0 2 0.919 1.075 0.8882 0.0136 0.1375 1.0281 0.0064 0.0894 8.17 12
1.0 3 0.914 1.079 0.8777 0.0136 0.1500 1.0273 0.0064 0.0919 8.28 12
1.5 1 0.994 1.504 0.9500 0.0164 0.0837 1.0390 0.0036 0.0398 7.32 8.2
1.5 2 0.991 1.506 0.9505 0.0176 0.0925 1.0373 0.0024 0.0360 7.56 9.0
1.5 3 0.989 1.507 0.9497 0.0180 0.0968 1.0359 0.0020 0.0335 7.64 9.3

ωθ

ωs

-----
ϖ1

ωs

------
ϖ2

ωs

------
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Fig. 4 Effectiveness of optimum two TMD system against optimum single TMD system for torsionally
coupled system
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Fig. 5 Effects of eccentricity on the response of torsionally coupled system attached with optimum two
TMDs system
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3.2. Two identical tuned mass dampers

It is to be noted that the optimum placing of the single TMD for torsionally coupled system is 
corners (expect for ωθ /ωs = 1 and b/d = 1). Such arrangement of TMD system will lead to torsion in t
system when there is no eccentricity in the main system. Hence, an alternative approach in the 
divided TMDs (i.e., two TMDs having identical properties placed at two corners) has been pro
for reduction of vibration. The optimum parameters of divided TMDs system are evaluated an
presented in Table 1. It is observed that this system is quite effective for strong torsionally c
system (ωθ /ωs= 1). A variation of normalized maximum displacement of main system with optim
single TMD and divided TMD is shown in Fig. 3. The figure indicates that the both TMD sys
are almost same effective for torsionally flexible and stiff system. However, the optimally des
divided single TMD is relatively more effective for strong torsionally coupled system. 

3.3. Two Independent tuned mass dampers

Since a torsionally coupled system has two natural frequencies, as a result, two TMD
required to control the response of the system. The optimum parameters of the two TMD

Table 3 Optimum parameters for two divided TMDs system (ξs=0.02 and µ=0.02)

Main System TMD System
R

b/d
TMD 1 and 2 TMD 3 and 4

f1, f2 µ1, µ2 ξ1, ξ2 f3, f4 µ3, µ4 ξ3, ξ4 es=0.05b es=0

Approach - I

0.5 1 0.480 1.010 0.4722 0.005 0.1656 0.9869 0.005 0.0646 11.4 9.
0.5 2 0.468 1.015 0.4478 0.005 0.1356 0.9869 0.005 0.0646 12.5 9.
0.5 3 0.464 1.017 0.4423 0.005 0.1306 0.9869 0.005 0.0646 12.9 9.
1.0 1 0.937 1.059 0.9044 0.005 0.1006 0.9869 0.005 0.0646 10.3 8.
1.0 2 0.919 1.075 0.8757 0.005 0.1063 0.9869 0.005 0.0646 10.3 8.
1.0 3 0.914 1.079 0.8660 0.005 0.1094 0.9869 0.005 0.0646 10.3 8.
1.5 1 0.994 1.504 0.9500 0.005 0.0894 0.9869 0.005 0.0646 8.38 7.
1.5 2 0.991 1.506 0.9396 0.005 0.0925 0.9869 0.005 0.0646 8.77 7.
1.5 3 0.989 1.507 0.9356 0.005 0.0919 0.9869 0.005 0.0646 8.88 8.

Approach - II

0.5 1 0.480 1.010 0.4562 0.0030 0.0650 0.9991 0.0070 0.0750 9.64 9
0.5 2 0.468 1.015 0.4493 0.0048 0.0925 0.9991 0.0052 0.0725 11.3 10
0.5 3 0.464 1.017 0.4392 0.0054 0.1125 1.0056 0.0046 0.0600 11.7 10
1.0 1 0.937 1.059 0.8996 0.0060 0.0775 1.0302 0.0040 0.0800 9.02 8
1.0 2 0.919 1.075 0.8866 0.0072 0.0975 1.0389 0.0028 0.0725 9.30 9
1.0 3 0.914 1.079 0.8867 0.0080 0.1050 1.0522 0.0020 0.0775 9.43 10
1.5 1 0.994 1.504 0.9224 0.0042 0.0520 1.0137 0.0058 0.0625 8.02 7
1.5 2 0.991 1.506 0.9222 0.0046 0.0525 1.0134 0.0054 0.0625 8.05 7
1.5 3 0.989 1.507 0.9247 0.0050 0.0575 1.0124 0.0050 0.0600 8.18 7

ωθ

ωs

-----
ϖ1

ωs

------
ϖ2

ωs

------
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Fig. 6 Effects of eccentricity on the response of torsionally coupled system attached with optimum divided
two TMDs system with Approach-I



Tuned mass dampers for torsionally coupled systems 37

Fig. 7 Effects of eccentricity on the response of torsionally coupled system attached with optimum divided
two TMDs system with Approach-II
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f1, µ1, ξ1 and y1; f2, µ2, ξ2 and y2) for a torsionally coupled system with different system
properties are given Table 2. By comparing the Tables 1 and 2, it is found that the opti
designed two TMDs system is more effective approach than the single TMD system
controlling the response of torsionally coupled system. In Fig. 4, the variation of norma
maximum displacement of the main system is plotted against excitation frequencies.
observed that two TMDs system is much more effective in reducing the response o
structure for both torsionally flexible as well as strong torsionally coupled system. The opti
tuning for two TMDs system is found in the vicinity of the natural frequencies of the m
system for torsionally flexible and strong torsionally coupled system. However, for torsionally
system the optimum tuning of two TMDs is found in the vicinity of uncoupled lateral freque
of the main system. A comparison 

The performance of optimally designed two TMDs system for torsionally coupled and unco
system is shown in Fig. 5. The figure indicates that the effectiveness of two TMDs is redu
there is no eccentricity in the system. These effects are more pronounced for strong tors
coupled system as compared to torsionally flexible and stiff system. However, using the divide
TMDs system can circumvent this obstacle.

3.4. Four tuned mass dampers

The optimum parameters for two divided TMDs (i.e., total four TMDs in which two each are
identical but placed on opposite corners) are presented in Table 3 for Approach-I and 
Approach-I, all the TMDs have the same mass and two TMDs are tuned to uncoupled 
frequency of the system (i.e., f3=f4=0.9869, ξ3=ξ4=0.0646) and the optimum parameters of th
remaining two TMDs are searched for minimum displacement of the system. On the oth
hand, in Approach-II, the optimum parameters of the both set of TMDs with variable mass are
obtained using the numerical searching technique. Variation of normalized maximum displacem
the main system with optimally designed two TMDs is shown in Figs. 6 and 7 for Appro
I and -II, respectively. It is found that for both the approaches the optimally designed
TMDs are found to be same or more effective for torsionally uncoupled system. 
Approach-I is found to be quite effective for both torsionally flexible as well as str
torsionally coupled system. However, the approach-II is relatively more effective 
torsionally flexible systems.

4. Conclusions

The steady-state response of torsionally coupled system with tuned mass dampers subje
external wind-induced harmonic excitation is investigated. The performance of optim
designed tuned mass dampers with and without considering the eccentricity in the main sys
studied. In addition, the effectiveness of various arrangements of TMDs system for vibration
control of torsionally coupled system is investigated. The optimum parameters for different
arrangements of TMDs are also evaluated using the numerical searching technique which 
used for the effective design of TMDs for suppressing the coupled lateral-torsional response 
torsionally coupled main system. From the trends of the results present study, follo
conclusions may be drawn :
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1. The optimum single TMD system, designed by neglecting the effect of torsion, is found 
ineffective in reducing the response of the torsionally coupled system. 

2. The design of TMD system by ignoring the torsional coupling is justified for torsionally 
system. Thus, to avoid the effects of torsional coupling on the performance of TMD
layout of the main system should be such that the torsional frequency is greater than 
times the lateral frequency.

3. An optimally designed single TMD for torsionally coupled system is found to be less effe
in comparison to the corresponding uncoupled system. This effect is found to be 
pronounced for torsionally flexible systems.

4. At least two TMDs are required for effective vibration control of torsionally coupled system
5. The use of divided TMDs system placed on each corner of the structure is found to b

effective for strong torsionally coupled system.
6. The use of two divided TMDs is found to be most effective for controlling the respons

torsionally coupled system. The performance of such arrangement is found to be less se
to the change in the eccentricity of the main system.
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