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Control of flutter of suspension bridge deck using TMD
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Abstract. Passive control of the flutter condition of suspension bridges using a combined vertica
torsional tuned mass damper (TMD) system is presented. The proposed TMD system has two de
freedom, which are tuned close to the frequencies corresponding to vertical and torsional sym
modes of the bridge which get coupled during flutter. The bridge-TMD system is analyzed for fi
critical wind speed for flutter using a finite element approach. Thomas Suspension Bridge is analy
an illustrative example. The effectiveness of the TMD system in increasing the critical flutter speed 
bridge is investigated through a parametric study. The results of the parametric study led to the optim
of some important parameters such as mass ratio, TMD damping ratio, tuning frequency, and num
TMD systems which provide maximum critical flutter wind speed of the suspension bridge.

Key words:  tuned mass damper; bridge flutter; suspension bridges; passive control.

1. Introduction

Passive control of structural response due to wind forces has been attempted in the past using
devices. They include tuned mass damper (TMD) (Kihara et al. 1993, Weisne 1979), multiple tuned
mass damper (MTMD) (Abe and Fujino 1994, Jangid and Datta 1997), active tuned mass d
(ATMD) (Ankireddi and Yang 1996), tuned liquid damper (TLD) (Fujino et al. 1992, Sun et al. 1991,
Yoneda et al. 1989), tuned liquid column damper (TLCD) (Xue et al. 2000, Sakai et al. 1991, Xu et al.
1992) and multiple tuned liquid dampers (MTLDs) (Fujino and Sun 1993). Most of these work
reported for buildings. Relatively less work is available on the control of bridge responses. Ho
in recent years, a number of studies on the control of the response of cable-supported bridge
wind-induced forces have been reported. Lin et al. (2000) proposed a tuned mass damper, wh
simultaneously reduces the vertical and torsional buffeting responses of the bridge dec
increases the critical flutter speed of cable-stayed bridges. The proposed system has two freq
which are tuned to the frequencies of the first flexural and torsional structural modes, to su
the resonant effects. Wilde and Fujino (1998) applied an active aerodynamic control method of
suppressing flutter of a very long-span bridge. This control system consists of additional c
surfaces attached to the bridge deck. The torsional movement of proposed surfaces, comman
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feedback control law, is used to generate stabilizing aerodynamic forces. Wilde et al. (1998) also presented
a passive aerodynamic control of bridge flutter by adding two additional surfaces to generate stailizing
forces and by putting an additional pendulum to control the torsional motion. Experimental stud
also conducted and very good agreement between experimental and theoretical predictions was o
There have been also some studies to control the flutter of long span bridges using eccentr
on the bridges. The results were encouraging and were thought to be a possible practical method for
suppressing the onset of flutter (Branceleoni 1992, Phongkumsing et al. 1998, and Wild et al. 1996).

The use of TMD for suppressing the coupled flutter of suspension bridge decks has been attem
several researchers (Dung et al. 1996, Gu et al. 1999, and Nobuto et al. 1988). The Routh-Hurwitz
stability criteria was used to study the aerodynamic instability of the bridge. A model test was also carrie
out to confirm the numerical results of the control problem (Gu et al. 1998). Kobayashi and Nagaok
(1992), and Kobayashi et al. (1998) attempted active control of flutter of suspension bridges by ailer
The exerted force to suppress the flutter condition follows a rule base formulation. Miyata et al. (1994)
also proposed an active control strategy for the coupled flutter problem for long span bridges.

As such, the control of long span flexible bridges for wind and earthquake excitations is extr
important since such bridges can have large vibrations due to these effects. While earthquake-
large deformation is an infrequent phenomenon, the wind-induced vibration in long-span bridg
cable-supported bridges can frequently occur. Although in recent years, there have been severa
on the control of coupled flutter of long span suspension bridges as reported above, the subject 
more attention to explore the best practical method of controlling the bridge flutter. Some o
issues regarding the control of flutter by TMD also need more investigation, such as cont
stiffness driven coupled flutter, optimum tuning frequency, optimum damping ratio of the TMD,

In this paper, the tuned mass damper (TMD) system is used to control the flutter condit
suspension bridges using the finite element method of analysis. As the flutter instability of susp
bridges is caused by the self-excited aerodynamic forces, which may lead to coupling between
torsional and vertical vibration modes, a combined model of vertical and torsional TMD system is
to control the flutter condition. The two degrees of freedom of the TMD system is tuned close 
frequencies of the vertical and torsional modes of the bridge which get coupled during the 
The bridge-TMD system is analyzed to obtain the critical flutter speed. As the numerical stud
Thomas suspension bridges are selected. The increase in the critical flutter speed due
presence of the TMD system is investigated under a set of parametric variations. The para
include tuning frequencies, mass ratio, TMD damping ratio and number of TMDs. The opt
values of the parameters are obtained for maximum increase in the flutter speed.

2. Assumptions

The following assumptions are made in the analysis, similar to those used by Abdel-G
(1979, 1980):

1. All stresses in the bridge elements obey the Hooke’s law, and therefore no materia
linearity is considered.

2. The initial dead load is carried by cables without causing any stress in the suspended str
3. The cable is assumed to be of a uniform cross section and of a parabolic profile unde

load such that the weight of the cable can be assumed to be uniformly distributed alo
span instead of along the length of the cable. 

4. The hangers (or suspenders) are assumed to be vertical and inextensible, and their fo
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considered to be distributed loads as if the distance between the suspenders were very sm
5. The original shape of every cross-section of the bridge deck is unaltered during vib

although the section may undergo out-of-plane deformation (Warping). Also, the peripheral be
in the walls of the section is negligible. 

6. It is assumed that there is no tower resistance to displacement at the tower top and
horizontal components of the cable tension Hw, (due to dead load) and H(t), (due to dynamic
load) are the same on both sides of the tower.

3. Equation of motion of the bridge without TMD

In general, there are two approaches that are being used in flutter analysis of suspension 
continuum approach and finite element approach. In the present study, the latter approach is u
this purpose, the entire bridge is discretized into two-dimensional beam elements, each consisting
nodes at its ends. At each node four degrees of freedom, as shown in Figs. 1(b) and 1(c), are considered.

The governing equation of motion can be written as

(1)

where [M ] is the consistent mass matrix; [C] is the structural damping matrix; [K ] is the structural
stiffness matrix; {F } is the (4n� 1) vector of aeroelastic forces; and {x} is the (4n� 1) response
vector defined as follows:

(2)

in which n is the number of nodes along the total bridge length; xI is the bridge response at ith
degree of freedom. Note that the aeroelastic forces for bending rotation and warping degr
freedom (Figs. 1(b) and (c)) are zeroes. 

The aeroelastic or self-excited forces acting per unit length of the bridge span as shown in 
(a) and (b), may be written as (Jain et al. 1996)

M[ ] x··{ } C[ ] x·{ } K[ ] x{ }+ + F{ }=

x{ } x1 x2 … x4n, , ,{ }1 4n×
T=

Fig. 1 (a) Suspension bridge model; (b) bridge element with vertical displacement; and (c) bridge e
with torsion
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in which ρ is air mass density; U is mean wind velocity; B is bridge deck width; k=Bω /U = the
reduced frequency; ω is the circular response frequency;  and , i = 1 to 4 are functions of k
and are the experimentally determined flutter derivatives for the deck cross-section under invest
Over dots indicate the time derivative. These forces are considered to be constant along the e
In order to evaluate the aeroelstic force vector {F } in Eq. (1), the distributed aeroelastic forces a
lumped at the element nodes as shown in Figs. 2 (c) and (d).

The mass and stiffness matrices in Eq. (1) may be expressed as

(4)

(5)

where M V and K V are the mass and stiffness matrices, respectively in bending vibration; anM θ

and K θ are those of the torsional vibration. Using the total potential and kinetic energies o
bridge and applying the Hamilton's principle, the structural mass and stiffness matrices 
system can be evaluated (Abdel-Ghaffar 1979, 1980). The structural damping matrix [C] is assumed
to be a proportional matrix to both mass and stiffness matrices as

[C]=a0 [M ]+a1 [K ] (6)

in which a0 and a1 are the proportionality constants and are obtained using first two vertical an
torsional modes of the bridge (Clough and Penzien 1993).

Le
1
2
---ρU2B kH1

* h
·

U
---- kH2

* Bθ
·

U
------- k2H3

* θ k2H4
* h
B
---+ + +=

Me
1
2
---ρU2B2 kA1

* h
·

U
---- kA2

* Bθ
·

U
------- k2A3

* θ k2A4
* h
B
---+ + +=

Hi
* Ai

*

M[ ]
M V

| zeros

|

zeros| M θ
4n 4n×( )

=

K[ ]
K V | zeros

|

zeros| K θ
4n 4n×( )

=

Fig. 2 Self excited forces: (a) distributed vertical load; (b) distributed torsional moment; (c) lumped ve
load; and (d) lumped torsional moment.
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Using the Eqs. (3), the (4n� 1) aeroelastic force vector {F} can be expressed as below :

(7)

where {x} is defined in Eq. (2); and matrices [AF ] and [BF ] are given in the Appendix-A.
Substituting Eq. (7) into Eq. (1), the final equation of motion can be expressed as

(8)

4. Equation of motion of the bridge with TMD

The TMD system is placed at the ith node of the bridge span as shown in Fig. 3. The 
system has both vertical and torsional degrees of freedom. Therefore, the bridge-TMD syste
two additional degrees of freedom. When more than one TMD are used, the additional deg
freedom are 2r, in which r is the number of TMD systems used. Stiffness and damping param
of the TMD are determined from the assumed mass of the TMD and the tuning frequencies.
the TMD parameters are given by

(9)

(10)

(11)

(12)

where ωV and ωθ are the vertical and torsional tuning frequencies; CV
Ti  and Cθ

Ti  are the vertical and
torsional damping coefficients; MV

Ti  and I θ
Ti  are the masses of the TMD corresponding to verti

and torsional degrees of freedom; ζ V
Ti  and ζθ

Ti  are the vertical and torsional damping ratios andi

F{ } 1
2
---ρU2B

k
U
---- 

  AF[ ] x·{ } 1
2
---ρU2Bk2 BF[ ] x{ }+=

M[ ] x··{ } C[ ] x·{ } K[ ] x{ }+ +
1
2
---ρB2ω AF[ ] x·{ } 1

2
---ρB3ω BF[ ] x{ }+=

KTi
V MTi

V ωV( )2
=

KTi
θ ITi

θ ωθ( )
2

=

CTi
V 2ζTi

V MTi
V ωV

=

CTi
θ 2ζTi

θ ITi
θ ωθ=

Fig. 3 Bridge and TMD system: (a) longitudinal elevation of deck (single TMD); (b) longitudinal elevatiof
the deck (multiple TMD); and (c) bridge deck cross section at ith node.
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denotes the number of the node where the TMD is placed. Note that a TMD is spread alo
width of the bridge deck as shown in Fig. 3. The mass matrix [M BT], damping matrix [CBT ] and
stiffness matrix [KBT] of the combined bridge-TMD are given in the Appendix-A for one TM
placed at the ith node of the bridge deck. When more than one TMD are used, the corresp
matrices for the bridge-TMD system can be exactly derived by expanding the matrices given
Appendix-A. The flutter equation of the bridge-TMD system can then be written as

(13)

where {xBT} is the [(4n+2r)� 1] structural displacement vector of bridge-TMD system; and 
and  are square matrices of size (4n+2r) which are derived from matrices  and  give
in the Appendix-A by considering columns and rows corresponding to the TMD system as zer
is noted that the effect of self-excited wind forces on the TMD system is assumed to be neglig

For applying the multi-mode flutter analysis, the displacement vector {xBT} can be written in
terms of (undamped) modal matrix [ΦΦΦΦBT][(4n+2r)�m] of the bridge-TMD system and modal coordina
vector {ξ (t)} as :

(14)

and

(15)

where m is the number of modes considered. Using modal transformation, the flutter equati
the system may be written in modal coordinates as

(16)

where

(17)

(18)

(19)

and

(20)

The final flutter equation of the system is solved by putting . T
leads to

(21)

in which {a}={ a1, a2, …, am} T is the flutter mode-shape, which indicates the relative participa

M BT[ ] x··BT{ } CBT[ ] x·BT{ } K BT[ ] xBT{ }+ +
1
2
---ρB2ω ABT

F[ ] x·BT{ } 1
2
---ρB3ω BBT

F[ ] xBT{ }+=

ABT
F[ ]

BBT
F[ ] AF[ ] BF[ ]

xBT{ } ΦBT[ ] ξ t( ){ }m 1×=

ξ t( ){ }

ξ1 t( )
ξ2 t( )

ξm t( ) 
 
 
 
 
 
 

=

�

M BT[ ] ξ
··

{ } CBT[ ] ξ·{ } K BT[ ] ξ{ }+ + 0{ }=

M BT[ ] ΦBT[ ]T M BT[ ] ΦBT[ ]=

CBT[ ] ΦBT[ ]T CBT[ ] ΦBT[ ] 1
2
---ρB2ω D[ ]–=

K BT[ ] ΦBT[ ]T K BT[ ] ΦBT[ ] 1
2
---ρB3ω2 E[ ]–=

D[ ] ΦBT[ ]T ABT
F[ ] ΦBT[ ]= E[ ] ΦBT[ ]T

= BBT
F[ ] ΦBT[ ],

ξ{ } a{ }eiωt
= i 1–=( ),

W[ ]m m× a{ }m 1× 0{ }=
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of each structural mode in flutter; and the matrix [W ] is expressed as :

(22)

Eq. (21) is the well-known eigen-value problem, and its solution provides the flutter conditio
the bridge-TMD system. Since the matrix [W ] is a complex matrix, the condition det[W ]=0,
requires that both the real and imaginary parts of the determinant be simultaneously zero. 
achieved by the method of trial, in which the value of the reduced frequency, k is systematically
changed until both parts of the determinant are zero at the same ω. The critical flutter speed can be
evaluated as

(23)

where kf and ω f are the values of k and ω respectively for which Eq. (21) is satisfied.

5. Numerical example

As a numerical example, the Vincent-Thomas Suspension Bridge located between San Pe
Terminal Island in Los Angeles County, California is chosen. For this three-span suspension 
the structural data are taken from the literature, Abdel-Ghaffar (1979).

The stiffening girder is assumed to be hinged at the ends in each span, and the cables ar
move at the tower top (i.e., roller type cable connection). The number of elements in the side
N1=N3, was taken to be 11 elements, and those for the center span, N2 was taken as 28 elements.

The approximate theoretical expressions for the flutter derivatives for the bridge deck m
written as (Scanlan and Tomko 1971)

for all y

0� y� 5.25

5.25<y

0� y� 5

5<y

0� y� 2

2� y� 6

6<y

0� y� 4

4<y (24)

in which .

Since the values of  and  for this bridge are not available, they are assumed 
negligible. The given approximate theoretical values of flutter derivatives are plotted in Fig. 4

W[ ] K BT[ ] ω2 M BT[ ]–( ) i CBT[ ]+=

Uf

Bω f

kf

---------=

A1
* 0– ; H1

* 0.8y–=~

A2
* 0.1436 0.5984y( )sin–=

A2
* 0.08422y 0.4411–=

H2
* 0=

H2
* 0.00582y3 0.0121y2– 0.60252–=

A3
* 0=

A3
* 0.2y 0.4–=

A3
* 0.3y 1–=

H3
* 0=

H3
* 0.011666y3

– 0.11y2 1.41334y 4.64003+–+=

y
2π
k

--------= ; k
Bω
U

----------=

H4
* A4

*
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TMD properties are taken as

=7% of total bridge mass =5.8� 105 kg;

=(1.3743)2  =1095446.3 N/m;

(tuned to 1st symmetric frequency of the bridge)

 r2= 5.8� 102
� 52=1.45� 107 kg−m2 ;

=1.41� 108 N−m ;

(tuned to 1st symmetric torsional frequency)

The numerical results are obtained with the values of above parameters unless mentioned oth

5.1. Free vibration

The results of the free vibrational analysis (first 19 frequencies and first 6 mode shape
respectively shown in Table 1 and Fig. 5. In the figure, V and T refer to vertical and torsional
respectively, and A and S refer to anti-symmetric and symmetric, respectively. It is seen that the 
five modes correspond to the vertical mode of vibration. Note that free vibrational mode shap
either purely vertical or purely torsional as it would be expected.

MTi
V

KTi
V MTi

V

ITi
θ MTi

V=

KTi
θ 3.1163( )2ITi

θ=

ζTi
V ζTi

θ 2%= =

Fig. 4 Approximate flutter derivatives Eq. (24) of Thomas Suspension Bridge
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5.2. Flutter

Table 2 shows the relative participation of different modes in the flutter for three cases namely, (i) 6
analysis; (ii) 7-mode analysis and (iii) 10-mode analysis for the bridge without TMD. It is seen from
table that the 6th mode (i.e., the first symmetric torsional mode) is the predominant mode f
flutter condition. This mode gets coupled with the 2nd and 5th modes, which are the first and third
vertical symmetric modes, respectively for the flutter condition. The contributions of the other m
in flutter occurrence are very less in comparison with these modes. Thus, consideration of fi

Table 1 Modal properties of Vincent-Thomas Suspension Bridge

Mode No. Frequency ω ( rad /sec.) Mode type Modal mass (m)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1.2324
1.3743
2.1595
2.1744
2.8710
3.1163
3.4215
4.4124
5.0012
6.68024
6.7388
6.8351
6.8352
6.8791
7.0556
9.1062
9.2418

11.6557
11.9381

V-AS
V-S
V-AS
V-S
V-S
T-S
V-AS
T-AS
V-S
T-AS
T-S
V-AS
V-S
V-AS
T-S
V-S
T-AS
V-AS
T-S

2459813.72
2241151.36
1691846.37
2835117.10
2473230.58

97988365.63
2587940.03

104389535.3
2370506.36

71798615.43
127314525.1

853012.18
1021244.00
2460065.24

90569439.11
2441548.53

1098227534.8
2587889.91

103285020.90

Note: T=torsional; V=vertical; S=symmetric; AS=anti-symmetric

Fig. 5 First six free vertical and torsional vibration mode-shapes
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six modes for the flutter analysis is sufficient. The same observation is made for the bridge
system. Therefore, for further parametric studies first six modes are considered in the analy
The flutter speed for the bridge alone, for a damping ratio of 0.6%, is Uf = 51.8 m/sec. For a single
TMD (Fig. 3(a)) placed at the center, the flutter speed is obtained as Uf = 63.02 m/sec (for TMD
mass ratio of 7%), which shows a 21.7% increase in the flutter speed. The effectiveness of T
increasing the flutter speed is investigated by conducting a parametric study. The para
include the TMD mass and damping ratios, tuning frequencies and the number of TMDs.

5.3. Effect of mass ratio on the flutter speed

The effect of the ratio of the TMD mass to total bridge mass (mass ratio) on the flutter sp
shown in Fig. 6. The effect is shown for a TMD damping ratio of 3% for both vertical and tors
degrees of freedom. It is seen from the figure that the flutter speed increases with the increas
mass ratio up to a certain value and then, it remains almost insensitive to the variation of th
ratio. There is practically no change in the flutter speed beyond a mass ratio of 7%. For this mass
ratio, the increase in the flutter speed is about 30%. This shows that there exists an optimum mass
ratio beyond which no significant improvement of the stability against flutter can be achieved
the help of a single TMD. Further, it is seen from the figure that the use of a mass ratio o
lowers the flutter speed marginally from that obtained with 7% mass ratio (i.e., 67.33 m/sec to
m/sec). Therefore, it is more realistic to use 3% mass ratio for the control of the flutter speed using

Table 2 Relative flutter mode participation 

Magnitude : |ai|

Case

Mode No.

1 2 3 4 5 6 7 8 9 10

×10-7 ×10-2 ×10-18 ×10-4 ×10-1 ×1 ×10-10 ×10-7 ×10-4 ×10-9

1 7.8630 8.2849 1.2820 7.0984 1.7827 1.0 – – – –
2 8.7197 9.1670 3.0392 7.8965 1.9034 1.0 4.2003 – – –
3 7.8998 9.1670 1.7308 7.8965 1.9034 1.0 4.0899 9.1579 6.5869 2.29

Fig. 6 Effect of mass ratio on the flutter speed
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TMD. For further parametric study, 3% mass ratio is used.

5.4. Effect of tuning frequency on the flutter speed

In order to obtain the effect of tuning frequencies on the flutter speed, the vertical and tor
frequencies of the TMD are changed keeping the TMD mass as 3% of the total mass of the 
By changing the frequencies, various ratios of vertical frequency of TMD to the third vertical
frequency of the bridge (rv) and torsional frequency of the TMD to the first torsional frequency
the bridge (rt) are obtained. Note that the modes corresponding to these bridge frequenci
coupled during flutter. For different pairs of these frequency ratios, the flutter speed for the bri
obtained for a TMD damping ratio equal to 2% and 5%. The variation of the flutter speed wit
pair of frequency ratios is shown in Fig. 7. Pairs of frequency ratios are shown as (rv , rt) in the
figure. It is seen from the figure that there exists a pair of frequency ratios for which the f
speed becomes maximum. The corresponding TMD frequencies are the optimum tuning frequencies.
For the example problem, the optimum tuning frequencies are such that the torsional freque
the TMD is about 0.8 times the first torsional frequency of the bridge, while the vertical frequ
of the TMD is about 1.2 times the 3rd vertical frequency of the bridge. Thus, maximum cont
the flutter condition is not achieved when TMD frequencies perfectly match with the br
frequencies. At the optimum tuning frequencies, the flutter speed is about 1.43 times the uncon
flutter speed for 2% TMD damping ratio, and is about 2.03 times the uncontrolled flutter spee
5% TMD damping ratio. Further, it is observed that the effect of the damping of the TMD o
control of flutter is maximum at the optimum tuning frequencies.

5.5. Effect of TMD damping ratio on the flutter speed 

Fig. 8 shows the effect of TMD damping ratio on the flutter speed. It can be seen from the figure
the damping of the TMD has significant effect on improving the flutter condition of the bridge. 
very small damping of the TMD (i.e., 2% or 5%), it is not possible to obtain much control of the f

Fig. 7 Effect of tuning frequencies on the flutter speed (TMD mass is 3%)
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condition of the bridge. There will be practically no increase in the flutter speed if only a spring
system is suspended from the bridge deck. However, if the damping is increased to about 20%, th
substantial increase in the flutter speed (1.76 times the uncontrolled flutter speed). Further, it is o
that there is an optimum damping ratio for the TMD for which the maximum control is achieve

5.6. Effect of the number of TMD devices on the flutter speed

In order to study the effect of the number of TMD devices on the flutter speed, a number of
devices are arranged symmetrically in the middle of the center span of the bridge as shown 
3(b). For each TMD, the mass ratio, damping ratio and the tuning frequency ratios are taken 
2% and (1.2, 0.8) respectively. The variation of flutter wind speed with the number of TMD
shown in Fig. 9. The variation shows a definite maximum. The maximum flutter speed is obt
for three numbers of TMD devices put in the middle of the center span of the bridge.
corresponding flutter speed is 101.23 m/sec, 1.95 times the uncontrolled flutter speed. Thus
exists an optimum number of TMD that produces the best control.

Fig. 8 Effect of TMD damping ratio on the flutter speed (structural damping is 0.6%)

Fig. 9 Effect of the number of TMDs on the flutter speed
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6. Conclusions

A method of passive control of suspension bridge deck flutter condition using TMD is prese
The proposed passive control technique uses a TMD system, which has coupled vertical-to
characteristic and therefore, is effective in controlling the aerodynamic coupled flutter of the bridg
deck. The effectiveness of the control scheme is investigated through a parametric study. Fr
results of the parametric study, the following conclusions can be drown

1. Significant increase in the flutter speed can be achieved by suspending TMDs from the 
deck. The amount of increase in the flutter speed depends upon the mass ratio, TMD da
ratio, tuning frequencies and the number of TMDs.

2. For practical purposes the optimum mass ratio of the single TMD for the example pro
may be taken as 3%.

3. The TMD damping has a significant effect on the flutter speed. There exists an opt
damping ratio for the TMD for which maximum increase in flutter wind speed is achieved.

4. Tuning frequencies have the maximum effect on the flutter speed. Maximum increase 
flutter speed is achieved by tuning TMD frequencies (vertical and torsional) close (bu
exactly equal) to the frequencies of the bridge modes which get coupled during flutter. F
example problem, tuning frequencies are 1.2 times and 0.8 times the 3rd vertical an
torsional frequencies of the bridge, respectively.

5. Flutter speed does not monotonically increase with the increase in the number of 
suspended from the bridge deck. There is an optimum number of TMDs for which max
increase in the flutter speed is achieved. For the example problem, this number is three.

References

Abdel-Ghaffar, A.M. (1980), “Vertical vibration analysis of suspension bridges”, J. Struct. Div., ASCE, 106(10),
2053-2074.

Abdel-Ghaffar, A.M. (1979), “Free torsional vibrations of suspension bridges”, J. Struct. Div., ASCE, 105(4),
767-789.

Abe, M. and Fujino, Y. (1994), “Dynamic characterization of multiple tuned mass dampers and some 
formulas”, J. Earthquake Eng. Struct. Dyn., 23(8), 813-835.

Ankireddi, S. and Yang, H.T.Y. (1996), “Simple ATMD control methodology for tall building subject to w
loads”, J. Struct. Eng. ASCE, 122(1), 83-91.

Branceloni, F. (1992), “The construction phase and its aerodynamic issues”, Aerodynamics of Large Bridges
(Larsen A. ed.), A. A. Balkelma, Rotterdam, Holland, 17-158.

Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, Second Edition, McGraw-Hill: New York.
Dung, N.N., Miyata, T., and Yamada, H. (1996), “Structural control in consideration of flutter response in

span bridges”, Proc. the 2nd Int. Workshop on Structural Control, Hong Kong, 152-162.
Dung, N.N., Miyata, T., and Yamada, H. (1996), “Application of robust control to the flutter in long 

bridges”, J. Struct. Eng. Earthq. Eng., JSCE, 42A, 847-853.
Fujino, Y. and Sun, L.M. (1993), “Vibration control by multiple tuned liquid dampers (MTLDs)”, J. Struct. Eng.,

ASCE, 119(12), 3482-3502.
Fujino, Y., Sun, L., Pacheco, B.M., and Chaiseri, P. (1992), “Tuned liquid damper (TLD) for suppre

horizontal motion of structures”, J. Eng. Mech., 118(10), 2017-2030.
Gu, M., Chen, S.R., and Chang, C.C. (1999), “Buffeting control of the Yangpu Bridge using multiple tuned

dampers”, Proc. the 10th Int. Conf. on Wind Engineering, (Larsen A. et al. ed.), Copenhagen, Denmark, 2,
893-898.

Gu, M., Chang, C.C., Wu, W., and Xiang, H.F. (1998), “Increase of critical flutter wind speed of long 
bridges using tuned mass damper”, J. Wind Eng. and Ind. Aerod., 73, 111-123.



420 Saeid Pourzeynali and T. K. Datta

ges”, 

oupled

r with

 

ral and

control

tter of

 mass

idges”,

D)”,

amic

n of

 liquid

a, T.
Jain, A., Jones, N.P., and Scanlan, R.H. (1998), “Effect of modal damping on bridge aeroelasticity”, J. Wind Eng.
Ind. Aerod., 77-78, 421-430.

Jain, A., Jones, N.P., and Scanlan, R.H. (1996), “Coupled flutter and buffeting analysis of long-span bridJ.
Struct. Eng., ASCE, 122(7), 716-725.

Jangid, R.S. and Datta, T.K. (1997), “Performance of multiple tuned mass dampers for torsionally c
system”, J. Earthq. Eng, Struct. Dyn., 26(3), 307-317.

Kihara, H., Kunitsu, H., and Asami, Y. (1993), “Structural design and wind resistance of Fukuoka Towe
TMD”, Proc. Struct. Cong. Struct. Eng. in Natural Hazard Mitigation, ASCE, New York, N.Y., 646-651.

Kobayashi, H. and Nagaoka, H. (1992), “Active control of flutter of a suspension bridge”, J. Wind Eng. Ind.
Aerod., 41-44, 143-151.

Kobayashi, H., Ogawa, R., and Taniguchi, S. (1998), “Active flutter control of a bridge deck by ailerons”,Proc.
the 2nd World Conf. on Structural Control, (Kobori T. et al. ed.), Kyoto, Japan, 3, 1841-1848.

Lin, Y.Y., Cheng, C.M., and Lee, C.H. (2000), “A tuned mass damper for suppressing the coupled flexu
torsional buffeting response of long-span bridges”, J. Engrg. Structs., Elsevier, 22, 1195-1204.

Miyata, T., Yamada, H., Dung, N.N., and Kozama, K. (1994), “On active control and structural response 
of the coupled flutter problem for long span bridges”, Proc. of 1st World Conf. on Structural Control, Los
Angeles, USA, Vl. 1, WA4-40-49.

Nobuto, J., Fujino, Y., and Ito, M. (1988), “A study on the effectiveness of TMD to suppress a coupled flu
bridge deck”, J. Struct. Mech. Earthq. Eng., JSCE, 398/1-10, 413-416 (in Japanese).

Phongkumsing, S., Wilde, K., and Fujino, Y. (1998), “Analytical study on flutter suppression by eccentric
method on 3D full suspension bridge model”, Proc. the 2nd World Conf. on Struct. Control, Kyoto, Japan, 3,
1797-1806.

Sakai, F., Takaeda, S., and Tamaki, T. (1991), “Tuned liquid column damper (TLCD) for cable-stayed br
In: Proceeding Specialty Conf. on Innovation in cable-stayed bridges, Fukuoka, Japan, 197-205.

Scanlan, R.H. and Tomko, J.J. (1971), “Airfoil and bridge deck flutter derivatives”, J. the Engrg. Mech. Div.,
ASCE, 97(6), 1717-1737.

Sun, L.M., Fujino, Y., Pacheco, B.M., and Chaiseri, P. (1991), “Modeling of tuned liquid damper (TL
Proceeding of 8th Int. Conf. on Wind Engineering, IAWE, London, Canada.

Weisne, K.B. (1979), “Tuned mass damper to reduce building wind motion:, ASCE, Convention and Exposition,
Preprint 3510, ASCE, New York, N.Y.

Wilde, K. and Fujino, Y. (1998), “Aerodynamic control of bridge deck flutter by active surfaces”, J. Eng. Mech.,
ASCE, 124(7), 718-727.

Wilde, K., Fujino, Y., and Kawakami, T. (1998), “Analytical and experimental study on passive aerodyn
control of flutter of bridge deck section”, J. Wind Eng. Ind. Aerod., 80(1-2), 105-119.

Wilde, K., Fujino, Y., and Prabis, V. (1996), “Effects of eccentric mass on flutter of long span bridge”, Proc. 2nd
Int. Workshop on Structural Control, Hong Kong, 564-574.

Xue, S.D., Ko, J.M. and Xu, Y.L. (2000), “Tuned liquid column damper for suppressing pitching motio
structures”, J. Eng. Struct., 23, 1538-1551.

Xu, Y.L., Samali, B. and Kwok, K.C.S. (1992), “Control of along-wind response of structures by mass and
dampers”, J. Eng. Mech., ASCE, 118(1), 20-39.

Yoneda, M., Fujino, Y., Kande, H., Yamamoto, A., Miyamoto, Y., Ando, O., Maeda, K., and Katayam
(1989), “A practical study of tuned liquid damper with application to the Sakitama Bridge”, J. Wind Eng.(in
Japanese), 41, 105-106.



Control of flutter of suspension bridge deck using TMD 421
Appendix -A

Matrices [AF ] and [BF ] can be written as

(A1)

and 

(A2)

A
F[ ]

H1
* L1 | BH2

* L1

0 zeros | 0 zeros

H1
* L2 | BH2

* L2

0 | 0

O | O

zeros H1
* Ln | zeros BH2

* Ln

0 | 0

|

BA1
* L1 | B2A2

* L1

0 zeros | 0 zeros

BA1
* L2 | B2A2

* L2

0 | 0

O | O

zeros BA1
* Ln | zeros B2A2

* Ln

0 | 0
4n 4n×( )

= ----------------------------------------- -------------------------------------------

� �

� �

B
F[ ]

H4
*

B
------L1 | H3

* L1

0 zeros | 0 zeros

H4
*

B
------L2 | H3

* L2

0 | 0

O | O

zeros
H4

*

B
------Ln | zeros H3

* Ln

0 | 0

|

A4
* L1 | BA3

* L1

0 zeros | 0 zeros

A4
* L2 | BA3

* L2

0 | 0

O | O

zeros A4
* Ln | zeros BA3

* Ln

0 | 0 4n 4n×( )

=

-------------------------------------- -------------------------------------------

� �

� �
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TMD
The combined bridge-TMD system matrices also can be evaluated as 

(A3)

(A4)

and

(A5)

in which [M BT], [KBT] and [CBT] are the mass, stiffness and damping matrices of the combined bridge-
system. In the matrices OR refers to the original bridge component without using TMD.

AK

M BT[ ]

M
V

0 | zeros

0 MT
V |

|

| M θ
0

zeros | 0 I T
θ

4n 2+( ) 4n 2+( )

= ------------ ------------

K BT[ ]

OR OR OR 0 |

OR KOR
V KT

V+ OR kK
V– | zeros

OR OR OR 0 |

0 KT
V– 0 KT

V |

|

| OR OR OR 0

| OR KOR
θ KT

θ+ OR KT
θ–

zeros | OR OR OR 0

| 0 KT
θ– 0 KT

θ
4n 2+( ) 4n 2+( )

= --------------------------------- -----------------------------------

CBT[ ]

OR OR OR 0 |

OR COR
V CT

V+ OR CK
V– | zeros

OR OR OR 0 |

0 CT
V– 0 CT

V |

|

| OR OR OR 0

| OR COR
θ CT

θ+ OR CT
θ–

zeros | OR OR OR 0

| 0 CT
θ– 0 CT

θ
4n 2+( ) 4n 2+( )

= --------------------------------- -----------------------------------
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