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Control of flutter of suspension bridge deck using TMD
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Abstract. Passive control of the flutter condition of suspension bridges using a combined vertical and
torsional tuned mass damper (TMD) system is presented. The proposed TMD system has two degrees o
freedom, which are tuned close to the frequencies corresponding to vertical and torsional symmetric
modes of the bridge which get coupled during flutter. The bridge-TMD system is analyzed for finding
critical wind speed for flutter using a finite element approach. Thomas Suspension Bridge is analyzed as
an illustrative example. The effectiveness of the TMD system in increasing the critical flutter speed of the
bridge is investigated through a parametric study. The results of the parametric study led to the optimization
of some important parameters such as mass ratio, TMD damping ratio, tuning frequency, and number of
TMD systems which provide maximum critical flutter wind speed of the suspension bridge.
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1. Introduction

Passive control of structural response due to wind forces has been attempted in the past using variot
devices. They include tuned mass damper (TMD) (Kileral 1993, Weisne 1979), multiple tuned
mass damper (MTMD) (Abe and Fujino 1994, Jangid and Datta 1997), active tuned mass damper
(ATMD) (Ankireddi and Yang 1996), tuned liquid damper (TLD) (Fujetoal 1992, Suret al 1991,
Yonedaet al 1989), tuned liquid column damper (TLCD) (Xue et2000, Sakaet al 1991, Xu et al
1992) and multiple tuned liquid dampers (MTLDs) (Fujino and Sun 1993). Most of these works are
reported for buildings. Relatively less work is available on the control of bridge responses. However
in recent years, a number of studies on the control of the response of cable-supported bridges unde
wind-induced forces have been reported. ktnal (2000) proposed a tuned mass damper, which
simultaneously reduces the vertical and torsional buffeting responses of the bridge deck and
increases the critical flutter speed of cable-stayed bridges. The proposed system has two frequencie
which are tuned to the frequencies of the first flexural and torsional structural modes, to suppress
the resonant effects. Wilde and Fujino (1998) applied dweae@erodynamic antrol method of
suppressing flutter of a very long-span bridge. This control system consists of additional control
surfaces attached to the bridge deck. The torsional movement of proposed surfaces, commanded vi
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feedback control law, is used to generate stabilizing aerodynamic forcesetldgl998) also presented

a passive aerodynamic control of bridge flutter by adding two additional surfaces to gendiaiagtab
forces and by putting an additional pendulum to control the torsional motion. Experimental study was
also conducted and very good agreement between experimental and theoretical predictions was observe
There have been also some studies to control the flutter of long span bridges using eccentric mas
on the bridges. The results were encouraging and were thought to be a poastidal pnethod for
suppressing the onset of flutter (Branceleoni 1992, Phongkuretsadg1998, and Wilcet al 1996).

The use of TMD for suppressing the coupled flutter of suspension bridge decks has been attempted b
several researchers (Dueg al 1996, Guet al 1999, and Nobutet al 1988). The Routh-Hurwitz
stability criteria was used to study therodynamic instalitiy of the bridge. A model test was also carried
out to confirm the numerical results of the control problem éGal 1998). Kobayashi and Nagaoka
(1992), and Kobayaslkait al (1998) attempted active control of flutter of suspension bridges by ailerons.
The exerted force to suppress the flutter condition follows a rule base formulation. &light§1994)
also proposed an active control strategy for the coupled flutter problem for long span bridges.

As such, the control of long span flexible bridges for wind and earthquake excitations is extremely
important since such bridges can have large vibrations due to these effects. While earthquake-induce
large deformation is an infrequent phenomenon, the wind-induced vibration in long-span bridge, like
cable-supported bridges can frequently occur. Although in recent years, there have been several studie
on the control of coupled flutter of long span suspension bridges as reported above, the subject require
more attention to explore the best practical method of controlling the bridge flutter. Some of the
issues regarding the control of flutter by TMD also need more investigation, such as control of
stiffness driven coupled flutter, optimum tuning frequency, optimum damping ratio of the TMD, etc.

In this paper, the tuned mass damper (TMD) system is used to control the flutter condition of
suspension bridges using the finite element method of analysis. As the flutter instability of suspension
bridges is caused by the self-excited aerodynamic forces, which may lead tmgdagiween
torsional and vertical vibration modes, a combined model of vertical and torsional TMD system is used
to control the flutter condition. The two degrees of freedom of the TMD system is tuned close to the
frequencies of the vertical and torsional modes of the bridge which get coupled during the flutter.
The bridge-TMD system is analyzed to obtain the critical flutter speed. As the numerical study, the
Thomas suspension bridges are selected. The increase in the critical flutter speed due to the
presence of the TMD system is investigated under a set of parametric variations. The parameter:
include tuning frequencies, mass ratio, TMD damping ratio and number of TMDs. The optimum
values of the parameters are obtained for maximum increase in the flutter speed.

2. Assumptions

The following assumptions are made in the analysis, similar to those used by Abdel-Ghaffar
(1979, 1980):

1. All stresses in the bridge elements obey the Hooke's law, and therefore no material non-
linearity is considered.

2. The initial dead load is carried by cables without causing any stress in the suspended structure.

3. The cable is assumed to be of a uniform cross section and of a parabolic profile under dead
load such that the weight of the cable can be assumed to be uniformly distributed along the
span instead of along the length of the cable.

4. The hangers (or suspenders) are assumed to be vertical and inextensible, and their forces at
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considered to be dighuted loads as if the distance between the suspenders were very small.

5. The original shape of every cross-section of the bridge deck is unaltered during vibration
although the section may undergo out-of-plane deformation (Warping). Also, the peripheral bending
in the walls of the section is negligible.

6. It is assumed that there is no tower resistance to displacement at the tower top and so the
horizontal components of the cable tensigy (due to dead load) and(t), (due to dynamic
load) are the same on both sides of the tower.

3. Equation of motion of the bridge without TMD

In general, there are two approaches that are being used in flutter analysis of suspension bridges
continuum approach and finite element approach. In the present study, the latter approach is used. Fc
this purpose, the entire bridge is discretized into two-dimensional beam elements, each consisting of twc
nodes at its ends. At each node four degrees of freedohmvais m Figs. 1(b) and(&), are consigred.

The governing equation of motion can be written as

[MI{x} +[CI{x} +[K]{x} = {F} (1)

where M] is the consistent mass matriXC] is the structural damping matrixK] is the structural
stiffness matrix; £} is the (4>< 1) vector of aeroelastic forces; ang} {s the (4 >< 1) response
vector defined as follows:

{x} = {Xu %2 s Xan} (2)

in which n is the number of nodes along the total bridge lengths the bridge response at ith
degree of freedom. Note that the aeroelastic forces for bending rotation and warping degrees of
freedom (Figs. 1(b) and (c)) are zeroes.

The aeroelastic or self-excited forces acting per unit length of the bridge span as shown in Figs. 2
(a) and (b), may be written as (Janhal 1996)
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Fig. 1 (a) Suspension bridge model; (b) bridge element with vertical displacement; and (c) bridge element
with torsion
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Fig. 2 Self excited forces: (a) distributed vertical load; (b) distributed torsional moment; (c) lumped vertical
load; and (d) lumped torsional moment.
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L, pU B[kH 5+ KH; =+ KCH3 0+ KCH; B} (3a)
h B6 . .h

M, = 2pu B [kA [0+ kA + A6+ kZA@J (3b)

in which p is air mass density) is mean wind velocityB is bridge deck widthk=Bw/U =the
reduced frequencyw is the circular response frequendy; aikd i=1 to 4 are functions df
and are the experimentally determined flutter derivatives for the deck cross-section under investigation.
Over dots indicate the time derivative. These forces are considered to be constant along the elemen
In order to evaluate the aeroelstic force vecté} {n Eq. (1), the distributed aeroelastic forces are
lumped at the element nodes as shown in Figs. 2 (c) and (d).

The mass and stiffness matrices in Eqg. (1) may be expressed as

MY | zeros
M] = |- | -~ @
6
[zeros| M” | 4 «an)
KY | zerog
[K] = === |-~ 5)
|.zeros| K°? J(an xan)

whereM" andK" are the mass and stiffness matrices, respectively in bending vibratioM 4nd

and K% are those of the torsional vibration. Using the total potential and kinetic energies of the
bridge and applying the Hamilton's principle, the structural mass and stiffness matrices of the
system can be evaluated (Abdel-Ghaffar 1979, 1980). The structural damping @aisxassumed

to be a proportional matrix to both mass and stiffness matrices as

[Cl=a[M]+a [K] (6)

in which ag and a; are the proportiorigy constants andare obtained using first two vertical and
torsional modes of the bridge (Clough and Penzien 1993).
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Using the Egs. (3), the i4< 1) aeroelastic force vectoF} can be expressed as below :
1 K AFirer L L2 F
{F} = 5pUBHATT{R) +5pU°BK B I{x} Y

where {} is defined in Eg. (2); and matricesAT] and [BF] are given in the Appendix-A.
Substituting Eq. (7) into Eqg. (1), the final equation of motion can be expressed as

[MI{X} + [CHX} +[KI{x} = ZoB7@AT{X) +3pB°lB"]{x) ®)

4. Equation of motion of the bridge with TMD

The TMD system is placed at the ith node of the bridge span as shown in Fig. 3. The TMD
system has both vertical and torsional degrees of freedom. Therefore, the bridge-TMD system has
two additional degrees of freedom. When more than one TMD are used, the additional degrees of
freedom are £ in whichr is the number of TMD systems used. Stiffness and damping parameters
of the TMD are determined from the assumed mass of the TMD and the tuning frequencies. Thus,
the TMD parameters are given by

K¥ = M¥()’ ©)
K = 15’ (10)
Ch = 2{{M7 w’ (11)
cy = 228140’ (12)

where @’ and «? are the vertical and torsional tuning frequenc®¥; andC% are the vertical and
torsional damping coefficientdyly, and1é are the masses of the TMD corresponding to vertical
and torsional degrees of freedody and % are the vertical and torsional damping ratios and
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Fig. 3 Bridge and TMD system: (a) longitudinal elevation of deck (single TMD); (b) longitudinal elevétion o
the deck (multiple TMD); and (c) bridge deck cross section at ith node.



412 Saeid Pourzeynali and T. K. Datta

denotes the number of the node where the TMD is placed. Note that a TMD is spread along the
width of the bridge deck as shown in Fig. 3. The mass matfix]f damping matrix Cgr] and
stiffness matrix Kgr] of the combined bridge-TMD are given in the Appendix-A for one TMD
placed at the ith node of the bridge deck. When more than one TMD are used, the corresponding
matrices for the bridge-TMD system can be exactly derived by expanding the matrices given in the
Appendix-A. The flutter equation of the bridge-TMD system can then be written as

[Marl{Xer} + [Corl{Xar} +[Karl{Xar} = 3pB AL ] {¥er} + 30B°@IBE I {xer}  (13)

where {xa7} is the [(4n+2r)>< 1] structural displacement vector of bridge-TMD system; pig]

and[BE;] are square matrices of siza+2r) which are derived from matricg#\"] ap@"] given

in the Appendix-A by considering columns and rows corresponding to the TMD system as zeroes. It

is noted that the effect of self-excited wind forces on the TMD system is assumed to be negligible.
For applying the multi-mode flutter analysis, the diggiment vector Xgr} can be written in

terms of (undamped) modal matri®gr]an+a) «m) Of the bridge-TMD system and modal coordinate

vector {é(1)} as :

{Xart = [Oerl{ €O} (14)
and
H & g
ey = g &0 g (15)
o : O
Hém 5

wherem is the number of modes considered. Using modal transformation, the flutter equation of
the system may be written in modal coordinates as

[Merl{ &} +[Ce1l{ &} +[Kerl{&} = {0} (16)
where
[Mer] = [@gr] [Mgr][Der] (17)
[Cer] = [®ar] TCarl[®ar] - 30B°{D] (18)
[Ker] = [®ar]"[Karl[@ar] - 50B°67[E] (19)
and
[D] = [®gr] [AE[®Per],  [E] = [Par] [BE][Per] (20)
The final flutter equation of the system is solved by putfrfg = {a} e, (i = J-1) . This
leads to
[Wlnxm{@}mx1 = {0} (21)

in which {a}={a, a, ..., an}' is the flutter mode-shape, which indicates the relative participation
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of each structural mode in flutter; and the matki¥][is expressed as :

[W] = ([Ket] — @’ [Mer]) +i[Cer] (22)

Eqg. (21) is the well-known eigen-value problem, and its solution provides the flutter condition for
the bridge-TMD system. Since the matritV] is a complex matrix, the condition de{[]=0,
requires that both the real and imaginary parts of the determinant be simultaneously zero. This is
achieved by the method of trial, in which the value of the reduced frequeigysystematically
changed until both parts of the determinant are zero at the wafige critical flutter speed can be
evaluated as

B
Uy = =2
f kf

wherek; and o are the values & and w respectively for which Eq. (21) is satisfied.

(23)

5. Numerical example

As a numerical example, the Vincent-Thomas Suspension Bridge located between San Pedro an
Terminal Island in Los Angeles County, California is chosen. For this three-span suspension bridge,
the structural data are taken from the literature, Abdel-Ghaffar (1979).

The stiffening girder is assumed to be hinged at the ends in each span, and the cables are free |
move at the tower top (i.e., roller type cable connection). The number of elements in the side spans
N;=N3z, was taken to be 11 elements, and those for the centerNspans taken as 28 elements.

The approximate theoretical expressions for the flutter derivatives for the bridge deck may be
written as (Scanlan and Tomko 1971)

Al =0; H;=-0.8y for all y

A; = —0.1436sin( 0.598¢) 0< y<5.25

A, = 0.0842% —0.4411 5.25<y

H; = 0 0<y<5

H; = 0.00583° —0.012%" — 0.60252 5<y

A; =0 0<y<

A; = 0.2y-0.4 2<y<6

A; = 0.3y-1 6<y

H; = 0 0<y<4

H; = —0.011666° + 0.11y* — 1.41334/ + 4.64003 4<y (24)
inwhichyzzTn; k:%

Since the values oH, and; for this bridge are not available, they are assumed to be
negligible. The given approximate theoretical values of flutter derivatives are plotted in Fig. 4. The
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Fig. 4 Approximate flutter derivatives Eq. (24) of Thomas Suspension Bridge

TMD properties are taken as
MY; =7% of total bridge mass =5:810° kg;
KY. =(1.3743§ MY,  =1095446.3 N/m;

(tuned to 1 symmetric frequency of the bridge)

18 = MY, r?=5.8x 107X 5?=1.45< 10’ kg-m? ;
K¢ = (3.1163%1¢ =1.41< 1°N-m ;

(tuned to 1 symmetric torsional frequency)
=48 = 2%

The numerical results are obtained with the values of above parameters unless mentioned otherwise

5.1. Free vibration

The results of the free vibrational analysis (first 19 frequencies and first 6 mode shapes) are
respectively shown in Table 1 and Fig. 5. In the figiwfeand T refer to vertical and torsional
respectively, and\ and S refer to anti-symmetric and symmetric, respectively. It is seen that the first
five modes correspond to the vertical mode of vibration. Note that free vibrational mode shapes are
either purely vertical or purely torsional as it would be expected.
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Table 1 Modal properties of Vincent-Thomas Suspension Bridge

Mode No. Frequencw ( rad /sec.) Mode type Modal mass)(
1 1.2324 V-AS 2459813.72
2 1.3743 V-S 2241151.36
3 2.1595 V-AS 1691846.37
4 2.1744 V-S 2835117.10
5 2.8710 V-S 2473230.58
6 3.1163 T-S 97988365.63
7 3.4215 V-AS 2587940.03
8 4.4124 T-AS 104389535.3
9 5.0012 V-S 2370506.36

10 6.68024 T-AS 71798615.43
11 6.7388 T-S 127314525.1

12 6.8351 V-AS 853012.18
13 6.8352 V-S 1021244.00
14 6.8791 V-AS 2460065.24
15 7.0556 T-S 90569439.11
16 9.1062 V-S 2441548.53
17 9.2418 T-AS 1098227534.8

18 11.6557 V-AS 2587889.91
19 11.9381 T-S 103285020.90

Note: T=torsional;V=vertical; S=symmetric;AS=anti-symmetric

mode 1 /\ mode 4 /\ /\ /\
\VERY

(V-A) v-9)

=0.1961 hz =0.3461 hz

mode 2 /\ mode §

(V-8) v v-S) e M
n=0.2187 hz \/ n=0.4569 hz

m(?/‘.ji)s /\ mode 6 /\
n=0.3437 hz \/ (T-5) 1=0.4960 hz

Fig. 5 First six free vertical and torsional vibration mode-shapes

5.2. Flutter

Table 2 shows the relative participation of different modes in the flutter for three cases namely, (i) 6-mode
analysis; (ii) 7-mode analysis and (iii) 10-mode analysis for the bridge without TMD. It is seen from the
table that the 6th mode (i.e., the first symmetric torsional mode) is the predominant mode for the
flutter condition. This mode gets coupled with the 2nd and 5th modes, watgdine first and third
vertical symmetric modes, respectively for the flutter condition. The contributions of the other modes
in flutter occurrence are very less in compan with these modes. Thus, consideration of first
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Table 2 Relative flutter mode participation

Magnitude : &
Mode No.
Case 1 2 3 4 5 6 7 8 9 10
x107  x102 x10'® x10*  x10t x1 x101%  x107  x10% x10°
1 7.8630 8.2849 1.2820 7.0984 1.7827 1.0 - - - -
2 8.7197 9.1670 3.0392 7.8965 1.9034 1.0 4.2003 - - -
3 7.8998 9.1670 1.7308 7.8965 1.9034 1.0 4.0899 9.1579 6.5869 2.2922

six modes for the flutter analysis is sufficient. The same observation is made for the bridge-TMD
system. Therefore, for further parametsiztidies first six modes are considered in the analysis.
The flutter speed for the bridge alone, for a damping ratio of 0.6%,3%1.8 m/sec. For a single

TMD (Fig. 3(a)) placed at the center, the flutter speed is obtainé 263.02 m/sec (for TMD

mass ratio of 7%), which shows a 21.7% increase in the flutter speed. The effectiveness of TMD in
increasing the flutter speed is investigated by conducting a parametric study. The parameters
include the TMD mass and damping ratios, tuning frequencies and the number of TMDs.

5.3. Effect of mass ratio on the flutter speed

The effect of the ratio of the TMD mass to total bridge mass (mass ratio) on the flutter speed is
shown in Fig. 6. The effect is shown for a TMD damping ratio of 3% for both vertical and torsional
degrees of freedom. It is seen from the figure that the flutter speed increases with the increase in the
mass ratio up to a certain value and then, it remains almost insensitive to the variation of the mass
ratio. There is practically no change in the flutter speed beyond a ntiassfr@a%. For this mass
ratio, the increase in the flutter speed is about 30%. This shows that tistseaexoptimum mass
ratio beyond which no significant improvement of the stability against flutter can be achieved with
the help of a single TMD. Further, it is seen from the figure that the use of a mass ratio of 3%
lowers the flutter speed marginally from that obtained with 7% mass ratio (i.e., 67.33 m/sec to 65.79
m/sec). Therefore, it is more realistic to use 3% mass ratio for the control ddittbe §peed using

80

75 F 1—o—TMD ‘="/..3;
8 70f
~— T———
£ 65
8 =
3 60 /
o
55
5 !
5 50|
w
45
40 L

0 2 4 6 8 10 12 14
TMD mass to total bridge mass ratio (%)
Fig. 6 Effect of mass ratio on the flutter speed
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TMD. For further parametric study, 3% mass ratio is used.
5.4. Effect of tuning frequency on the flutter speed

In order to obtain the effect of tuning frequencies on the flutter speed, the vertical and torsional
frequencies of the TMD are changed keeping the TMD mass as 3% of the total mass of the bridge.
By changing the frequencies, various ratios of vertical frequency of TMD tdhttte vertical
frequency of the bridger{) and torsional frequency of the TMD to the first torsional frequency of
the bridge (;) are obtained. Note that the modes corresponding to these bridge frequencies get
coupled during flutter. For different pairs of these frequency ratios, the flutter speed for the bridge is
obtained for a TMD damping ratio equal to 2% and 5%. The variation of the flutter speed with the
pair of frequency ratios is shown in Fig. 7. Pairs of frequency ratios are showq, a9 {n the
figure. It is seen from the figure that there exists a pair of frequency ratios for which the flutter
speed becomes maximum. The corresponding TMD frequencies are the optimunfraquegcies.

For the example problem, the optimum tuning frequencies are such that the torsional frequency of
the TMD is about 0.8 times the first torsional frequency of the bridge, while the vertical frequency
of the TMD is about 1.2 times the 3rd vertical frequency of the bridge. Thus, maximum control of
the flutter condition is not achieved when TMD frequencies perfectly match with the bridge
frequencies. At the optimum tuning frequencies, the flutter speed is about 1.43 times the uncontrolled
flutter speed for 2% TMD damping ratio, and is about 2.03 times the uncontrolled flutter speed for
5% TMD damping ratio. Further, it is observed that the effect of the damping of the TMD on the
control of flutter is maximum at the optimum tuning frequencies.

5.5. Effect of TMD damping ratio on the flutter speed
Fig. 8 shows the &fct of TMD damping ratio on the flutter speed. It can be seen from the figure that

the damping of the TMD has significant effect on improving the flutter condition of the bridge. With
very small damping of the TMD (i.e., 2% or 5%), it is not possible to obtain much control of the flutter

110
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Fig. 7 Effect of tuning frequencies on the flutter speed (TMD mass is 3%)
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Fig. 8 Effect of TMD damping ratio on the flutter speed (structural damping is 0.6%)
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Fig. 9 Effect of the number of TMDs on the flutter speed

condition of the bridge. There will be practically no increase in the flutter speed if only a spring-mass

system is suspended from the bridge deck. However, if the damping is increased to about 20%, there is
substantial increase in the flutter speed (1.76 times the uncontrolled flutter speed). Further, it is observe
that there is an optimum damping ratio for the TMD for which the maximum control is achieved.

5.6. Effect of the number of TMD devices on the flutter speed

In order to study the effect of the number of TMD devices on the flutter speed, a number of TMD
devices are arranged symmetrically in the middle of the center span of the bridge as shown in Fig.
3(b). For each TMD, the mass ratio, damping ratio and the tuning frequency ratios are taken as 3%,
2% and (1.2, 0.8) respectively. The variation of flutter wind speed with the number of TMDs is
shown in Fig. 9. The variation shows a definite maximum. The maximum flutter speed is obtained
for three numbers of TMD devices put in the middle of the center span of the bridge. The
corresponding flutter speed is 101.23 m/sec, 1.95 times the uncontrolled flutter speed. Thus, there
exists an optimum number of TMD that produces the best control.
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6. Conclusions

A method of passive control of suspension bridge deck flutter condition using TMD is presented.
The proposed passive control technique uses a TMD system, which has coupled vertical-torsional
charactestic and theefore, is effective in contliing the aerodynamic coupled flutter of the bridge
deck. The effectiveness of the control scheme is investigated through a parametric study. From the
results of the parametric study, the following conclusions can be drown

1. Significant increase in the flutter speed can be achieved by suspending TMDs from the bridge
deck. The amount of increase in the flutter speed depends upon the mass ratio, TMD damping
ratio, tuning frequencies and the number of TMDs.

2. For practical purposes the optimum mass ratio of the single TMD for the example problem
may be taken as 3%.

3. The TMD damping has a significant effect on the flutter speed. There exists an optimum
damping ratio for the TMD for which maximum increase in flutter wind speed is achieved.

4. Tuning frequencies have the maximum effect on the flutter speed. Maximum increase in the
flutter speed is achieved by tuning TMD frequencies (vertical and torsional) close (but not
exactly equal) to the frequencies of the bridge modes which get coupled during flutter. For the
example problem, tuning frequencies are 1.2 times and 0.8 times the 3rd vertical and first
torsional frequencies of the bridge, respectively.

5. Flutter speed does not monotonically increase with the increase in the number of TMDs
suspended from the bridge deck. There is an optimum number of TMDs for which maximum
increase in theldtter speed is achieved. For the example problem, this numbeeds th

References

Abdel-Ghaffar, A.M. (1980), “Vertical vibration analysis of suspension bridges3truct. Div., ASCE, 10610),
2053-2074.

Abdel-Ghaffar, A.M. (1979), “Free torsional vibrations of suspension briddesStruct. Div.,ASCE, 1054),
767-789.

Abe, M. and Fujino, Y. (1994), “Dynamic characterization of multiple tuned mass dampers and some design
formulas”,J. Earthquake Eng. Struct. Dy23(8), 813-835.

Ankireddi, S. and Yang, H.T.Y. (1996), “Simple ATMD control methodology for tall building subject to wind
loads”,J. Struct. EngASCE, 122(1), 83-91.

Branceloni, F. (1992), “The construction phase and its aerodynamic isdeestiynamics of Large Bridges
(Larsen A. ed.), A. A. Balkelma, Rotterdam, Holland, 17-158.

Clough, R.W. and Penzien, J. (1993ynamics of StructuresSecond Edition, McGraw-Hill: New York.

Dung, N.N., Miyata, T., and Yamada, H. (1996), “Structural control in consideration of flutter response in long
span bridges™Proc. the 2nd Int. Workshop on Structural Contlébng Kong, 152-162.

Dung, N.N., Miyata, T., and Yamada, H. (1996), “Application of robust control to the flutter in long span
bridges”,J. Struct. Eng. Earthq. EnglSCE 42A, 847-853.

Fujino, Y. and Sun, L.M. (1993), “Vibration control by multiple tuned liquid dampers (MTLDsBtruct. Eng.,
ASCE, 11912), 3482-3502.

Fujino, Y., Sun, L., Pacheco, B.M., and Chaiseri, P. (1992), “Tuned liquid damper (TLD) for suppressing
horizontal motion of structuresd, Eng. Mech 11§10), 2017-2030.

Gu, M., Chen, S.R., and Chang, C.C. (1999), “Buffeting control of the Yangpu Bridge using multiple tuned mass
dampers”,Proc. the 10th Int. Conf. on Wind Engineerirfgarsen A.et al ed.), Copenhagen, Denmatk,
893-898.

Gu, M., Chang, C.C., Wu, W., and Xiang, H.F. (1998), “Increase of critical flutter wind speed of long span
bridges using tuned mass dampér’'wind Eng. and Ind. Aerqd’3, 111-123.



420 Saeid Pourzeynali and T. K. Datta

Jain, A., Jones, N.P., and Scanlan, R.H. (1998), “Effect of modal damping on bridge aeroeldstithtyd, Eng.
Ind. Aerod, 77-78 421-430.

Jain, A., Jones, N.P., and Scanlan, R.H. (1996), “Coupled flutter and buffeting analysis of long-span bridges”,
Struct. Eng.ASCE, 1227), 716-725.

Jangid, R.S. and Datta, T.K. (1997), “Performance of multiple tuned mass dampers for torsionally coupled
system”,J. Earthg. Eng, Struct. Dyr26(3), 307-317.

Kihara, H., Kunitsu, H., and Asami, Y. (1993), “Structural design and wind resistance of Fukuoka Tower with
TMD”, Proc. Struct. Cong. Struct. Enig Natural Hazard Mitigation, ASCE, New York, N.Y., 6861.

Kobayashi, H. and Nagaoka, H. (1992), “Active control of flutter of a suspension brilgé/ind Eng. Ind.
Aerod, 41-44 143-151.

Kobayashi, H., Ogawa, R., and Taniguchi, S. (1998), “Active flutter control of a bridge deck by ailProns”,
the 2nd World Conf. on Structural Contr@obori T.et al ed.), Kyoto, Japarg, 1841-1848.

Lin, Y.Y., Cheng, C.M., and Lee, C.H. (2000), “A tuned mass damper for suppressing the coupled flexural and
torsional buffeting response of long-span bridg@sEngrg.Structs. Elsevier,22, 1195-1204.

Miyata, T., Yamada, H., Dung, N.N., and Kozama, K. (1994), “On active control and structural response control
of the coupled flutter problem for long span bridgdafpc. of 1st World Conf. on Structural Contrdlos
Angeles, USA, VI. 1, WA4-40-49.

Nobuto, J., Fujino, Y., and Ito, M. (1988), “A study on the effectiveness of TMD to suppress a coupled flutter of
bridge deck”J. Struct. Mech. Earthg. EnglSCE, 398/1-10, 413-416 (in Japanese).

Phongkumsing, S., Wilde, K., and Fujino, Y. (1998), “Analytical study on flutter suppression by eccentric mass
method on 3D full suspension bridge modélfoc. the 2nd World Conf. on Struct. Contrilyoto, Japan3,
1797-1806.

Sakai, F., Takaeda, S., and Tamaki, T. (1991), “Tuned liquid column damper (TLCD) for cable-stayed bridges”,
In: Proceeding Specialty Conf. on Innovation in cable-stayed bridigdsioka, Japan, 197-205.

Scanlan, R.H. and Tomko, J.J. (1971), “Airfoil and bridge deck flutter derivatiestie Engrg. Mech. Div.,
ASCE,97(6), 1717-1737.

Sun, L.M., Fujino, Y., Pacheco, B.M., and Chaiseri, P. (1991), “Modeling of tuned liquid damper (TLD)”",
Proceeding of 8th Int. Conf. on Wind Engineeri®VE, London, Canada.

Weisne, K.B. (1979), “Tuned mass damper to reduce building wind mof8&E, Conventioand Exposition,
Preprint 3510 ASCE, New York, N.Y.

Wilde, K. and Fujino, Y. (1998), “Aerodynamic control of bridge deck flutter by active surfacdstig. Mech.,

ASCE, 1247), 718-727.

Wilde, K., Fujino, Y., and Kawakami, T. (1998), “Analytical and experimental study on passive aerodynamic
control of flutter of bridge deck sectiord, Wind Eng. Ind. Aerod80(1-2), 105-119.

Wilde, K., Fujino, Y., and Prabis, V. (1996), “Effects of eccentric mass on flutter of long span biAdme"2nd
Int. Workshop on Structural Contrdiong Kong, 564-574.

Xue, S.D., Ko, J.M. and Xu, Y.L. (2000), “Tuned liquid column damper for suppressing pitching motion of
structures”J. Eng. Struct.23, 1538-1551.

Xu, Y.L., Samali, B. and Kwok, K.C.S. (1992), “Control of along-wind response of structures by mass and liquid
dampers”J. Eng. Mech ASCE,11§1), 20-39.

Yoneda, M., Fujino, Y., Kande, H., Yamamoto, A., Miyamoto, Y., Ando, O., Maeda, K., and Katayama, T.
(1989), “A practical study of tuned liquid damper with application to the Sakitama Briglg@/ind Eng(in
JapaneseXl, 105-106.



Control of flutter of suspension bridge deck using TMD

Appendix-A
Matrices [AF] and [BF] can be written as
ML, | BH;L, |
0 zeros | 0 zeros
HiL, | BH;L,
0 | 0
I
zeros HiL, | zeros BHL,
0| 0
[AT] = |
BAIL, | B°AjL,
0 zeros | 0 zeros
BAIL, | B2AsL,
0 | 0
I
zeros BAIL, | zeros B°AjL,
0| 0
and - . = (4n x4n)
H; :
ELl | HsLy
0 zeros | 0 zeros
%ILZ I H;’;LZ
0 | 0
I
Ha .
zeros Bl | zeros H3L,
[87] = 0]
I
AL, | BASL,
0 zeros | 0 zeros
AL, | BAIL,
0 | 0
I
zeros AL, | zeros BASL,
L 0| A(an x an)

421
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The combined bridge-TMD system matrices also can be evaluated as

MY 0 | zerog
0 M¥|
[Mgq] = | (A3)
| M 0
zeros | o 18 Lian+24n+2)
OR OR ORO | |
OR KYg+ KY OR —K | zeros
OR OR ORO |
0 —KY 0 KY|
[Ker] = | (A4)
| OR OR OR O
| OR K8gr+K¥¢ OR —K&
zeros | OR OR OR 0
L | 0 —K? 0 K1@_ (4n+2)(4n +2)
and
OR OR ORO | |
OR Qg+ CY OR-C/ | zeros
OR OR ORO |
o -c¢f o0 cf|
[Cerl = | (AS)
|OR  OR OR 0
| OR Cfr+C¢ OR —C¢
zeros | OR OR OR 0
L | o —Cf 0 C?_ (4n+2)(4n +2)

in which [Mgq], [Kgr] and [Cgr] are the mass, stiffness and damping matrices of the combined bridge-TMD
system. In the matricé@R refers to the original bridge component without using TMD.
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