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Abstract. A finite element aerodynamic model that can be used to analyse flutter instability of long

span bridges in the time domain is presented. This approach adopts a simplified quasi-steady formulation
of the wind forces neglecting the vortex shedding effects. The governing equations used are effective only
for reduced velocities/” sufficiently great: this is generally acceptable for long-span suspension bridges

and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglected. Thi
procedure describes the mechanical response in an accurate way, taking into account the non-linea
geometry effects (large displacements and large strains) and considering also the compressed locked co
strands instability. The time-dependence of the inertia force due to fluid structure interaction is not considered.
The numerical examples are performed on the three-dimensional finite element model of the Great Belt
East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results show
good agreement with the experimental measurements of the full bridge aeroelastic model in the wind
tunnel tests. Significant parameters affecting bridge response are introduced and accurately investigated.

Key words: flutter; FEM; aerodynamic.

1. Introduction

In the design of long-span suspension bridges the description of the aeroelastic behaviour is ar
interdisciplinary research subject of great topicality: Wolwes structural anderodynamic problems
and is decisive in influencing design choices. The aim of this paper is to study the behaviour of this
type of structure subject to instability phenomena of the flutter type.

In the analysis the bridge was schematised by means of finite elements model and the aerodynami
actions are applied to the deck. This analysis was done in the time domain following an alternative
procedure to the traditional one in the frequency domain (Scanlan 1996) and, in comparison, it
shows the considerable advantage of a better physical description of the phenomenon. It also allow:
the effects of both the material and geometrical nonlinearities of the system to be considered.
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The description of the self-excited loads adopts a “quasi-static” formulation for the wind forces
(Diana 1998), in which the relative motion between incident flow and deck is considered. These
actions are function of both the time-history of the incident fldectihg the bridge and the motion
of the bridge itself. Nevertheless, if the dynamic system formed by the bridge and the surrounding
flow is assumed to be linear, the buffeting loads do not affect the motiafitysthh 1995). It is
therefore possible, given the aims of the paper, to ignore the effect caused by aerodynamic
turbulence.

2. Governing equations

A 3-D anticlockwise cartesian system is defined, in which the origin coincides with the centroid
of the deck section, the axis horizontal coincides with the longitudinal axis of the undeformed
deck and the andz axes, horizontal and vertical, respectively, are depicted in Fig. 1.

The quasi-static theory starts with the definition of the aerodynamic actions on a given section of
deck in motion, the position of which on the bridge is identified by the longitudinal co-ordinate
Fig. 1 shows that these actions depend on the interaction between incident flow and deck motion
charactestics.

In the hypothesis of also considering the variability over time of the incident flow, the analytical
equations of these actions, per unit length, result as :

1
Fo = EPBCD(G)Véa
1
Fo= EPBCL(G)Vé,
M = %pBZCM(a)vé (1)
Fy=-F_ sin() + Fp cos) F,=F_ cos@) + Fp sin(y) (2)
a=6-y VE = (W=2+D,6)" +(U-y)’ 3)

Fig. 1 Aerodynamic forces per unit length according to the quasi-static method for a deck section
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where :

P is the air density;

B is the deck width;

u,w represent the speed vectors of the flow in the horizontal and vertical direction,
respectively.

Vr is the relative flow speed with respect to the section, expressed in vectorial form as:
V= (U +W)-Vp=V-Vp
where Vp is the speed of a point of the section. This value changes when the
considered poinP is varied. It is possible to refer to an equal relative speed for each
point of the section if a particular point is taken Roset at a given distandg from
the rotational axis in a horizontal direction ;

1)} is the angle of the slope of the relative sp¥gd

(W= z+ 6b,)
Y = arctan[—_} (4)
(U-y)

a is the angle of attack of the incident flow with respect to the deck;

C., Cp,Cy are the static lift, drag and moment coefficients, measured as functions of the angle
of attacka.

This formulation includes the nonlinear effects due to deck motion, those caused by wind
turbulence and those generated by the variation ofagredynamic coefficients with the actual
angle of attack. The dependence is not considered of the aerodynamic coefficients of the reducec
speedV = (V,,/ fB), whereV,, is the absolute value of the average speed of the incidentf ftow,
frequency of the bridge motion amdthe deck width: the application of Egs. (1) and (2) is therefore
limited only to the cases wheké is high enough. This corresponds, in other words, to a situation
in which the time taken by the flow to cross the section is much shorter than the oscillation period
of the structure and of the period associated with the turbulence fluctuations: steady-state conditions
are therefore approached and the an@le(Fig. 1) is narrow, allowing easy treatment of the
trigonometric equations.

The nonlinear discretised equations of the system motion can be written as:

MSXI + Rsx + KSX = Fa(xa X! V(X! Y, Z t)) +P (5)

Ms, Rs, Ks being the structural matrices of the bridée,the vector of the aerodynamic forces
that are generally nonlinear fuians of the disgicementsX and velocity X , as well as of the
space-time history of the turbulent wiNdx, y, z t) of the incident flow, and is the vector of the
permanent loads considered. _

Eqg. (5) is nonlinear because of that nonlinear dependence of the aerodynamic fofcasdof ;
they also depend linearly on the coefficients of drag, torque and lift Eqg. (1), in their turn, generally
nonlinear functions of the wind angle of attack

These equations can only be solved numerically and their integration gives the displa¢éments
velocities X and acceleration§é  of the various nodal points of the model.

To simplify the formulation, Eq. (5) is linearised around the configuration of static equilibrium,
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solving the problem:

KXo=Fa(Xo, 0, Vim) + P (6)
where the wind speed is assumed as constant and equal to the averayg, valueomponentdJ,
andW,,.

Once the solutiorX, is obtained, the generalised aerodynamic fofe€X, X, V(X Y, z1t)) are
linearised aroun&, from which the following equation is obtained :

FalX, X, V(% ¥, Z ) = Fa(Xo 0, Vin) —Kag(X —Xo) = RaoX + ‘f;/ AV (7)
XO
given that :
oF

K., = a 8a
0= 5. (8a)
Ry = s (8b)

X |x,

are the elastic and damping matrices, respectively, due to the field of aerodynamic forces evaluatec
for V(x,y,z t)=Vp, i.e., for an average speed, constant in space andlticen be seen that the
aeroelastic forces cetitute a non-conservative field for the positionaéneénts and a non-
dissipative field for the velocity elements: these characteristics are highlighted by the non-symmetry
of the matrices of aerodynamic stiffness (Eqg. 8a) and damping (Eg. 8b).

Defining with :

X = X=X 9)

the disturbance around the position of static equilibrium defined by Eq. (6), Eg. (5) becomes,
referring to Eq. (7) :

MSX+(RS+RaO)>_<+(KS+ Ka0)>_< = %Ii; AV + P (10)

%o

and, in the hypothesis of ignoring any form of aerodynamic turbulence :
MoX + (Rs=Ryo) X + (Ks+ Kgo) X = P (11)

Eqg. (11) provides the motion of the bridge around the previously defined averageXyallle
aerodynamic coefficient€p, C. and Cy are nonlinear functions of the angle of attawk To
simplify the calculation oK, andRa, for the anglesd| < 5°, the aerodynamic forces acting on the
deck section can be linearised, that become, from Eq. (2) :
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Fy = —F.sin(y) + Fycos(y) = %PBVF%[—CL(G)SM(QU) + Cp(a)cog(y)] U

03pBUA[~Cu(a) i+ Co(ar)] O

058U~ LD (a-ag)+ C(agfp+ LD (a-ap+Co(@)  (12a)

F, = FLcos(y) + Fpsin(y) = %PBVF%[CL(G)COS(LII) + Cp(a)sin(y)] O

03PBUAICL(a) + Co(a)y] [

nzpBU3[ S0 (a=a0) + Cufa) + el (a—ao)+ Colan) | (12b)
M = 3PB°Cy(0)VE U3pB'UF S (a-ap) + Cy(an)] (120)

where the single average horizontal component of the speed of incident flow is considered.
It is therefore possible to calculate the equations of the aerodynamic matrices according to Eq.
(8), assuming for simplicity that

ap=0 (13)
and substituting them in Eq. (11).

3. Model for three-dimensional flutter analysis

The bridge is schematised by means of a three-dimensional finite element model capable of describing
the static and dynamic behaviour. Particular attention is paid to the modelling of the hangers and
main cables on the suspension bridges and the stays on the cable-stay bridges to reproduce tt
acting static pre-load; it is also worthwhile predicting a nonlinear behaviour of the hangers and stays.

In order to simplify the implementation, further hypotheses are formulated as follows :

e only the horizontal componeht of the flow velocity is considered, uniform and constant;
e the horizontal component of the deck motion velocity is ignored;
® 0= 0 is just taken for an approximation of the aerodynamic forces.

In this way equations Eq. (12) become :

1 6b; — 7
(6= @)W+ CroW + Coo | D5PBU?| ~ o™y + Coo| (142)
0

1 o[ dC
F,02pBU [—_L
o2k da

dc,
da |,

1— 2 dCL
F,05pBU [E

1 Bb, -7 6b, -2
(e—w)+cLo+cDow]D§pBu2{ P-=5—"0* Co* Coo—; }
0

(14b)
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(8- 4) + Cug| D%pBZUZ{d&
0

ébl—ZD
———0+C 1l4c
- 089 H+ Cuo (14c)

1 _2,,2[dC
M O=pB2U [_M
2P da

where a zero value of the derivative of the coefficient of drag calculated #d¥ is assumed, in
accordance with the experimental observations for the common sections of the deck.

The actions of the wind are concentrated on a suitable number of nodes along the deck axis
assuming that :

FZ,N= FZALN
MN = MALN (15)

whereALy is the influence length of the load aNds the loaded node.
The calculation code used allows the definition of forcing actions dependent on the displacements
of the d.o.f. of the system or on their velociteEzording to the following method :

u={y; z 6}
Pi(uj) = ai]p(uj) i1 J = 1! 2! 3 (16)
Qi (W) = bya(yy)
where :

u; is a component of the nodal displacement in the local sygtend ;

U; is a component of nodal velocity in the local system 6;

a;, by are scalar elements;

Pi, Q are the components of the forces and the moments in the diregtmrts;

p. g are generic functions of and u; .

The equations of the forces implemented in the code become :
; 1 : 1
Fyan = ayn fiy(6) = —5pBUDALLCLE  Fygn =g, fay = 5pBUALNCop

Fyon = gy n oy (2) = EPBUALNCLOZ

1

Foun = a;znf1(0) = ZPBU ALNdCL 6 Foan=ag,nfs= EPBUZALNCLO

da |,
Faon = 8 f dG = ) = 1 :
z2,N = oz N 2(9) = _ZpBUblALN 9o 6 Fosn = Fsynfs(6) = ZpBUblALNCDOQ

0
23N = A, f3(2) = PBUALN 9o Foen = A n fe(2) = _2pBUALNCDOZ (17)
0
Dl 9 My = byngs(2) = 3pBUALESY| 2

M;n = by ngi(6) = ZPB U ALN r

0 a o

dc,,

. 1
M,n = b, Ngz(e) = —'PB UbALy—M| 6 Myn = byngy = EPBZUALNCMO

0
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4. The East Belt Great Bridge

The above-described formulation was applied to the “East Belt Great Bridge” in Denmark,
inaugurated on 14 June 1998. The total length of the bridge is 6790 m: the suspended central spa
is 1624 m, the height above sea level, 65 m and the two lateral spans, 535 m each; two latera
access viaducts 1567 m and 2529 m long, respectively, complete the bridge. It is the longest
suspension bridge in Europe, second only in the world to the recently completed Akashi Kaikyo in
Japan. It nevertheless holds the world record for span length, thanks to the orthotropic structure of
the box girder with aerodynamic profile and the air spinning technique of main cables.

The main suspension system consists of two parallel cables erected 27 m spaced. They ar
supported by special steel saddles on top of the pylon; contained in a splay saddle at both ends o
the deck and then anchored to anchor blocks.

The stiffening girder is suspended to two cables by means of double pairs of hangers set at &
transversal interaxis of 27 m. This is rigid both flexure-wise and torsion-wise and has sections of
equal transverse bulk for the entire length of the bridge. There are expansion joints at the anchor
blocks at either end. The panels that form it are stiffened longitudinally by trapezoidalcenméois 6
mm thick supported transversely by grid screens every 4 m. Next to the pylons the interaxis between
the screens is reduced to 3 m. The deck is formed by 59 segments 48 m long, and in correspondenc
to the longitudinal distance between pairs of hangers, 24 m long.

Each main cable is constructed of 18648 high resistance steel wires of 5.38 mm diameter: the

Sproge Zealand

3 o
\\_/
143m 7x193m 62m 62m 12 x193m 140m
B ——— , e - - rr
1556m 1..'/ 535m i 1624m i 535m ‘Il 2518m

RETURNING Hauling rope B Hauling rope A QUTGOING

Spinning - Spinning
wheel B

Strands  Cable former

Pylon saddle —~\

Spinning wheel A
Catwalk with
cable formers
Rauling rope
“ Hauling rope
e, drive unit
Boe, Tl

wheel 8

Fig. 2 Lateral, perspective and transversal section views of the bridge
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total diameter is 827 mm. At the anchors the main cable is separated into 37 strands wound arounc
a semicircular strand shoe. The latter are fastened to anchor blocks by pre-tensile bars embedded i
concrete.

Each hanger consists of two locked-coil strands; each of these is made up of sockets and pre
pressed galvanised cables covered by HPDE extrusions @R@llal1997).

4.1. Description of the FEM model

The piers and towers were schematised with beam elements at 6 d.o.f. per node fixed to the bas
in correspondence to the foundation; the deck was modelled by a central beam, using beam
elements without mass similar to the previous ones with inertia characteristics drawn from the
analysis of a section of the type available in the project: the mass of the deck was schematised witt
concentrated masses that take into account the effective distribution. Other beam elements with
infinite stiffness schematise the stiffening cross beams. Issialt linear elastic behaviour was
hypothesised for all these elements. An elastic module equal to 35 Gpa was assumed for the concret
material, whileE =210 Gpa was set for the steel. The hangers were schematised with 1 d.o.f. truss
elements, not resistant to compression and linearly elastic to traction, with a module equal to 210
Gpa to model the behaviour of the cables. In total the mesh of the model was made up of 606
nodes and 938 beam elements (of which >X@6=212 truss elements). The extremity constraints
reproduce the anchoring system to the ground. Table 1 summarises the basic frequencies obtained |
the model for the static condition of its weight alone. Fig. 3 represents the corresponding modal forms.

At the same time a static check was done of the behaviour of the structure subject to the
equivalent load given by the wind through the aerodynamic coeffici&atsC, o, Cuwo. The speed of
incident flow was set at 38.9 m/s, i.e., the same as the design speed adopted for the structure. Th
distributed load was schematised with a series of concentrated nodal loads appropaagsly pl
along the deck axis, with an average interaxis of around 100 m.

Adopting the sum of the permanent load and accidental aerodynamic overloading as load
combination, the following ere obtained at mid-span of the deck :

o vertical arrow: -8.14 m
o horizontal displacement: 1.95 m
o rotation: not evaluated.

The only result available in the literature is the horizontal displacement: the order of magnitude of

Table 1 Comparison of the frequencies obtained by the FEM model and the frequencies obtained on the
complete model in a wind gallery (Danish Maritime Institute)

Wind Tunnel [Hz] FEM [Hz] [%0]
Lateral symm. 0.0523 0.0524 0.19
Vertical symm. 0.0997 0.1060 5.94
Vertical antisymm. 0.1147 0.1141 0.53
Lateral antisymm. 0.1270 0.1220 410
Torsional symm. 0.2890 0.2929 1.33

Torsional antisymm. 0.3910 0.4006 2.40
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Fig. 3 Flexural and torsional modal forms

the error is £2% (Larsen 1998a).
4.2. Analysis of aeroelastic stability

The aeroelastic stability analysis was preceded by the nonlinear static analysis necessary tc
determine the position of static equilibrium (defined as in Eq. 6) around which the motion occurs.
To schematise the main cables prestressed beams were used in which the pre-loading static action
taken into account. This prestressing (3000 N per wire) was schematised by means of an equivalen
thermal load. The final vertical arrow at mid-span is about 12m, in agreement with the real data
supplied by the builder COINFRA S.p.A. ( Sparatore 1998)

The Newton-Raphson algorithm was used to solve the problem, with updating of the matrices at
each iteration.

The aeroelastic analysis showed an exponential trend, damped or amplified depending on whethe
the incident flow speed was lower or higher than the critical flutter speed (Fig. 4).

The analysis results agree with the experimental results obtained in the wind gallery and indicate a
critical flutter speed of around 220 km/h, with a ratio value of structural damping in relation to the
critical dampingé = c/c.;; equal to 0.025. The deck motion, in its flexural and torsional components,
is represented in Fig. 5 for a wind speed well above the critical speed.

In order to precisely identify the critical flutter speed, various parameter-indexes were used to
study the behaviour of the system (Fig. 6) :
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Fig. 5 Bridge deformation at instatt 60s (wind speed = 97.2 m/s)
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Fig. 7 Wind speed vs critical damping ratio

e Exponent (EXP) of the regression curve of the absolute value of the vertical oscillation at the
mid-span or at the quarters, evaluated against the average displacement in timaticBhe cr
condition was identified by the zero value of this index; a negative value identifies stable behaviour
(positive global damping); a positive value indicates an unstable situation (negative global damping).

e Average amplitude of the afiations (AMP) at mid-span and at the quarters, evaluated at a fixed
momentt*. This index does not give an exact identification of the critical speed, but allows the
extent of the structures displacements to be iNsuated.

The motion of the structure is symmetrical, in complete agreement with this rebtained
during the designing stage: analysis of the deck deformation shows the coupling of the first vertical
mode and first torsional mode, both being symmetrical.

Having observed an accentuated dependence of the dampind ratiosensitivity analysis was
done. The results obtained indicate a more or less linear trend of the critical speed with the varying
of & (Fig. 7). )

Analysis of the aeroelastic forces was done in relation &6, z . Analysing thébataotrs to
the motion due to the various components of force separately, no form of instabiérsapmpr the
usual speed intervals considered (Fig. 8). It is also noted that:

e the elements dependent on torsional rotafiodetermine the average magnitude of the forces
and of the displacements;
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Fig. 9 Influence of aerodynamic coefficieis={( dC,/ da)} e kw ={( IC\,/ da)}

e the elements dependent on velody, 2) , alone, cause no motion of the structure in the way
they are defined;

e the elements dependent on rotattbalone determine a stable response of the structure. Nevertheless,
it is possible in this way to evaluate the phenomenon of the static torsional divergence, the
critical speed of which depends exclusively on the torsional characteristics of the deck and on
the bending action of the wind, and is in general much higher thanitibel dlutter speed:

. In conclusion it is noted that instability of the flutter type is caused by

the contemporary dependence of the forces of the deck displacements aiti¢s/eloc

Given that, in general, aerodynamic coefficients are not identifiable with high precision by means
of a numerical fluid-dynamic analysis, a sensitivity analysis was conducted varying the value of the
derivatives of these coefficients. The trend of the flutter index EXP, and therefore oftited cr
speed, results as almost linear (Fig. 9). Newmarks algorithm was usedvéotise aeroelastic
problem, updating the matrices at each iteration.

All the calculations were done using the MSC-Nastran calculating code on an Alpha Server
Digital 2100 4/275 Mhz machine with 3 processors available and 256 MB of RAM. Thediressary
for the solution of the preliminary nonlinear static analysis was around 10 seconds (user time),
while the aeroelastic analyses required an average of 15 minutes (user time).
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5. Conclusions

The analysis in the time domain, following the quasi-static formulation of the aerodynamic loads,
results as being a reliable alternative to the usual analysis in the frequency domain (Section Model).
It also allows the structural nonlinearities of the model to be considered and to follow the effective
behaviour of the structure over time.

It has been shown that the uncertainty in determining the critical flutter speed derives, essentially,
from the inexact estimate of the structural parameters. In particular, it is necessary to precisely
evaluate the damping of the structure: variations inéthatio of 10% determine errors in the flutter
speed estimate in the order of 10% (x20 km/h). The model tests and frequency domain flutter
analysis yieldU., 070 m/s which corresponds toé@l0.03 . The phenomenon is also slightly
influenced by an inaccurate estimate of the aerodynamic coefficients: errors of 50% in these
parameters lead to variations of 5% in the critical speed (£10 km/h).

References

Astiz, M. A. (1998), “Flutter stability of very long suspension bridgésBridge Eng.3(3), 132-139.

Bartoli, G., Borri, C. and Gusella, V. (1997), “On the influence of wind turbolence on bridge decks flutter”,
Aspects in Modern Computational Structural Analygd. by Meskouris & Wittek, Balkema, Rotterdam.

D’Asdia, P. and Sepe, V. (1997), “Aeroelastic instability of long span suspended bridges: a multi mode
approach”Proc. of the 2nd EACWE International Conferer@enova, June.

Diana, G. and Cheli F. (1993)jnamica e vibrazione dei sistemi meccan&’i Vol., UTET Libreria, Torino.

Diana, G.,et al (1998), “Aerodynamic design of very long-span suspension bridgdB3E SymposiuniKobe,
79, IABSE Reports.

Diana, G. and Falco, M. (1990), “Indagine analitico sperimentale su un ponte sospeso di grande luce soggettc
allazione del vento”Atti del 1° Convegno Nazionale di Ingegneria del Vento IN-VENT®iégnze, October.

Dyrbye, C. and Hansen, S. D. (199%)ind Loads on Structures). Wiley & Sons, Inc., Baffins Lane,
Chichester.

Hansen, O. R. (1998), “Aerodynamics retrofits for the suspension brigst,Bridge Ed. by N. J. Gimsing, A/
S Storebeeltsforbindelsen, Kgbenhavn, 383-384.

Larsen, A. (1998), “Aerodynamics investigation of the superstructiast Bridge Ed. by N. J. Gimsing, A/S
Storebeeltsforbindelsen, Kgbenhavn, 78-85.

Larsen, A. (1998), “Computer simulation of wind-structure interaction in bridge aerodynastics®. Eng. Int.
February, 105-111.

Larsen, A. (1998), “Wind tunnel tests, suspension brid@&ist Bridge Edited by Gimsing N. J., A/S
Storebeeltsforbindelsen, Kgbenhavn, 187-192.

Larsen, A. and Jacobsen, A. S. (1992), “Aerodynamics design of the great belt east Agdy®ynamics of
Large BridgesEd. by Larsen A., Balkema, Rotterdam, 269-283.

Li, Q. C. (1995), “Measuring flutter derivatives for bridge sectional models in water chadné&ig. Mech.
Jan.,121(1), 90-101.

Miyata, T., Yamada, H. and Boonyapinyo, V. (1999), “Advanced aerodynamic analysis of suspension bridges by
state-space approacly., Struct. Eng.Dic. ,12512), 1357-1366.

Pedersen, A. and Hauge, L. (1998), “Design of the suspension britigst"Bridge Ed. by Gimsing N. J., A/S
Storebeeltsforbindelsen, Kgbenhavn, 167-186.

Reinhold, T. A., Brinch, M. and Damsgaard, A. (1992), “Wind tunnel tests for the Great Belt Link”,
Aerodynamics of Large Bridgesd. by Larsen A., Balkema, Rotterdam, 255-267.

Rolla, E., Sparatore, U. and Testa, A. (1997), “The construction of the storebeelt east bridge superstructure
(DK)", Proc. of the 2nd EACWE International Conferer@enova, June.

Scanlan, R.H. and Simiu, E. (1896Wind Effects on Structures. Fundamentals and Application to Design
Wiley & Sons, Inc., New York.



492 Lamberto Briseghella, Paolo Franchetti and Stefano Secchi

Sepe, V. and Augusti, L. (1999), “Unilateral behaviour of hangers and wind-induced oscillations of suspension
bridges”,Proc. of the 6th Pan American Congress of Applied Mechanics PACARIid/tHe Janeiro, January.

Sepe, V., Ciappi, E. and D’'Asdia, P. (1996), “Instabilita aeroelastica multimodale di ponti sogpesiel 4°
Convegno Nazionale di Ingegneria del Vento IN-VENTOFé6ste, September.

Sparatore, U. (1998),L4 realizzazione del ponte sullo StoreBze@OINFRA S.p.A. Seminar, Universita di
Genova - DISEG, Genova, 30 April.

Tanaka, H. (1998), “Aeroelastic stability of suspension bridges during ereiwatt. Eng. Inf.February, 118-
123.

Tanaka, H. and Livesey, F. M. (1998Yind Tunnel Study of the Storebeelt East Suspension Bridge in Its Early
Deck Erection Phase®anish Maritime Institute, 15 November.

Zasso, A. (1996), “Flutter derivatives: advantages of a new representation convantivitid Eng. Ind. Aerod.
60, 35-47.

CcC



	Time domain flutter analysis of the Great Belt East Bridge
	Lamberto Briseghella† and Paolo Franchetti‡
	Università di Padova, Padova, Italy

	Stefano Secchi‡†
	LADSEB-CNR Padova, Italy
	(Received February 15, 2000, Revised April 24, 2000, Accepted March 15, 2001)
	Fig.�1�Aerodynamic forces per unit length according to the quasi-static method for a deck section
	Fig.�2�Lateral, perspective and transversal section views of the bridge

	Wind Tunnel [Hz]
	FEM [Hz]
	[%]
	Lateral symm.
	Vertical symm.
	Vertical antisymm.
	Lateral antisymm.
	Torsional symm.
	Torsional antisymm.
	0.0523
	0.0997
	0.1147
	0.1270
	0.2890
	0.3910
	0.0524
	0.1060
	0.1141
	0.1220
	0.2929
	0.4006
	0.19
	5.94
	0.53
	4.10
	1.33
	2.40
	Fig.�3�Flexural and torsional modal forms
	Fig.�4�Responses of the system for U�=�41.7�m/s; U�=�61.1�m/s; U�=�97.2�m/s
	Fig.�5�Bridge deformation at instant t�=�60s (wind speed�=�97.2�m/s)
	Fig.�6�Index parameters
	Fig.�7�Wind speed vs critical damping ratio
	Fig.�8�Influence on motion of velocity elements
	Fig.�9�Influence of aerodynamic coefficients kL={()} e kM�={()}






