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Abstract. The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many
papers with reference to linear structural models. The present paper addresses the problem of the respon:
of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural
model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach
in the context of Itd’s stochastic differential calculus. To do so, wind turbulence is idealized as the output
of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both
the equivalent linear system and the actual nonlinear one. In the second case, since the moment equatior
form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard
a Duffing oscillator, and the results compare well with Monte Carlo simulation.
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approach; iterative closure method.

1. Introduction

In last years great attention has been paid to nonlinear response to wind action as arising from the
interaction between wind and structure, but in general a linear elastic structural model has been
adopted. Among the studies in which this problem has been considered in a stochastic context by
means of analytical non simulative methods, we recall: 8aal (1976), Soize (1978), Grigoriu
(1986), Bartoli and Spinelli (1993), Caddemi and Di Paola (1995), Floris (1995, 1996), Kareem and
his collaborators (1994, 1995, 1997), Gusella and Materazzi (1998), Benfedtallo(1996, 1997,

1999). On the contrary, the response of nonlinear structures to random wind pressure has not ha
equal attention. Nevertheless, many structures exhibit nonlinearities under wind action: Bernoulli-

Navier beams with second order effects, stayed structures, large antennas, and so on. Thus,

stochastic study on the response of nonlinear structures to wind pressure has its own importance.

According to the usual model for representing the wind (Davenport 1961, Simiu and Scanlan
1996), wind pressure is proportional to the square of the sum of a mean (staticUse®t a
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dynamic oscillation around the mean, the turbuleoceThe turbulenceu is assumed to be a
stationary zero mean Gaussian process. Thus, it is fully characterized by its power spectral density
(PSD)S,u(w) (Dryden 1961, Davenport 1967, Solari 1987, Mann 1998). In this way, wind pressure
iS no more a Gaussian process. Strictly speaking, even the response of linear structures is no longe
Gaussian, and should be characterized by the infinite hierarchy of the statistical moments or
cumulants. At least, the first four are required to have an estimate of the non-Gaussianity of the
response. The computation of response statistical moments of order larger than two is a heavy tas
when the response is not Gaussian. For that reason, only few authors carried out the computation ©
moments of order larger than two (Kareemal 1994, 1995, 1997, Benfratelkt al 1996, 1997,

1999, Floris and his collaborators 1996, 2001, Gusella and Materazzi 1998).

The computational charge is clearly augmented when the structure is nonlinear. The only method
of general applicability is Monte Carlo simulation, which is notoriously very onerous from a
computational point of view. Another method is the \olterra series approach, which has been
applied to wind response of linear structures by Kareem and Zhao (1994), Keiresn(1995,

1997), and by Benfratell@t al (1997). It has some restrictions, and requires the evaluation of
lengthy multifold integrals. The extension of this method to nonlinear structures has been presented
by Tognarelliet al. (1997). Thus, there is the necessity of a method more attractive from a
computational point of view.

The moment equation approach of Itd’'s stochastic differential calculus (Itd 1951a, b, Di Paola
1993), which avoids the evaluation of multifold integrals, proved to be a very useful tool to do that
in the case of linear structures (Benfratedloal 1996, 1999, Floris 1996, Floret al 2001). This
approach is extended herein to nonlinear structures. Since the primary excitation of an Itd
differential system must be a Gaussian white noise, and the turbulence has a colored PSD, this i
approximated as the output of an appropriate linear filter excited by a Gaussian white noise, as has
been already done for linear structures.

This study is accoplished for single-dege-of-freedom (SDOF) structures with linear viscous
damping and nonlinear restoringrde given by a polynomial of the structural displacement. These
assumptions are based on the following reasons: (1) in many cases, the dynamical response to win
is dominated by the first mode, and Solari (1983a,b) gave a rationale for reducing a complex structure tc
a SDOF model; (2) a polynomial restoring force can be seen as a truncated Taylor series expansiol
of a more general non-linearity (Tognaredli al 1997). (3) The assumption of linear damping is
made for simplicity’s sake. In fact, a nonlinear damping mechanismticailbl expressed by a
polynomial function, such as both Van Der Pol's and aerodynamic damping, can be equally dealt
with in the context of the moment equation approach of Itd’s calculus.

The equation of motion and the filter equatiare transformed into a system of Ité’s statlta
differential equations. In the first step, the equation of motion is linearized as regards the restoring
force. Then, the actual nonlinear system is analyzed, for which the equations for the response
statistical moments constitute an infinite hierarchy (Di Paola 1993). Thus, a suitable closure scheme
is adopted, which operates iteratively, and profits from the computations made on the linearized
system. The applications regard a Duffing oscillator, and the results of the analytical methods are
verified by numerical simulation.
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2. Mathematical formulation
2.1. Preliminary concepts

The equation of motion of an SDOF structure with polynomial nonlinearity in the restoring force
is written as

X(6) + BoX(t) + § @X (1) = Qu(t) (1)

where the superimposed dots mean derivative with respect to Bnie,the coefficient of viscous
damping, & are real constantsn is a positive odd integer number, a@d(t) is the random
dynamical force caused by wind flow.

The summation in the lL.h.s. of (1) represents a conservative restoring force deriving from a
potential function of the formU(X) =2, & X'*¥i+1. Physical reasons require thatis odd: in
fact, the restoring force may be asymmethct globally it must have theasie sign as the
displacement. In addition, only positive values of the coeffiagnof the largest power are implicitly
considered. This means a hardening behavior: softening behaviors are encountered in practice, but the
may pose problems in a stochastic analysis. In fact, syeregative, the solution of the Fokker-Planck
equation forQqg given by a white noise would lose its significance. Thus, a different approach should
be used such as that by Sobczyk and Trebicki (2000). This subject is beyond the aim of this paper.

If wind is assumed to blow unidirectionally, and perpendicularly to the Arem which wind
velocity is approximately assumed to be constant, and neglecting the structural vElgdityis
given by

Qu(t) = SZ=R U+ u(y)? @

In Eqg. (2) p denotes the air density=(.225 kg/nj), Cp the drag coefficientM the structural
mass,U the mean wind speed on the afgandu(t) the turbulence, which, as previously stated, is
assumed as a zero mean stationary Gaussian process.

The response variablé€t), X(t) are not a Gaussian random process for the two fold reason that
the Lh.s. of Eq. (1) is nonlinear, and the Gaussian prag8ss squared in the r.h.s. A statistical
characterization through the response moments is pursued herein. Alternative approaches are th
stochastic averaging method (Roberts and Spanos 1986), which was used by Lin and Holmes (1978
for wind excitation, and the \olterra series expansion (Tognaebil 1997). Both these methods
are very onerous from a computational point of view.

To root the problem in the theory of Markov processes (BharRsid 1960), and apply Itd’s
stochastic differential calculus (Itd 1951a & b, Di Paola 1993, Lin and Cai 1995), the primary
excitation must be a Gaussian white noise. In this paper, the colored pufeissapproximately
represented by the output of a second order linear filter excited by a Gaussian stationary white noise
of unit strengthW(t), that is

u(t) OY(1) (3a)
Y(t) +2Z; wrY(1) + @PY(1) = ./rwoW(1) (3b)
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The constanty, is related to the intensity of the excitation, whileand w; determine the shape
of the PSD (see Chap. 3, sec. 3.1 and the Appendix).
The augmented system of Egs. (2) and (3b) is rewritten in It6’s form as

dz = zdt (4a)
0 moo0

dz, = =[Pz, + Z a;zy[dt + (by + byy, + byy?)dt (4b)
0 =0

dy, =y, dt (4¢)

dy, = —(2¢ wy, + w?y,)dt+ ,/mw,dB (4d)

where the state variables am=X, =X, y;=Y, y,=Y ; furthermore, 1/20Cp AM,
bo= YU 2 b= 2)U, b,= y anddB is the increment of a unit Wiener process, which is related to the
white noise by the formal relatiaaB(t)/dt = W(t).

Expressing the differdial of the non-anticipating functiop= z z; by means of Ité’s differential
rule, applying the averaging operatfe ], and dividing bydt, the differential equationsiling the
response moments,, = E[Zz5] = E[X'X"]  are obtained as

Hpq = lep—l,q+1—Qﬁoﬂpq_qu(ai“P‘f"q‘l)+qb0”p’q_l
1

+qb,E[ 2Z]-1y,] + qb,E[ Z/Z]-1y?] (5)

where the dependence on time is omitted for brevity’s sake. In the steady state the I|.h.s. vanishes
and Eq. (5) becomes an algebraic equation as is done here. In order to write the equations for the
moments of a given order the exponentp, q assume all the values for whigh+ q=r, with

p, 9= 0. By inspection of Eq. (5), other moments are noted beyond those ofrotdeparticular,

the summation in the r.h.s. has moments of order largerrthaay those withl<i<m . These
moments are called hierarchical. In other words, to compute the moments of,art@nents till

ther + m— 1 order are required, which constitutes an infinite hierarchy. A suitable closure scheme
is required. Viceversa, the cross-moments betweandy; are not hierarchical, asilivbe shown in

next section.

The simplest method of closure is obtained by linearizing the I.h.s. of Eq. (1) (Roberts and Spanos
1990). The response of a linear system to a Gaussian process is Gaussian too. In the present ca:
the excitation [see Eq. (2)] is not Gaussian, and the response of the linearized system is not such a
well. For some values of the parameters this method yields acceptable results. Otherwise, a highe
order closure is needed.

2.2. Equivalent linear system
Using the method of the equivalent stochastic linearization, Eq. (1) is replaced by

X(t) + BoX(t) + w2X(t) = Qq(t) (6)
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where the linearization parameteg is determined by minimizing the error that is made by using
Eq. (6) instead of Eq. (1) in some statistical sense.

Herein, two methods have been used to determge(@) minimization of the mean square error
(Roberts and Spanos 1990); (b) minimization of the mean square difference between the potential
function U(X) = 1/2X? of Eq. (6) and that of Eq. (1) (Falsone and Elishakoff 1994). Howeeézrgnce
has been given to (a) since the latter criterion is more onerous computationally. In the case of a nonlinea
damping mechanisng(X) in Eq. (1), another linearization paranSeteould be present in Eq.

(6), and this would be computed simultaneouslywfominimizing a total error measure.

The response moments ®fare computed resorting to the stochastic differential calculus. Then,

Egs. (4b), (5) are replaced by, respectively

dz, = — (Byz, + w2z)dt+ (by + byy, + b,y2)dt (7)

I:lpq = pUp—l,q+1_qﬁOqu_qul«lp+1,q—1+quUp,q—1+qb1E[Z’1)Zg_ly1] +qsz[ZfZg_1Yf] (8)

Now, we have a linear system excited by a polynomial form dfeaed Gaussian process. Some
authors have shown that the response statistical moments of this type of dynamic systems are
computed exactly (Grigoriu and Ariaratnam 1988, Krenk and Gluver 1988, Muscolino 1995, Di
Paola 1997). The different proofs of this statement lead to different methods of computation. The
methods by Muscolino (1995) and Di Paola (1997) have been adapted to the present case.

By inspection of Eqg. (8), it is noted that it contains cross-moments among the vaxadteby;,
that isE[Z)Z)-1y,] andE[Z)z}-yZ] To exemplify, the equations for the second moments are:

Hoo = 2[y; (9a)
Ha1 = Hop — Bolyy — Wkyo + Dollyg + b E[ Zy,] + D,E[ 21Y7] (9b)
Moz = —2BoHop— 202y + 20y, + 20, E[ Zy1] + 2b,E[ 2,y7] (9¢)

where the cross-moments afdz y(i, k=1,2), andE[z y; y>](i =1, 2; r + s=2). By applying

Itd's differential rule to the functiongy, andzy;y;, two sets of equations for these moments are
obtained. It can be shown that these sets of equations decadit other moments apart from the
moments of third and fourth order of the vecyor {y: Yo}, but these moments are computable
separately as the moments of a Gaussian vector. In this way, the computation of the response secor
order moments requires the solution of three sets of linear equations, and the knowledge of the
moments ofy. This finding is general, and can be demonstrated true for every order of moment
(Muscolino 1995).

The availability of a symbolic manipulator (MAPLE V 1991) allows to perform all the operations
from the generation of the equations to their solution automatically. It is recalled that in the steady
state the l.h.s. of Egs. (8), (9) vanishes and the problem becomes algebraic.

According to Di Paola (1997), thezfollowing coordinate transformation is adogted, v, = Y?,

Va=2Y, v4=X, s =Y, Vg=V3- V5, V=Y . These positions and Egs. (3b), (6) yield the differentials of
the seven state variables as
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dv, = v,dt, dv, =vgdt, dv;=2vdt (10a-c)
dv, = (= BoVs— WV, + by + 1/ 2b,v, + b,v,)dt (10d)
dvs = (= Bivs — 1/ 2av,)dt+ . /rw,dB (10e)
dvs = (2v; — Bivg — 20Vv,)dt + ,/mwov,d B (10f)
dv, = (= 2BV, — Ve + Twg)dt + 2, /mwyvsdB (10g)

Now, the equations for the response moments are obtained by applying 1td’s differential rule to the
function @ = vivhvEavhavBsvievlr | Another computer program based on symbolic manipulations
(MAPLE V 1991) has been set up for this second method. From a computational point of view, this
last method can be programmed in a more straightforwardbuaygives raise to a more important
computational effort inasmuch as the entire set of the equations for the moments of a given order
must be solved in a block. The results of the two methods are coincident, numerical imprecisions apart.

2.3. Actual nonlinear system

Now, let us examine the problem of computing the response moments of the actual nonlinear
system. The equations ruling these moments are obtained by specializing Eq. (5). As in the case o
the linearized system, the equations for the cross-moments among the system \araidethe
filter variablesy, must be added. In all sets of equations there are hierarchical terms, say the
equations for the-order moments recall higher order moments. A suitable closure scheme is needed
to close the infinite hierarchy.

The most popular closure method is the cumulant neglect closure method (Wu and Lin 1984,
Ibrahim et al 1985), by which the higher order moments are expressed in terms loW#reorder
moments by setting the corresponding cumulants equal to zero. To writers’ knowledge this closure
scheme has never been applied for closing the moment equations of a nonlinear system excited by
polynomial form of a filtered process, which would result cumbersome. In fact, to get the closure at
a given order, cumulants of different order should be set to zero.

Therefore, another closure scheme has been adopted. This is due to Di Paola, Floris, and Sandrelli, ar
is yet unpublished. The method is based on an iterative procedure that takes advantage of the
computations already performed on the linearized system. The procedure is organized through the
following steps:

(1) the first order moments (statistical averages) are computed by giving the higher order
(hierarchical) moments the values previously obtained on the linearized system. The second
order moments are computed by using the first order moments so obtained and the higher
order moments of the linearized system. The moments of the orders 2ill3he closure
ordern are computed in the same way.

(2) In the second iteration, the first order moments are calculated again, while giving the higher
order moments the values obtained in step (1). Then the moments of order 2n 3re...
successively computed. It is outlined that tite order moments of the nonlinear system
depend on the lower order moments and on higher order moments that are always those
obtained on the linearized system.
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(3) Repeat step (2) till the convergence is achieved.

This method requires less computer time than the cumulant neglect closure method. In fact, the
latter method introduces nonlinear relationships among the moments, while in the proposed
approach all the equations are linear.

3. Applications
3.1. Structural and wind models

In the numerical applications a Duffing oscillator has been analyzed. In this case, iis 3ah
Eqg. (1), which is recast as

X () + BoX(t) + w?[X(1) + eX°(1)] = by +byY(1) + b, Y(t) (11)

The Duffing equation governs the motion of many lumped SDOF structural systems. In particular,
the restoring force of cable-stayed structures can be reduced to a cubic polynomial; even accounting
for second order effects for a Bernoulli-Navier beam vibrating in its first mode leads to a cubic
restoring force. The structural model is in Fig. 1.

In the analyses the nonlinearity parameteis kept constant and equal to 0.5, which means a
moderately strong nonlinearity. The constant of viscous damping is givB=a&,wy,. The ratio of
critical damping{, assumes the values 0.02 and 0.05, while the nominal pulsagivaries fromrmr
to 4rrrad/ s, say the nominal periot,= 271/ wy varies between 0.5 and 20The other structural
parameters in Eq. (2) (see also Fig. 1) bte: 2161 kg A=20n?f, H=20m,Cp =1, p=1.25kg/ m?.

The mean wind speed obeys a logarithmic profile (Simiu 1973)

U(z) = 2.5u. |nz—z0 (12)

Two cases are considered: in the former the shear velacity 1.77 /' s, while in the latter is
3.80 m/ s ; the roughness lengi is 0.018 m in both. The mean speed in the centroid of thefarea
(Fig. 1) is worth 31.04 and 40 m/ s in the two cases, respectively.
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Fig. 1 Point-like structure (left), and its mechanical model (right)
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Being the turbulence(t) a zero mean stationary Gaussian process, it is fully characterized in the
frequency domain by its PSB,,(w). From a theoretical point of view, not every spectral function
might be assumed as turbulence PSD since there are some requirements that it must obey (se
Simiu and Scanlan 1996, Chap. 2). Nevertheless, many usual relationships disfyopa of all
these requirements: as an example, Davenport’s PSD (1967) is zero in the origin, is not monotonically
decreasing, and goes to zerow&®, while the turbulence PSD must be different from zeraw0,
monotonically decreasing, and infinitesimal of order 5/3 for large frequencies.

On the other hand, in order to apply the stochastic calculus, and enagéme Markov miods
of stochastic dynamics, the primary excitation must be a Gaussian white noise. A colored
excitation such asi(t) can be obtained by means of a cascade of linear filters, which can be put
in the form

Y =AY + DW (13)

whereY is the vector of filter variabledV is a vector of unit strength white noise processes, which
can reduce to a scalar, whilk and D are deterministic matrices of constants that are to be
determined in such a way to fit the theoretical or experimental colored PSD in the best way.

The simplest solution is the scalar counterpart of (13), that is

Y(t) +aY(t) = dW(1) (14)

which is known as Langevin’s equation. The PSDY() is

c
a2+ o
which in turbulence theory has been proposed by Dryden (1961). Egs. (14) and (15) have been
discarded since there are two parameters only fiimgiia non rational curve, even if Flomt al
(2001) have shown that they yield quite acceptable results for linear structures. The other equations
proposed in literature (Solari 1987, Simiu and Scanlan 1996, Mann 1998) are not rational functions, and
require a second order filter at least to get a good or acceptable fitting, that is theYviecteq.
(13) must have dimensions (2,1). Davenport's PSD admits a very good rational approximation
(Benfratello et al. 1996, 1999), but it has not been chosatabnse of the bmve mentioned
theoretical drawbacks.

In this study the proposal by Kaimetl al (1972) is adopted, which is given as

Svw) = (c=ad/ m) (15)

200u2z

ZSZaJT/3
nJ(z)

Sw(w) = (w=0) (16)

2nU(z)[1+

Eq. (16) yields a turbulence variancg which agrees with the relatioru$. In applying the
numerical simulation, wind histories are generated by using Eq. (16).
According to Egs. (3), the rational approximation of Eqg. (16) and the variance are, respectively

Wo
(- o)’ + 427wk

Sr(w) = (17)
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2 _ W
GY - 4Zf a)fg (18)
First, the filter parameters must hold the target variasgg 6u? . Unfortunately, this is the only

condition that one can impose to find the fitting PSD. To solve the problem, agaorikast square

fitting has been applied, based on Levenberg-Marquardt algofittarquardt 1963). In general and
particularly in this case, the least square method has several admissible solutions: in this study, i
has been renounced to find a general approximation of Eq. (16) determining some rational curves
expressed by Eg. (17) that were reasonably close to Eq. (16) in an interval containing the structural
frequency. More information is in the Appendix.

3.2. Results

The results for the first four response moments have been obtained by means of the following
methods: (1) Monte Carlo simulation for the sake of comparison; (2) stochastic calculus of the
equivalent linear system [Egs. (6,8)]; (3) stochastic calculus for the actual nonlinear system (Eqg. 11) by
applying the proposed closure method with the two approaches that cannot be distinguished; (4) ac
moments of an approximate response PDK given as

2B

2 4 .2
T xr i oG B G ] (19)

p(x, X) = CeXp[_ 0 0

whereC is a normalization constant.

This PDF satisfies the Fokker-Planck-Kolmogorov equation associated with Eq. (11) having the
approximate excitatiorQq(t) = u+ MW(O , wher@/(t) is a unit strength Gaussian white
noise, 1= y(U 2+ 02), andwy= Su(we), that is the actual excitation is replaced by an equivalent
white noise.

The values of the first four response moments obtained by means of the different approaches ar
listed in Tables 1, 2 fold =31.04 m/s,{,=0.02, and forU = 40 m/s,{,= 0.05, respectively. The
moments of second and higher order are plotted against the nominal period of viliyatlm/
in Figs. 2-4 for the lowest), and in Figs. 5-7 for the highebt In the tables there are also the
moments of the corresponding linear system, say wittD in Eq. (11). These moments are
computed by using the actual turbulence PSD of Eq. (16): the first and second moments are exact
while the third and fourth ones are obtained by simulation to avoid lengthy multifold integrations.
The moments of the corresponding linear system are always higher than those of the nonlinear one
and particularly forTo= 2.0 s Therefore, the nonlinear behavior of a dynamical system must be
properly considered.

A general examination of the results reveals thaflfer 0.5 s the structure is stiff with respect to
wind excitation that has very little power in this rangdrefjuency (see Fig. 9). Thus, the response
is quasi-static, and the results of the various approaches are close together, being the effect of th
nonlinearity of limited importance. A%, increases, and for the highest valudJofthe results of the
different methods scatter, and will be examined in detail. The simulation results are considered as
exact, and are assumed as a basis of comparison: the percent error in the tables is computed ¢
100[(Mkneor/ Msimu)—1], beingm a generic moment.

As regards the casd =31.04 m/s,{p=0.02, the approximate PDF (Eq. 19) is not completely
adequate, but in some instances the eagsacceptable. The equivalent linearization and the higher
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Table 1 Response moments b= 31.04 m/s{, = 0.02

Mom. Simulation SEL Er. HOC Er. PDF Er. LS
To=0.50s
m[1] 0.358533E-1 0.359399E-1 0.2 0.359470E-1 0.3 0.367060E-1 2.4 0.35981E-1
m[2] 0.153056E-2 0.148050E-2 -3.3 0.148049E-2 -3.3 0.151222E-2 -1.2  0.15426E-2
m[3] 0.734065E-4 0.675694E-4 -8.0 0.675325E-4 -8.0 0.676084E-4 -7.9 0.74174E-4
m[4] 0.386204E-5 0.335809E-5 -13.1 0.335447E-5 -13.1 0.322925E-5 -16.4 0.39253E-5
To=10s
m[1] 0.141207 0.140900 -0.2 0.141605 0.3 0.143372 1.5 0.143923
0.141813* 0.4 0.141605* 0.3
m[2] 0.248575E-1 0.241376E-1 -2.9 0.241918E-1 -2.7 0.244200E-1 -1.8 0.25989E-1
0.244511E-1* -1.6 0.241965E-1* -2.7
m[3] 0.494924E-2 0.466359E-2 -5.8 0.463534E-2 -6.3 0.460344E-2 -7.0 0.53715E-2
0.475469E-2* -3.9 0.463616E-2* -6.3
m[4] 0.108382E-2 0.992696E-3 -8.4 0.976498E-3 -9.9 0.940477E-3 -13.2 0.12208E-2
0.101863E-2* -6.0 0.978767E-3* -9.7
To=150s
m[1] 0.298956 0.288129 -3.6 0.300518 0.5 0.294398 -1.5 0.323826
m[2] 0.113511 0.106614 -6.1 0.111883 -1.4 0.107336 -5.4 0.136738
m[3] 0.484286E-1 0.448157E-1 -7.5 0.464664E-1 -4.1 0.434620E-1 -10.3 0.663023E-1
m(4] 0.226076E-1 0.209357E-1 -7.4 0.211635E-1 -6.4 0.191710E-1  -15.2 0.353995E-1
To=20s
m[1] 0.475767 0.471526 -0.9 0.493931 3.8 0.439875 -7.5 0.575690
m[2] 0.289940 0.269236 -7.1  0.279660 -3.6 0.248482 -14.3 0.445756
m[3] 0.196594 0.173238 -11.9 0.174652 -11.2  0.155059 -21.1 0.396466
m(4] 0.145125 0.122726 -154 0.152718 5.2 0.105743 -27.1 0.389948

KEYS: m[i] = E[X'] (i = 1, ..4); SEL = stochastic equivalent linearization; HOC = higher order closure; PDF
= approximate PDF of Eq. (19); LS = linear system (sdand £=0); Er. = percent error with respect to
simulation. Values inngete)'. * Falsone-Elishakoff’s linearization procedure.

order closure are substantially close together for the two lowest nominal periods, while for the other
two the higher order closure matches the simulation better. Anyhowyribns are quite acceptable.

It is worth noting that Falsone-Elishakoff’'s linearization procedure estimates the moments slightly
better, but, when used as a basis for the higher order closure, the moments of this are not improve:
or worsen .

When the average wind speed is increased to 40 m/s, even the turbulence is increased accordin
to the relation 62. In this way, system nonlinearity is more excited. The approximate PDF is
generally quite in error. In this case, the equivalent linearization shows a good performance for all
the statistical averages, yielding quite acceptable errors for the other moments of the first two
periods, and more important errors for the two larger periods. The errors of the equivadgiatiion
are on the unsafe side in some cases, while in others are overestimations. Even Falsone an
Elishakoff’s linearization procedure has been applie@hto 1.0 and 2.0 s. Fofp, =1.0 5 the moment
estimates are better, but, if used as a basis for the higher order closure, this does not become bette
For To= 2.0 5 it improves the mean square value and the third moment considerably at the expense
of a worsening in the estimates of the average and the fourth moment, being the latter greatly
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Table 2 Response moments b= 40.0 m/s o= 0.05

Mom. Simulation SEL Er. HOC Er. PDF Er. LS
To=0.50s

m[1] 0.612208E-1 0.615073E-1 0.5 0.615837E-1 0.6 0.627357E-1 2.5 0.61798E-1
m[2] 0.500585E-2 0.474120-E-2  -53 0.474188E-2 -5.3 0.454882E-2 -9.1 0.50959E-2
m[3] 0.484345E-3 0.429638E-3 -11.3 0.428116E-3 -11.6 0.362046E-3 -25.3 0.49444E-3
m(4] 0.534634E-4 0.443628E-4 -17.0 0.441432E-4 -17.4 0.310412E-4 -41.9 0.55157E-4

To=10s
m[1] 0.232414 0.228129 -1.8 0.235223 1.2 0.230563 -0.8 0.247191
0.231915* -0.2 0.235198* 1.2

m[2] 0.739292E-1 0.678985E-1 -8.2 0.703989E-1 -4.8 0.656201E-1 -11.2 0.85882E-1
0.698942E-1* -5.5 0.707238E-1* -4.3

m[3] 0.272435E-1 0.239422E-1 -12.1 0.239355E-1 -12.1 0.207817E-1 -23.7 0.35145E-1
0.249257E-1* -85 0.236350E-1* -13.3

m[4] 0.113018E-1 0.966845E-2 -14.5 0.939342E-2 -16.9 0.717660E-2 -36.5 0.16563E-1
0.101704E-1* -10.0 0.920607E-2* -18.5

To=150s
m[1] 0.456072 0.455963 -0.02 0.483006 5.9 0.412227 -9.6 0.556180
m[2] 0.281003 0.250264 -10.9 0.286460 1.9 0.220149 -21.7 0.451424
m[3] 0.195018 0.158735 -18.6 0.194911 -0.1 0.130037 -33.3 0.427590
m[4] 0.149796 0.113516 -24.2 0.155059 3.5 0.0841323 -43.8 0.468460
To=20s
m[1] 0.678216 0.667447 -1.6 0.679483 0.2 0.544487 -19.7 0.988765
0.706763* 4.2 0.693878* 2.3
m[2] 0.614914 0.535106 -13.0 0.664775 8.1 0.318648 -48.2 1.469127
0.600004* -2.4 0.705542* 14.7
m[3] 0.616024 0.495154 -19.6 0.618868 0.5 0.322786 -47.6 2.534465
0.587911* -4.6 0.559083* -9.2
m(4] 0.375928 0.516171 37.3 0.331109 -11.9 0.286323 -23.8 5.041769

0.648968* 72.6 0.325256* -13.5
KEYS as in Table 1. *Falsone-Elishakoff’s linearization procedure

overestimated. On the enage, the higher order closure proposed in this paper matches the
simulation results quite acceptably, even if the errors are over a 10% for some moments.

The principal statistical functions of the response, such as joint and marginal PDF, mean
upcrossing rate functions, and so on, can be constructed starting from the response moments
Herein, two PDFpx (x) of the displacemerX are shown in Fig. 8 to demonstrate the marked non-
Gaussianity of the response. They are obtained by inversion of the characteristic function (Roberts anc
Spanos 1990, Chap. 3):

W(w)=exply, (/1) kel (i=4-1), (20)
1
whereKy; is the cumulant of ordgrof X (it is recalled that the cumulants are directly expressed in

terms of moments). The series expansion in previous expression is truncated at the fourth or sixth
cumulant.
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The agreement of the PDF of both the linearization and the higher order closure with the
simulation is acceptable. The important feature of these plots is the marked non-Gaussianity of the
response, which is testified by the asymmetric aspect with a long tail towards the large values. This
is important in reliability estimates.
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4. Conclusions

The problem of the response of nonlinear systems to quadratic random wind pressure is addresse
herein. Attention is focused on single-degree-of-freedom oscillators with linear damping and nonlinear
restoring force with polynomial form so that the problem is doubly nonlinear, which causes the
response to be markedly non Gaussian.

The statistical characterization of a nonlinear dynamic system excited by a non-Gaussian agency
is obtainable at the expense of a notable computational effort. In fact the only methods that
presently are applicable are the Monte Carlo simulation and the \olterra series expansion. The
simulation requires the generation of several thousands of motion histories, in each of which the
equations governing the problem are numerically evaluated. dherrd series approach operates
under some restrictions: the damping must be linear, and the restoring force a polynomial. In practice,
this cannot have a degre larger than three in order to truncate the series at the second term. Wit
two terms in the series, a momeningh order is obtained by evaluating an integral witimensions.

The principal motivation of the present paper is presenting a method of analysis more appealing
from a computational point of view. Analogously to the determination of the non-Gaussian response
of a linear system subjected to wind pressure, the problem is framed in the field of Markov methods
of stochastic dynamics. These are applicable only if the excitation is a Gaussian white noise, which
is not the case of wind turbulence. The simplest approximation replaces the turbulence with a white
noise. In this way, the Fokker-Planck equation in the JPDF of the problem variables has an
analytical solution, but the computed response moments are not quite in accord with those obtainec
by simulation for all vibration periods and mean wind speeds.

Thus, resort is made to the moment equation approach of Itd's stochastic differential calculus.
This requires that the turbulence PSD is idealized as the output of one or more linear filters excited
by a Gaussian white noise. Including the filter variables in the analysis, 1td’s differential rule allows
writing the differential equations ruling the response moments. In the steady state, these equations
become algebraic.

As a first approximation, the system is linearized retaining the nonlinear excitation with the square
of the turbulence. In this way, we have a linear system excited by a quadratic polynomial of a
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filtered Gaussian process. The response moments are computed exactly, and the nonf&suss&an
are preserved. This approach yields estimates of the response moments dbeéptebly close to
those obtained by simulation in most cases, but in few others they are affected by more sgymdicant

Thus, the nonlinearities of both the oscillator and the excitation are hold, and a higher order
closure is considered. In this way, the moment equations form an infinite hierarchy. In order to close
this, an iterative procedure is proposed, which takes advantage of the moment estimates obtained fc
the linearized system.

The numerical applications, which regard a hardening Duffing oscillator, prove the validity of the
proposed approach notwithstanding the rational representation of the turbulence PSD has not bee
optimized. The results compare well with those of theerical simulation.

Finally, it is recalled that the present approach can be easily adapted to other problems in which
the dynamic system has polynomial nonlinearities in both damping and restoring force, while the
excitation is a polynomial of a filtered Gaussian process. Nonlinear systems analyzed by perturbation or
pseudo-force method can be reduced to this case, while wave forces can be expressed by means of
polynomial.
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Appendix : Approximation of wind turbulence spectrum with a rational function

In order to approximate Egs. (16) by means of Eq. (17), the filter parawgteds and w; must be properly
selected. Lacking a theoretical basis to do that, one must resort to a least square fit. The problem can be
stated as

N
3 1S (@) - S () 1 *=minimum (A1)
1

where S (w) is the target PSD, that is Eq. (16), whi#) (c) is the approximating one, ardi denotes the
number of points that are chosen for the fit. The minimization of (A.1) is constrained by the condition

+ 00

S (w)dw =
'([ ’ '([ (wf - (4)2)2 + 40Pk o

Wo

dw = 6u2 (A.2)

Levenberg-Marquardt’s algorithm (Marquardt 1963) is used in this study.

The parameters of the filters that have been used in the analyses are listed in Table 3. The comparison
among Kaimal's and approximating PSD are shown in Fig. 9 for both wind speeds. As kéga8tl4 m/s,
the agreement is good except fox 1 rad/s. ForU =40.0 m /s, the filters QU1-97 and QU2-97 show the

Table 3 Parameters of the fitting PSD

Spectrum U (m/s) Wo (m? - s w (rad/ s) &
LUNO-96 31.04 0.204688E+06 9.4355 10.181
LUDI-96 31.04 0.209036E+05 4.4428 9.9596
QuU1-97 40.0 0.1982174E+08 18.4150 28.6264
QuU2-97 40.0 1.93 0.307936 0.596094

QU1-98 40.0 0.935956E-03 0.292115E-01 0.338634
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same trend as fob = 31.04, while the filter QU1-98 appears to have a notable mismatch. However, this
disappears forw> 1. In fact, it has been used only f6=2.0s (w, = 7Trad/ s), giving the best results. It is
emphasized that the fitting has been searched in the vicinity of nominal structural freqyeordy. This is
why more fitting PSD have been used.

From a theoretical point of view, the turbulence could be approximated by means of a cascade of linear
filters, that is withm> 2 in Eq. (13). This way has been tested with 4, that is two second order filters, but
the results have been disappointing. This is probably due to the fact that the approximating PSD is infinitesimal
of order 2m agv—+ c , while Eq. (16) tends to zero @s’>. Presently, the method of the analytical continuation
as proposed by Roy and Spanos (1993) is under study.

GS
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